Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,714)

Search Parameters:
Keywords = thinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 (registering DOI) - 2 Aug 2025
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Figure 1

15 pages, 796 KiB  
Article
Electroassisted Incorporation of Ferrocene Within Sol–Gel Silica Films to Enhance Electron Transfer—Part II: Boosting Protein Sensing with Polyelectrolyte-Modified Silica
by Rayane-Ichrak Loughlani, Alonso Gamero-Quijano and Francisco Montilla
Molecules 2025, 30(15), 3246; https://doi.org/10.3390/molecules30153246 (registering DOI) - 2 Aug 2025
Abstract
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either [...] Read more.
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either negatively charged poly(4-styrene sulfonic acid) or positively charged poly(diallyl dimethylammonium chloride). These hybrid films were deposited onto ITO electrodes and evaluated via cyclic voltammetry in aqueous ferrocenium solutions. The polyelectrolyte charge played a key role in the electroassisted incorporation of ferrocene: silica-PSS films promoted accumulation, while silica-PDADMAC films hindered it due to electrostatic repulsion. In situ UV-vis spectroscopy confirmed that only a fraction of the embedded ferrocene was electroactive. Nevertheless, this fraction enabled effective mediated detection of cytochrome c in solution. These findings highlight the crucial role of ionic interactions and hybrid composition in electron transfer to redox proteins, providing valuable insights for the development of advanced bioelectronic sensors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

37 pages, 5131 KiB  
Review
Coating Metal–Organic Frameworks (MOFs) and Associated Composites on Electrodes, Thin Film Polymeric Materials, and Glass Surfaces
by Md Zahidul Hasan, Tyeaba Tasnim Dipti, Liu Liu, Caixia Wan, Li Feng and Zhongyu Yang
Nanomaterials 2025, 15(15), 1187; https://doi.org/10.3390/nano15151187 (registering DOI) - 2 Aug 2025
Abstract
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, [...] Read more.
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, have resulted in significant interest in MOFs for applications in gas storage, catalysis, sensing, energy, and biomedicine. Beyond their stand-alone properties and applications, recent research has increasingly explored the integration of MOFs with other substrates, particularly electrodes, polymeric thin films, and glass surfaces, to create synergistic effects that enhance material performance and broaden application potential. Coating MOFs onto these substrates can yield significant benefits, including, but not limited to, improved sensitivity and selectivity in electrochemical sensors, enhanced mechanical and separation properties in membranes, and multifunctional coatings for optical and environmental applications. This review provides a comprehensive and up-to-date summary of recent advances (primarily from the past 3–5 years) in MOF coating techniques, including layer-by-layer assembly, in situ growth, and electrochemical deposition. This is followed by a discussion of the representative applications arising from MOF-substrate coating and an outline of key challenges and future directions in this rapidly evolving field. This article aims to serve as a focused reference point for researchers interested in both fundamental strategies and applied developments in MOF surface coatings. Full article
Show Figures

Figure 1

20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 (registering DOI) - 1 Aug 2025
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 (registering DOI) - 1 Aug 2025
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

21 pages, 3870 KiB  
Article
The Impact of Drilling Parameters on Drilling Temperature in High-Strength Steel Thin-Walled Parts
by Yupu Zhang, Ruyu Li, Yihan Liu, Chengwei Liu, Shutao Huang, Lifu Xu and Haicheng Shi
Appl. Sci. 2025, 15(15), 8568; https://doi.org/10.3390/app15158568 (registering DOI) - 1 Aug 2025
Abstract
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used [...] Read more.
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used in aerospace and other high-end sectors; however, systematic investigations into their temperature fields during drilling remain scarce, particularly regarding the evolution characteristics of the temperature field in thin-wall drilling and the quantitative relationship between drilling parameters and these temperature variations. This paper takes the thin-walled parts of AF1410 high-strength steel as the research object, designs a special fixture, and applies infrared thermography to measure the bottom surface temperature in the thin-walled drilling process in real time; this is carried out in order to study the characteristics of the temperature field during the thin-walled drilling process of high-strength steel, as well as the influence of the drilling dosage on the temperature field of the bottom surface. The experimental findings are as follows: in the process of thin-wall drilling of high-strength steel, the temperature field of the bottom surface of the workpiece shows an obvious temperature gradient distribution; before the formation of the drill cap, the highest temperature of the bottom surface of the workpiece is distributed in the central circular area corresponding to the extrusion of the transverse edge during the drilling process, and the highest temperature of the bottom surface can be approximated as the temperature of the extrusion friction zone between the top edge of the drill and the workpiece when the top edge of the drill bit drills to a position close to the bottom surface of the workpiece and increases with the increase in the drilling speed and the feed volume; during the process of drilling, the highest temperature of the bottom surface of the workpiece is approximated as the temperature of the top edge of the drill bit and the workpiece. The maximum temperature of the bottom surface of the workpiece in the drilling process increases nearly linearly with the drilling of the drill, and the slope of the maximum temperature increases nearly linearly with the increase in the drilling speed and feed, in which the influence of the feed on the slope of the maximum temperature increases is larger than that of the drilling speed. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
12 pages, 11337 KiB  
Brief Report
Crustal-Scale Duplexes Beneath the Eastern Rioni Foreland Basin in Western Georgia: A Case Study from Seismic Reflection Profile
by Victor Alania, Onise Enukidze, Nino Kvavadze, Tamar Beridze, Rusudan Chagelishvili, Anzor Giorgadze, George Melikadze and Alexander Razmadze
Geosciences 2025, 15(8), 291; https://doi.org/10.3390/geosciences15080291 (registering DOI) - 1 Aug 2025
Abstract
Our understanding of foreland basin subsurface structures relies heavily on seismic reflection data. The seismic profile across the eastern Rioni foreland basin in western Georgia is critical for characterizing its deformation structural style. We applied fault-related folding and thrust wedge theories to interpret [...] Read more.
Our understanding of foreland basin subsurface structures relies heavily on seismic reflection data. The seismic profile across the eastern Rioni foreland basin in western Georgia is critical for characterizing its deformation structural style. We applied fault-related folding and thrust wedge theories to interpret the seismic profile and construction structural cross-section, which reveals that compressional structures are controlled by multiple detachment levels. Both thin-skinned and thick-skinned structures are identified. The seismic profile and structural cross-section reveal the presence of normal faults, reverse faults, thrust faults, duplexes, triangle zone, and crustal-scale duplexes. The deep-level detachment within the basement is responsible for the development of the crustal-scale duplexes. These structures appear to have formed through the reactivation of pre-existing normal faults during compressive deformation. Based on our interpretation, the imaged duplex system likely represents the western subsurface continuation of the Dzirula Massif. Full article
(This article belongs to the Section Structural Geology and Tectonics)
Show Figures

Figure 1

13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 (registering DOI) - 1 Aug 2025
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

23 pages, 3099 KiB  
Article
Explainable Multi-Scale CAM Attention for Interpretable Cloud Segmentation in Astro-Meteorological Applications
by Qing Xu, Zichen Zhang, Guanfang Wang and Yunjie Chen
Appl. Sci. 2025, 15(15), 8555; https://doi.org/10.3390/app15158555 (registering DOI) - 1 Aug 2025
Abstract
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level [...] Read more.
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level and high-level features and achieves significant progress in accuracy, current methods still lack interpretability and multi-scale feature integration and usually produce fuzzy boundaries or fragmented predictions. In this paper, we propose multi-scale CAM, an explainable AI (XAI) framework that integrates class activation mapping (CAM) with hierarchical feature fusion to quantify pixel-level attention across hierarchical features, thereby enhancing the model’s discriminative capability. To achieve precise segmentation, we integrate CAM into an improved U-Net architecture, incorporating multi-scale CAM attention for adaptive feature fusion and dilated residual modules for large-scale context extraction. Experimental results on the SWINSEG dataset demonstrate that our method outperforms existing state-of-the-art methods, improving recall by 3.06%, F1 score by 1.49%, and MIoU by 2.21% over the best baseline. The proposed framework balances accuracy, interpretability, and computational efficiency, offering a trustworthy solution for cloud detection systems in operational settings. Full article
(This article belongs to the Special Issue Explainable Artificial Intelligence Technology and Its Applications)
Show Figures

Figure 1

20 pages, 4215 KiB  
Article
Influence of Membrane Composition on the Passive Membrane Penetration of Industrially Relevant NSO-Heterocycles
by Zsófia Borbála Rózsa, Tamás Horváth, Béla Viskolcz and Milán Szőri
Int. J. Mol. Sci. 2025, 26(15), 7427; https://doi.org/10.3390/ijms26157427 (registering DOI) - 1 Aug 2025
Abstract
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the [...] Read more.
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the passive transport of NSO-HETs across DPPC, DPPE, DPPA, and DPPG bilayers was characterized. DPPG showed the highest membrane affinity, increasing permeability (logPmemb/bulk) by 27–64% compared to DPPE, associated with the lowest permeability and tightest lipid packing. Free energy barriers are also decreased in DPPG relative to DPPE; PIR’s central barrier dropped from 19.2 kJ/mol (DPPE) to 16.6 kJ/mol (DPPG), while DIOX’s barrier decreased from 7.2 to 5.2 kJ/mol. OXA exhibited the lowest central barriers (1.2–2.2 kJ/mol) and uniquely accumulated at higher concentrations in the bilayer center than in bulk water, with free energy ranging from −3.4 to −5.9 kJ/mol. PHE and OXA caused significant bilayer thinning (up to 11%) and reduced lipid tail order, especially in DPPE and DPPA. Concentration effects were most pronounced in DPPE, where high solute loading disrupted lipid order and altered free energy profiles. These results highlight the crucial role of headgroup identity in modulating NSO-HET membrane permeability and structural changes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

11 pages, 1935 KiB  
Article
Segmental Renal Infarction Associated with Accessory Renal Arteries After Para-Aortic Lymphadenectomy in Gynecologic Malignancies
by Ayumi Kozai, Shintaro Yanazume, Fumitaka Ejima, Shuichi Tatarano, Yusuke Kobayashi, Rintaro Kubo, Shinichi Togami, Takashi Yoshiura and Hiroaki Kobayashi
Medicina 2025, 61(8), 1395; https://doi.org/10.3390/medicina61081395 - 1 Aug 2025
Abstract
Background and Objectives: The causes and clinical outcomes of renal perfusion abnormalities occurring after para-aortic lymphadenectomy (PANDx) for gynecologic malignancies are unknown. We investigated the potential involvement of accessory renal artery (ARA) obstruction in their development by reassessing perioperative contrast-enhanced computed tomography [...] Read more.
Background and Objectives: The causes and clinical outcomes of renal perfusion abnormalities occurring after para-aortic lymphadenectomy (PANDx) for gynecologic malignancies are unknown. We investigated the potential involvement of accessory renal artery (ARA) obstruction in their development by reassessing perioperative contrast-enhanced computed tomography (CECT). Materials and Methods: This retrospective study investigated a clinical database to identify urinary contrast defects using CECT in all patients who had undergone PANDx between January 2020 and December 2024. The perfusion defects in the kidney detected by CECT were extracted by a gynecologic oncologist and evaluated by a radiologist and urologist for suspected obstruction of ARAs. Results: Postoperative renal contrast defects were observed in 3.8% (6/157) of patients. Renal parenchymal fibrosis, cortical atrophy, and parenchymal thinning were observed as universal findings in all patients showing renal contrast defects. In five of the six cases, ARAs supplying the infarcted renal segments were identified on preoperative CECT, and arterial obstruction was confirmed on postoperative imaging. The remaining case was considered to be latent pyelonephritis. All five patients underwent laparotomy, and preoperative CECT failed to detect ARAs. The median resected para-aortic lymph node was 23 nodes (range: 15–33) in five patients, showing no statistically significant difference compared to patients without perfusion abnormalities (p = 0.19). Postoperative serum creatinine levels remained stable. Conclusions: ARA obstruction appears to be a risk factor for segmental renal infarction after para-aortic lymphadenectomy in gynecological malignancies; however, the clinical impact on urinary function may be limited. Awareness of this potential complication is essential for gynecologic oncologists performing PANDx. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

19 pages, 4726 KiB  
Article
Modeling and Adaptive Neural Control of a Wheeled Climbing Robot for Obstacle-Crossing
by Hongbo Fan, Shiqiang Zhu, Cheng Wang and Wei Song
Machines 2025, 13(8), 674; https://doi.org/10.3390/machines13080674 (registering DOI) - 1 Aug 2025
Abstract
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of [...] Read more.
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of magnetic wheels in response to real-time changes in the dynamic model. This limitation makes it challenging to precisely control the robot’s speed and attitude angles during the obstacle-crossing process. To address this issue, this paper first establishes a staged dynamic model for the wall-climbing robot under typical obstacle-crossing scenarios, including steps, 90° concave corners, 90° convex corners, and thin plates. Secondly, an adaptive controller based on a radial basis function neural network (RBFNN) is designed to effectively compensate for variations and uncertainties during the obstacle-crossing process. Finally, comparative simulations and physical experiments demonstrate the effectiveness of the proposed method. The experimental results show that this method can quickly respond to the dynamic changes in the model and accurately track the trajectory, thereby improving the control precision and stability during the obstacle-crossing process. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

23 pages, 5943 KiB  
Article
Investigation of Titanium Alloy Cutting Dynamics in Thin-Layer Machining
by Anna Zawada-Tomkiewicz, Emilia Zeuschner and Dariusz Tomkiewicz
Appl. Sci. 2025, 15(15), 8535; https://doi.org/10.3390/app15158535 (registering DOI) - 31 Jul 2025
Abstract
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable [...] Read more.
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable formation of a stagnation zone. This paper presents research focused on the analysis of the cutting process for small cross-sections of the removed layers, based on cutting force components. This study investigated the machining of two titanium alloy grades—Ti Grade 5 (Ti-6Al-4V) and Ti Grade 2—with the main focus on process stability. A material separation model was analyzed to demonstrate the mechanism of material flow within the cross-section of the machined layer. It was found that the material has a limited ability to flow sideways at the boundary of the chip thickness, thus determining the probable size of the stagnation zone in front of the cutting edge. Orthogonal cutting experiments enabled the determination of the minimum chip thickness coefficient for constant temperature conditions, independent of the tool edge radius, as hmin0= 0.313. In oblique cutting tests, the sensitivity of thin-layer machining was demonstrated for the determined values of minimum undeformed chip thickness. By applying the 0–1 test for chaos, the measurement time (parameter T·dt) was determined for both titanium alloys to determine the range of observable chaotic behavior. The analyses confirmed that Ti Grade 2 enters chaotic dynamics much more rapidly than Ti Grade 5 and displays local cutting instabilities independent of the uncut chip thickness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 4098 KiB  
Article
The Influence of the Annealing Process on the Mechanical Properties of Chromium Nitride Thin Films
by Elena Chițanu, Iulian Iordache, Mirela Maria Codescu, Virgil Emanuel Marinescu, Gabriela Beatrice Sbârcea, Delia Pătroi, Leila Zevri and Alexandra Cristiana Nadolu
Materials 2025, 18(15), 3605; https://doi.org/10.3390/ma18153605 (registering DOI) - 31 Jul 2025
Abstract
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent [...] Read more.
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent wear resistance, and strong corrosion resistance. In this study, a fabrication process for CrN-based thin films was developed by combining reactive direct current magnetron sputtering (dcMS) with post-deposition annealing in air. CrN coatings were deposited by reactive dcMS using different argon-nitrogen (Ar:N2) gas ratios (4:1, 3:1, 2:1, and 1:1), followed by annealing at 550 °C for 1.5 h in ambient air. XRD and EDS analysis revealed that this treatment results in the formation of a composite phase comprising CrN and Cr2O3. The resulting coating exhibited favorable mechanical and tribological properties, including a maximum hardness of 12 GPa, a low wear coefficient of 0.254 and a specific wear rate of 7.05 × 10−6 mm3/N·m, making it a strong candidate for advanced protective coating applications. Full article
Show Figures

Figure 1

Back to TopTop