Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,187)

Search Parameters:
Keywords = thin-film type

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1774 KiB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Viewed by 213
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 241
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

15 pages, 2504 KiB  
Article
The Effect of the Interaction of Intense Low-Energy Radiation with a Zinc-Oxide-Based Material
by Ihor Virt, Piotr Potera, Nazar Barchuk and Mykola Chekailo
Crystals 2025, 15(8), 685; https://doi.org/10.3390/cryst15080685 - 28 Jul 2025
Viewed by 185
Abstract
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we [...] Read more.
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we deposited polycrystalline ZnNiO films on sapphire and silicon substrates. The deposited film was annealed by laser heating. A continuous CO2 laser was used for this purpose. The uniformly distributed long-wavelength radiation of the CO2 laser can penetrate deeper from the surface of the thin film compared to short-wavelength lasers such as UV and IR lasers. After growth, optical post-annealing processes were applied to improve the conductive properties of the films. The crystallinity and surface morphology of the grown films and annealed films were analyzed using SEM, and their electrical parameters were evaluated using van der Pauw effect measurements. We used electrical conductivity measurements and investigated the photovoltaic properties of the ZnNiO film. After CO2 laser annealing, changes in both the crystalline structure and surface appearance of ZnO were evident. Subsequent to laser annealing, the crystallinity of ZnO showed both change and degradation. High-power CO2 laser annealing changed the structure to a mixed grain size. Surface nanostructuring occurred. This was confirmed by SEM morphological studies. After irradiation, the electrical conductivity of the films increased from 0.06 Sm/cm to 0.31 Sm/cm. The lifetime of non-equilibrium charge carriers decreased from 2.0·10−9 s to 1.2·10−9 s. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 242
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 487
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 2994 KiB  
Article
The Effect of Cs-Controlled Triple-Cation Perovskite on Improving the Sensing Performance of Deep-Ultraviolet Photodetectors
by Jun Seo Kim, Sangmo Kim and Hyung Wook Choi
Appl. Sci. 2025, 15(14), 7982; https://doi.org/10.3390/app15147982 - 17 Jul 2025
Viewed by 299
Abstract
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the [...] Read more.
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the primary light-absorbing layer in an NIP structure composed of n-type SnO2 and p-type spiro-OMeTAD. Perovskite films were fabricated and analyzed as a function of the Cs concentration to optimize the Cs content. The results demonstrated that Cs doping improved the crystallinity and phase stability of the films, leading to their enhanced electron mobility and photodetection performance. The UVC PD with an optimum Cs concentration exhibited a responsivity of 58.2 mA/W and a detectivity of 3.52 × 1014 Jones, representing an approximately 7% improvement over conventional structures. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 - 17 Jul 2025
Viewed by 245
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

23 pages, 1137 KiB  
Review
Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
by Sara Sofia Pinheiro, Francisco Campos, Maria João Cabrita and Marco Gomes da Silva
Molecules 2025, 30(13), 2825; https://doi.org/10.3390/molecules30132825 - 30 Jun 2025
Viewed by 427
Abstract
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling [...] Read more.
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling wines, understanding the biochemical mechanisms related to aroma development has become increasingly relevant. This review provides a comprehensive overview of the secondary fermentation process, with particular emphasis on yeast selection, types of closure, and the impact of aging on the volatile composition. Special attention is also given to the analytical strategies employed for the identification and quantification of target compounds in sparkling wine matrices. Due to the presence of volatile compounds at trace levels, effective extraction and pre-concentration techniques are essential. Extraction methods such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and thin-film SPME (TF-SPME) are discussed, as well as chromatographic techniques, such as gas chromatography (GC) and liquid chromatography (LC). Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Figure 1

7 pages, 656 KiB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 277
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 457
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 1626 KiB  
Article
Origin of the Optimization of Photocatalytic Activities for Titanium Oxide Film Modified by an Oxidized Copper Layer
by Jian-An Chen, Shu-Min Tsai, Yi-You Hong, Pin-Jyun Shih and Day-Shan Liu
Materials 2025, 18(13), 2993; https://doi.org/10.3390/ma18132993 - 24 Jun 2025
Viewed by 402
Abstract
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure [...] Read more.
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure to decompose the methylene blue solution and inhibit the growth of Escherichia coli. could be optimized. With the help of a study on the conductive type required for the oxidation of a single Cu layer, an n/p nanocomposite heterojunction was realized, as this contact system anneals at temperatures of 350 °C and 450 °C. An extra electrical field at the contact interfaces that was be beneficial for separating the photo-generated electron–hole pairs (EHPs) under UV light irradiation was built. The built-in electrical field led to an increase in the structural photocatalytic activity. Moreover, as the p-type cuprous oxide (p-Cu2O) structure oxidized by the annealed Cu layer could provide a high conduction band that is offset when in contact with the TiOx film, the photogenerated EHPs on the TiOx surface could be separated more effectively. Accordingly, the 350 °C-annealed sample, abundant in the nanocomposite TiOx/Cu2O heterojunction which could significantly retard the recombination of photo-generated carriers, corresponded to an increase of about 38% in the photocatalytic activity as compared with the single TiOx film. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

12 pages, 3678 KiB  
Article
Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow
by Yuxin Tian, Maidinuer Abulaizi, Yunpeng Hu, Yang Hu, Mo Chen, Yuanbin Jia, Tianle Kou, Jianqin Zhou and Hongtao Jia
Agriculture 2025, 15(13), 1343; https://doi.org/10.3390/agriculture15131343 - 22 Jun 2025
Viewed by 413
Abstract
In order to investigate the current pollution status and distribution characteristics of soil microplastics (MPs) in Bayinbuluk alpine swamp meadow, soil samples of different depths were collected from the study area. The physicochemical properties of the soil, as well as the abundance and [...] Read more.
In order to investigate the current pollution status and distribution characteristics of soil microplastics (MPs) in Bayinbuluk alpine swamp meadow, soil samples of different depths were collected from the study area. The physicochemical properties of the soil, as well as the abundance and morphological distribution of microplastics, were analyzed. The results showed that the microplastics’ abundance in the samples ranged from 46 to 266 microplastics/kg, with significantly higher levels (p < 0.05) in the 0–10 cm soil layer than in the other layers (10–100 cm). The shapes of microplastics mainly include fibrous, fragmented, thin film, and foamed, and the number of fibrous shapes is significantly higher than the other three types. Microplastic colors included black, yellow, red, blue, green, and clear, with black accounting for 70.16%, significantly more abundant than other colors (p < 0.05). Among the different particle sizes of microplastics, 0.5–1 mm microplastics comprised the largest proportion and were significantly more abundant than other particle sizes. Polyethylene (PE) was found to be a major component of soil microplastics in the study area through random sampling using Raman spectroscopy. Correlation analysis showed that the change in soil layer had a significant effect (p < 0.05) on the number, color, and particle size of microplastics. Meanwhile, an increase in microplastic abundance had a significant effect (p < 0.05) on the soil physicochemical properties. The results of RDA (Redundancy Analysis) and Monte Carlo testing showed that there was a significant correlation between microplastic quantity and soluble organic carbon and soil water content (p < 0.01). Full article
(This article belongs to the Topic Livestock and Microplastics)
Show Figures

Figure 1

18 pages, 2436 KiB  
Article
Photoelectrochemical and Photocatalytic Properties of SnS/TiO2 Heterostructure Thin Films Prepared by Magnetron Sputtering Method
by Yaoxin Ding, Jiahao Leng, Mingyang Zhang and Jie Shen
Inorganics 2025, 13(7), 208; https://doi.org/10.3390/inorganics13070208 - 20 Jun 2025
Viewed by 353
Abstract
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity [...] Read more.
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity and light-absorption properties of the light-absorbing layer and the quality of the heterojunction interface were effectively controlled, thereby optimizing the fabrication process of the heterojunction. It was found that when the SnS layer thickness was 244 nm and the TiO2 layer thickness was 225 nm, the heterostructure film exhibited optimal photoelectrochemical performance, generating the highest photocurrent of 3.03 µA/cm2 under visible light, which was 13.8 times that of a pure TiO2 film and 2.4 times that of a pure SnS film of the same thickness. Additionally, it demonstrated the highest degradation efficiency for methylene blue dye. The improved photoelectrochemical performance of the SnS/TiO2 heterostructure film can be primarily attributed to the following: (1) the incorporation of narrow-bandgap SnS effectively broadens the light-absorption range, improving visible-light harvesting; (2) the staggered band alignment between SnS and TiO2 forms a type-II heterojunction, significantly enhancing the charge carrier separation and transport efficiency. The present work demonstrated the feasibility of magnetron sputtering for constructing high-quality SnS/TiO2 heterostructures, providing insights into the design and fabrication of photocatalytic heterojunctions. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

18 pages, 1812 KiB  
Review
Cadmium-Free Buffer Layer Materials for Kesterite Thin-Film Solar Cells: An Overview
by Nafees Ahmad and Guangbao Wu
Energies 2025, 18(12), 3198; https://doi.org/10.3390/en18123198 - 18 Jun 2025
Cited by 1 | Viewed by 543
Abstract
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, [...] Read more.
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, toxic cadmium sulfide (CdS) is commonly used as an n-type buffer layer in kesterite thin-film solar cells (KTFSCs) to form a better p–n junction with the p-type CZTS/CZTSSe absorber. In addition to its toxicity, the CdS buffer layer shows parasitic absorption at low wavelengths (400–500 nm) owing to its low bandgap (2.4 eV). For the last few years, several efforts have been made to substitute CdS with an eco-friendly, Cd-free, cost-effective buffer layer with alternative large-bandgap materials such as ZnSnO, Zn (O, S), In2Se3, ZnS, ZnMgO, and TiO2, which showed significant advances. Herein, we summarize the key findings of the research community using a Cd-free buffer layer in KTFSCs to provide a current scenario for future work motivating researchers to design new materials and strategies to achieve higher performance. Full article
Show Figures

Figure 1

18 pages, 3833 KiB  
Article
Protective ALD Thin Films for Morphologically Diverse Types of Limestone
by Gillian P. Boyce, Suveena Sreenilayam, Eleonora Balliana, Elisabetta Zendri and Raymond J. Phaneuf
Coatings 2025, 15(6), 698; https://doi.org/10.3390/coatings15060698 - 10 Jun 2025
Viewed by 447
Abstract
We report on the results of investigations of atomic layer deposited (ALD) amorphous alumina (Al2O3) coatings for the protection of limestone with a wide range of porosity against acid-based dissolution. The protective effects of the ALD coatings were investigated [...] Read more.
We report on the results of investigations of atomic layer deposited (ALD) amorphous alumina (Al2O3) coatings for the protection of limestone with a wide range of porosity against acid-based dissolution. The protective effects of the ALD coatings were investigated by aqueous acid immersion. The solution pH was tracked over time for a constant volume of acetic acid solution with an initial pH of 4 with the stone samples immersed. We find the protective effect of ALD alumina coatings is extremely promising, with 90 nm thick coatings slowing the initial and total rate of substrate mass loss significantly by up to two orders of magnitude. The eventual failure of the ALD coatings during immersion was also investigated. Pitted areas on the substrate were discovered and were found to have an area fraction that correlates to the changing pH of the acid solution during immersion. The variation of the protective action of the films with thickness is consistent with kinetics, which are limited by diffusion within the pits rather than through the films. Our findings point to the dominant role of defects in the coatings in their eventual failure. We also show that the appearance of the stone does not change significantly for the thickest and most protective ALD films, making the treatment promising for cultural heritage applications. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop