Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Explanted Lenses
- Case 1: A patient with a Collamer lens implanted 171 months previously.
- Case 2: A patient with a Collamer lens implanted 178 months previously.
- Case 3: A patient with an IPCL implanted 16 months previously.
2.3. Immunohistochemical Staining of FN Using Explanted Phakic-ICL
2.4. Experimental FN Fluorescence Detection
2.5. Cell Adhesion Experiments
2.6. Statistical Analysis
3. Results
3.1. FN and Cell Adhesion Status in Explanted Lenses
3.2. Evaluation of FN Adhesion
3.3. Effect of FN Coating on Cell Adhesion and Proliferation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FN | Fibronectin |
HEMA | Hydroxyethyl Methacrylate |
ICL | Implantable Contact Lens |
iHIE-NY2 | immortalized human iris epithelial cells |
IOL | Intraocular lens |
IPCL | Implantable Phakic Contact Lens |
PHAKIC-ICL | Phakic Implantable Contact Lens |
WST-8 | 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt |
SD | Standard deviation |
References
- Munnerlyn, C.R.; Koons, S.J.; Marshall, J. Photorefractive keratectomy: A technique for laser refractive surgery. J. Cataract Refract. Surg. 1988, 14, 46–52. [Google Scholar] [CrossRef]
- Pallikaris, L.G.; Papatzanaki, M.E.; Stathi, E.Z.; Frenschock, O.; Georgiadis, A. Laser in situ keratomileusis. Lasers Surg. Med. 1990, 10, 463–468. [Google Scholar] [CrossRef]
- Sachdev, G.; Ramamurthy, D. Long-term safety of posterior chamber implantable phakic contact lens for the correction of myopia. Clin. Ophthalmol. 2019, 13, 137–142. [Google Scholar] [CrossRef]
- Taneri, S.; Oehler, S.; Heinz, C. Inflammatory response in the anterior chamber after implantation of an angle-supported lens in phakic myopic eyes. J. Ophthalmol. 2014, 2014, 923691. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, K.; Ichikawa, K.; Yamamoto, N.; Horai, R. Flexural and cell adhesion characteristic of phakic implantable lenses. Medicina 2023, 59, 1282. [Google Scholar] [CrossRef]
- Lovisolo, C.F.; Reinstein, D.Z. Phakic intraocular lenses. Surv. Ophthalmol. 2005, 50, 549–587. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Karandikar, S.; Reddy, J.K.; Relekar, K. Implantable collamer lens V4b and V4c for correction of high myopia. J Curr Ophthalmol 2015, 27, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Klebe, R.J.; Bentley, K.L.; Schoen, R.C. Adhesive substrates for fibronectin. J. Cell Physiol. 1981, 109, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Hosny, M.H.; Shalaby, A.M. Visian implantable contact lens versus AcrySof Cachet phakic intraocular lenses: Comparison of aberrmetric profiles. Clin. Ophthalmol. 2013, 7, 1477–1486. [Google Scholar] [CrossRef]
- Hong, Y.; Xin, J.; Wang, P.; Song, Y.; Fan, X.; Yang, L.; Guo, G.; Fu, D.; Dai, Y.; Zhang, F.; et al. Enhancing the biocompatibility of phakic intraocular lens via selective fibronectin trapping. Acta Biomater. 2025, 197, 240–255. [Google Scholar] [CrossRef]
- Sanders, D.R.; ICL in Treatment of Myopia (ITM) Study Group. Postoperative inflammation after implantation of the implantable contact lens. Ophthalmology 2003, 110, 2335–2341. [Google Scholar] [CrossRef]
- Tamada, Y.; Ikada, Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J. Colloid Interface Sci. 1993, 155, 334–339. [Google Scholar] [CrossRef]
- Yamamoto, N.; Takeda, S.; Hatsusaka, N.; Hiramatsu, N.; Nagai, N.; Deguchi, S.; Nakazawa, Y.; Takata, T.; Kodera, S.; Hirata, A.; et al. Effect of a lens protein in low-temperature culture of novel immortalized human lens epithelial cells (iHLEC-NY2). Cells 2020, 9, 2670. [Google Scholar] [CrossRef]
- Yamamoto, N.; Hiramatsu, N.; Ohkuma, M.; Hatsusaka, N.; Takeda, S.; Nagai, N.; Miyachi, E.I.; Kondo, M.; Imaizumi, K.; Horiguchi, M.; et al. Novel technique for retinal nerve cell regeneration with electrophysiological functions using human iris-derived iPS cells. Cells 2021, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Guell, J.L.; Morral, M.; Kook, D.; Kohnen, T. Phakic intraocular lenses part 1: Historical overview, current models, selection criteria, and surgical techniques. J. Cataract Refract. Surg. 2010, 36, 1976–1993. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, J.F.; Baamonde, B.; Fernandez-Vega, L.; Fernandes, P.; Gonzalez-Meijome, J.M.; Montes-Mico, R. Posterior chamber collagen copolymer phakic intraocular lenses to correct myopia: Five-year follow-up. J. Cataract Refract. Surg. 2011, 37, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gong, D.; Li, K.; Dang, K.; Wang, Y.; Pan, C.; Yan, Z.; Yang, W. From inception to innovation: Bibliometric analysis of the evolution, hotspots, and trends in implantable collamer lens surgery research. Front. Med. 2024, 11, 1432780. [Google Scholar] [CrossRef]
- Sechler, J.L.; Corbett, S.A.; Wenk, M.B.; Schwarzbauer, J.E. Modulation of cell-extracellular matrix interactions. Ann. N. Y. Acad. Sci. 1998, 857, 143–154. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, F.; Bilbao-Calabuig, R. Phakic intraocular lenses: Adapting to change. Arch. Soc. Esp. Oftalmol. (Engl. Ed.) 2020, 95, 157–158. [Google Scholar] [CrossRef]
- Ofuji, K. Differential tyrosine phosphorylation of paxillin in human corneal epithelial cells on extracellular matrix proteins. Jpn. J. Ophthalmol. 2000, 44, 189. [Google Scholar] [CrossRef] [PubMed]
- Altankov, G.; Groth, T. Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability. J. Biomater. Sci. Polym. Ed. 1996, 8, 299–310. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, M.; Wu, J.; Shen, J. Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials 2002, 23, 4657–4665. [Google Scholar] [CrossRef]
- Guarnieri, D.; De Capua, A.; Ventre, M.; Borzacchiello, A.; Pedone, C.; Marasco, D.; Ruvo, M.; Netti, P.A. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 2010, 6, 2532–2539. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. The interactions between inflammation and coagulation. Br. J. Haematol. 2005, 131, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.S.; Tang, C.M.; Lin, C.H.; Lin, S.Z.; Chu, M.Y.; Sun, W.S.; Kao, W.C.; Hsien-Hsu, H.; Huang, C.Y.; Hsu, S.H. Biocompatibility and favorable response of mesenchymal stem cells on fibronectin-gold nanocomposites. PLoS ONE 2013, 8, e65738. [Google Scholar] [CrossRef] [PubMed]
- Daum, R.; Mrsic, I.; Hutterer, J.; Junginger, A.; Hinderer, S.; Meixner, A.J.; Gauglitz, G.; Chasse, T.; Schenke-Layland, K. Fibronectin adsorption on oxygen plasma-treated polyurethane surfaces modulates endothelial cell response. J. Mater. Chem. B 2021, 9, 1647–1660. [Google Scholar] [CrossRef]
- Cannas, M.; Denicolai, F.; Webb, L.X.; Gristina, A.G. Bioimplant surfaces: Binding of fibronectin and fibroblast adhesion. J. Orthop. Res. 1988, 6, 58–62. [Google Scholar] [CrossRef]
- Schroeder, A.C.; Lingenfelder, C.; Seitz, B.; Grabowy, U.; WSpraul, C.; Gatzioufas, Z.; Herrmann, M. Impact of fibronectin on surface properties of intraocular lenses. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 1277–1283. [Google Scholar] [CrossRef]
- Vesaluoma, M.; Mertaniemi, P.; Mannonen, S.; Lehto, I.; Uusitalo, R.; Sarna, S.; Tarkkanen, A.; Tervo, T. Cellular and plasma fibronectin in the aqueous humour of primary open-angle glaucoma, exfoliative glaucoma and cataract patients. Eye 1998, 12 Pt 5, 886–890. [Google Scholar] [CrossRef]
Case | Age/Gender | Reasons for Removal | Treatment | Lens Vault (Preoperative) | Post-Operative Uncorrected Visual Acuity |
---|---|---|---|---|---|
Case 1 | 39/Female | Due to low vault | lens replacement | 52 µm | 1.5 (lens vault: 1CT) |
Case 2 | 45/Male | For monovision (OD: 0.9, OS: 0.4) | lens replacement | 261 µm | OD: 1.2, OS: 1.5 |
Case 3 | 52/Male | hard to see | lens extraction | 666 µm | 1.2 |
Lens | FN Coating | Day 1 | Day 5 | Day 10 |
---|---|---|---|---|
Collamer | Yes | 32.1% | 75.0% | 93.8% |
No | 26.8% | 39.3% | 70.3% | |
IPCL | Yes | 12.5% | 60.7% | 66.1% |
No | 12.5% | 23.2% | 59.4% | |
LENTIS | Yes | 100% | 100% | 100% |
No | 41.1% | 64.3% | 67.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, K.; Tanaka, Y.; Horai, R.; Kato, Y.; Ichikawa, K.; Yamamoto, N. Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials. Medicina 2025, 61, 1384. https://doi.org/10.3390/medicina61081384
Ichikawa K, Tanaka Y, Horai R, Kato Y, Ichikawa K, Yamamoto N. Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials. Medicina. 2025; 61(8):1384. https://doi.org/10.3390/medicina61081384
Chicago/Turabian StyleIchikawa, Kei, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa, and Naoki Yamamoto. 2025. "Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials" Medicina 61, no. 8: 1384. https://doi.org/10.3390/medicina61081384
APA StyleIchikawa, K., Tanaka, Y., Horai, R., Kato, Y., Ichikawa, K., & Yamamoto, N. (2025). Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials. Medicina, 61(8), 1384. https://doi.org/10.3390/medicina61081384