Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = thin foils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 25789 KB  
Article
Joining Characteristics of 60-Layered Cu Foil Stack Using Linear Vibration Ultrasonic Welding
by Seong Min Hong, Bum-Su Go and Hee-Seon Bang
Materials 2026, 19(4), 782; https://doi.org/10.3390/ma19040782 - 18 Feb 2026
Viewed by 53
Abstract
This study investigates the joint characteristics of a 60-layered copper foil stack using linear vibration ultrasonic welding for lithium-ion pouch cell applications. With increasing demand for high-capacity electric vehicle batteries, ensuring the reliability of multilayer electrode joints is essential. Experiments were conducted by [...] Read more.
This study investigates the joint characteristics of a 60-layered copper foil stack using linear vibration ultrasonic welding for lithium-ion pouch cell applications. With increasing demand for high-capacity electric vehicle batteries, ensuring the reliability of multilayer electrode joints is essential. Experiments were conducted by varying vibrational amplitude, welding time, and clamping pressure. Weld quality was analyzed based on indentation profiles, joint strength, and failure modes. Results revealed that optimal welding energy (500–900 J) produced well-formed joints without surface cracks or tearing. Excessive welding energy (>900 J) led to material thinning and interfacial failure. The maximum T-peel peak load of 138.7 N was obtained at the 30th joining interface under 25 µm amplitude, 0.8 s welding time, and 1.5 bar clamping pressure. Interface-dependent optimum conditions were observed, reflecting thickness–direction variations in deformation and bonding within the 60-layer stack. Indentation length and depth correlated linearly with welding energy. Failure modes transitioned from no adhesion to tearing and button-pull types. The findings provide guidelines for optimizing welding parameters for high-quality multilayer foil joints in battery manufacturing. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Graphical abstract

14 pages, 7300 KB  
Article
Grain Size Governs Mechanical Properties of Roll-Bonded C7701/Ti/C7701 (Cu–Ni–Zn Alloy) Composite Foils via a Bonding–Diffusion–Intermetallic Cascade
by Rui Chen, Zhihe Dou, Hongmei Zhang and Tingan Zhang
Metals 2026, 16(2), 226; https://doi.org/10.3390/met16020226 - 15 Feb 2026
Viewed by 143
Abstract
Grain size plays a decisive role in governing the interface evolution and mechanical properties of ultra-thin metal composite foils. This study systematically investigates this relationship in roll-bonded C7701/Ti/C7701 (Cu-Ni-Zn alloy) composite foils. By controlling the initial grain size via pre-annealing, we demonstrate that [...] Read more.
Grain size plays a decisive role in governing the interface evolution and mechanical properties of ultra-thin metal composite foils. This study systematically investigates this relationship in roll-bonded C7701/Ti/C7701 (Cu-Ni-Zn alloy) composite foils. By controlling the initial grain size via pre-annealing, we demonstrate that a moderate grain size (~7–8 μm) optimally regulates a sequential “bonding–diffusion–intermetallic compound (IMC) formation” process at the interface. This results in a continuous, thin IMC layer and the best strength–ductility synergy (e.g., UTS ~217.5 MPa, elongation ~4.15%). In contrast, excessively fine or coarse grains lead to thick, brittle IMCs or interfacial defects, respectively, degrading performance. The mechanism by which grain size influences performance is revealed through a sequential mechanism of “bonding–diffusion–intermetallic compound formation.” Full article
Show Figures

Figure 1

15 pages, 4183 KB  
Article
Layered Gradient Grain Structure Enhances Mechanical Properties of Ultra-Thin Copper Foil
by Xixi Wang, Jing Wei, Jian Huang, Chun Yang, Yixin Luo, Yanle Huang, Ning Song, Yuhui Tan, Hongguang Yang, Sujie Qi, Xiaowei Fan and Yunzhi Tang
Materials 2026, 19(3), 520; https://doi.org/10.3390/ma19030520 - 28 Jan 2026
Viewed by 254
Abstract
Traditional homogeneous copper foils suffer from a trade-off between strength and ductility, while gradient or heterogeneous structures are mostly based on deformation processing, making it difficult to achieve controllable construction within a thickness of ≤10 μm. This study aims to directly construct a [...] Read more.
Traditional homogeneous copper foils suffer from a trade-off between strength and ductility, while gradient or heterogeneous structures are mostly based on deformation processing, making it difficult to achieve controllable construction within a thickness of ≤10 μm. This study aims to directly construct a layered structure with a “fine–coarse–fine” (A-B-A) gradient grain distribution, denoted as 3L-ABA in an 8 μm copper foil via direct current electrodeposition, which utilizes composite additives to regulate electrochemical polarization and nucleation modes. Through systematic characterization and mechanical testing, it was found that the 3L-ABA copper foil exhibits a tensile strength of 604 ± 18 MPa, an elongation of 3.6 ± 0.25%, and low surface roughness Rz of 0.46 μm. Microscopic mechanism analysis demonstrates that the gradient structure achieves synergistic strengthening and toughening through surface fine-grain strengthening, intermediate coarse-grain coordinated plastic deformation, combined with dislocation density and twin strengthening. Electrochemical tests confirm that Additive A (containing collagen, bis-(3-sulfopropyl)-disulfide (SPS), thiourea and 2-mercapto-5-benzimidazolesulfonic acid sodium salt (2M5S)) induces strong cathodic polarization, promoting instantaneous nucleation and grain refinement, whereas Additive B (containing collagen and bis-(3-sulfopropyl)-disulfide (SPS) shows weaker polarization and promotes grain growth. This research provides a scalable electrodeposition solution for the microstructural design and performance regulation of ultra-thin copper foils. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 8134 KB  
Article
Research on a High-Quality Welding Method for Multi-Layer Aluminum Foil Current Collectors Based on Laser Power Control
by Jingang Liu, Yun Chen and Liang Guo
Metals 2026, 16(2), 150; https://doi.org/10.3390/met16020150 - 26 Jan 2026
Viewed by 237
Abstract
Reliable joining of multi-layer aluminum foil current collectors is crucial for enhancing the performance and safety of high-capacity lithium-ion batteries. However, laser welding of such thin-thick aluminum combinations is often hindered by porosity, cracks and unstable weld-pool behavior. In this study, a ring-mode [...] Read more.
Reliable joining of multi-layer aluminum foil current collectors is crucial for enhancing the performance and safety of high-capacity lithium-ion batteries. However, laser welding of such thin-thick aluminum combinations is often hindered by porosity, cracks and unstable weld-pool behavior. In this study, a ring-mode fiber laser combined with sinusoidal oscillation and linearly gradient power modulation was employed to achieve high-quality lap welding between 80 layers of 1060 aluminum foil (1 mm in total thickness) and a 1.5 mm thick aluminum plate. Welding experiments and thermo-mechanical simulations were conducted to investigate the effects of welding speed (15–45 mm/s) and central-power modulation parameters (−2, 0, +2, +4) on weld morphology, defect formation, and mechanical properties. The results indicate that increasing the welding speed can effectively suppress cracks and improve the shear strength from 249.8 N to 403.9 N, but it also leads to an increase in porosity from 5.78% to 12.26% and deterioration of the weld reinforcement. Higher central-power modulation (+2, +4) transformed the weld-pool geometry from an ω shape to U shape, effectively suppressing fusion-line cracks but leading to increased porosity (up to 8.41%) and deteriorated surface morphology. Overall, a low welding speed of 15 mm/s combined with an optimized power modulation strategy achieves effective crack suppression while maintaining controlled porosity, resulting in a welded joint with superior comprehensive performance. This research provides a robust process solution for high-quality laser welding of multi-layer aluminum foil current collectors in power battery manufacturing. Full article
(This article belongs to the Special Issue Advanced Laser Welding Technology of Alloys)
Show Figures

Figure 1

17 pages, 1193 KB  
Article
Potentials of Magnetron Sputtering for Battery Applications—A Case Study for Thin Lithium Metal Anodes
by Nikolas Dilger, Matteo Kaminski, Julian Brokmann, Jutta Janssen, Thomas Neubert and Sabrina Zellmer
Surfaces 2026, 9(1), 10; https://doi.org/10.3390/surfaces9010010 - 15 Jan 2026
Viewed by 390
Abstract
Due to its very high theoretical specific capacity, lithium is still considered a promising anode material for innovative next-generation battery cells. The aim is to produce thin lithium metal anodes (LMAs) that are sufficient for the battery cell due to the lithium already [...] Read more.
Due to its very high theoretical specific capacity, lithium is still considered a promising anode material for innovative next-generation battery cells. The aim is to produce thin lithium metal anodes (LMAs) that are sufficient for the battery cell due to the lithium already present in the cathode and thus additionally increase the energy density of the cell. The production of thin lithium layers (<10 µm) is challenging with most processes, and very costly with decreasing thickness. In this study, the use of magnetron sputtering to deposit thin layers of lithium for the production of LMAs is tested. An innovative process—the deposition of lithium from a liquid phase via Hot Target Sputtering—will be presented that has the potential to overcome the previous limitations in the deposition rate, and enables the potential for industrial application. The process was successfully tested in terms of general process control, stability and reproducibility and used to produce lithium metal anodes. These were then successfully integrated in All-Solid-State-Battery (ASSB) cells and compared with a lithium reference foil in a C-rate test with regard to their electrochemical performance reaching ≈ 110 mAh g−1 at a 1C discharge rate. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

13 pages, 11188 KB  
Article
Two-Way Shape Memory Effect Driven Solar Sails for Active Solar Radiation Pressure Modulation
by Peidong Jia, Ruilei Chen, Zhongjing Ren, Chengyang Li, Zizhan Tu, Boyang Jiang, Xu Zhang, Ziran Wang, Dakai Liu and Erchao Li
Aerospace 2026, 13(1), 14; https://doi.org/10.3390/aerospace13010014 - 24 Dec 2025
Viewed by 357
Abstract
Solar sailing has proven to be an effective solution for cost-effective and long-term space missions due to its fuel-free propulsion. While multiple large-scale solar sails based on kilogram-class satellites have been developed and tested in space, solar sails created for lightweight chip-scale satellites [...] Read more.
Solar sailing has proven to be an effective solution for cost-effective and long-term space missions due to its fuel-free propulsion. While multiple large-scale solar sails based on kilogram-class satellites have been developed and tested in space, solar sails created for lightweight chip-scale satellites are much less. To enable the gram-class satellite of solar sailing for active attitude adjustment and orbital maneuvers, a novel solar sail driven by two-way shape memory effect (TWSME) was proposed in this work. The solar sail base was made of rectangular Al-Kapton thin films, while a U-shaped NiTi beam was developed by 50 μm thin Ni50.6Ti49.4 foils. Both of the U-shaped NiTi beam and rectangular Al-Kapton thin films were manufactured by the ultra-fast femtosecond laser cutting machine. Finite element modeling of single U-shaped NiTi beam and assembled solar sail were built to validate that an 80 mm-long TWSME NiTi beam with a curvature of 37.31 m−1 were sufficient to drive the solar sail for solar radiation pressure modulation. A solar sail prototype was developed, and an in situ experiment test of the prototype was conducted with infrared imaging, showing efficient bending behaviors by application of a 0.5 A direct current across the U-shape NiTi beam. These findings reveal that U-shaped TWSME NiTi foils provide an effective driving strategy for lightweight chip-scale satellites, and thus dramatically broaden the space application of the gram-scale satellite. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 9430 KB  
Article
Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures
by Fu-Chian Chen, Dinh-Phuc Tran and Chih Chen
Materials 2026, 19(1), 36; https://doi.org/10.3390/ma19010036 - 21 Dec 2025
Viewed by 555
Abstract
This study systematically investigates the thickness-dependent mechanical properties of electroplated copper foils with fine-grained (FG-Cu) and columnar nanotwinned (NT-Cu) microstructures. Tensile testing across a thickness range of 5–30 μm revealed that NT-Cu exhibits superior mechanical stability, with significantly lower reductions in both ultimate [...] Read more.
This study systematically investigates the thickness-dependent mechanical properties of electroplated copper foils with fine-grained (FG-Cu) and columnar nanotwinned (NT-Cu) microstructures. Tensile testing across a thickness range of 5–30 μm revealed that NT-Cu exhibits superior mechanical stability, with significantly lower reductions in both ultimate tensile strength (UTS) and yield strength (YS) compared to FG-Cu. The UTS of the 30 μm thick FG-Cu foil was measured at 651 MPa, increasing to 792 MPa at a thickness of 5 μm. In contrast, the UTS of NT-Cu foils only rose from 624 MPa at 30 μm to 663 MPa at 5 μm. A similar trend was observed for the YS. Microstructural analysis confirmed that NT-Cu maintains a stable columnar grain structure with minimal grain growth, contributing to its resistance to thickness-induced strength loss. These findings highlight NT-Cu as a promising candidate for applications requiring consistent mechanical performance across varying foil thicknesses. Full article
Show Figures

Figure 1

14 pages, 11633 KB  
Article
Molybdenum Nitride and Oxide Layers Grown on Mo Foil for Supercapacitors
by Dong Hyun Lim and Young-Il Kim
Materials 2025, 18(24), 5649; https://doi.org/10.3390/ma18245649 - 16 Dec 2025
Viewed by 439
Abstract
In this study, thin molybdenum nitride (MoNx) layers were directly synthesized on molybdenum foil via thermal treatment under an NH3 atmosphere, and their phase evolution, structural characteristics, and electrochemical performance were investigated. The thickness and morphology of the MoNx [...] Read more.
In this study, thin molybdenum nitride (MoNx) layers were directly synthesized on molybdenum foil via thermal treatment under an NH3 atmosphere, and their phase evolution, structural characteristics, and electrochemical performance were investigated. The thickness and morphology of the MoNx layers were controlled by varying ammonolysis time and temperature, while subsequent annealing in N2 converted the nitride layer into MoO2. Meanwhile, oxidation in air yielded crystalline MoO3 layers. X-ray diffraction and X-ray photoelectron spectroscopy confirmed progressive oxidation of molybdenum, with Mo 3d binding energies increasing in the sequence of Mo < MoNx < MoO2 < MoO3, consistent with their nominal oxidation states. Electrochemical characterization revealed that both MoNx/Mo and MoO2/Mo electrodes exhibit notable pseudocapacitive behavior in 0.5 M H2SO4 electrolyte, with areal specific capacitances reaching up to 520 mF cm−2 at 10 mV s−1. Increasing layer thickness led to enhanced capacitance, likely due to an increase in the electrochemically accessible surface area and the extension of ion diffusion pathways. MoO2-coated samples showed stronger faradaic contribution and superior rate capability compared to MoNx counterparts, along with a gradual shift from predominantly electric double-layer capacitance toward hybrid pseudocapacitive charge storage mechanisms. Full article
Show Figures

Figure 1

24 pages, 13123 KB  
Article
The Effect of Graphene Oxide Deposited on Titanium Surface on Structural, Corrosion, and Biological Properties
by Kamila Narojczyk, Barbara Nasiłowska, Agata Lange, Marta Kutwin, Sławomir Jaworski, Łukasz Krzowski, Wiktoria Kasprzycka, Piotr Olejnik, Maciej Chrunik, Aneta Bombalska and Zdzisław Bogdanowicz
Materials 2025, 18(23), 5372; https://doi.org/10.3390/ma18235372 - 28 Nov 2025
Viewed by 2185
Abstract
The article presents the results of structural, corrosion, microbiological, biological, and genotoxicity studies on the effect of graphene oxide deposited on a flat titanium foil surface, intended for use, in general, implantology and other medical applications. The methodology of graphene oxide (GO) deposition [...] Read more.
The article presents the results of structural, corrosion, microbiological, biological, and genotoxicity studies on the effect of graphene oxide deposited on a flat titanium foil surface, intended for use, in general, implantology and other medical applications. The methodology of graphene oxide (GO) deposition involved a surface cleaning process combined with RF plasma activation, followed by the application of a thin layer of dispersed aqueous GO suspension using a spin coater. The graphene oxide layer was uniformly deposited on the surface, which was confirmed by SEM imaging. Corrosion studies were carried out in an electrochemical cell filled with a buffered solution prepared to mimic the composition of physiological intracellular fluids. It was demonstrated that the deposition of graphene oxide on the titanium surface limited the access of electrolyte and oxygen. Surface activation and deposition of the aqueous graphene oxide suspension contributed to improved adhesion, condition, growth, and proliferation of fibroblast cell lines Hs 895.T and Hs 895.Sk. The inhibition zone analysis revealed a bacteriostatic effect against Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, no genotoxicity changes were observed. Full article
(This article belongs to the Special Issue Biomedical Alloys: Corrosion Protection and New Coatings)
Show Figures

Figure 1

17 pages, 16047 KB  
Article
Synchronous Biaxial Straining of Foils and Thin Films with In Situ Capabilities
by Michael Pegritz, Philipp Payer, Alice Lassnig, Stefan Wurster, Megan J. Cordill and Anton Hohenwarter
Instruments 2025, 9(4), 31; https://doi.org/10.3390/instruments9040031 - 26 Nov 2025
Viewed by 714
Abstract
A common method to examine the reliability of thin films and small volumes of irradiated materials being used in aerospace, energy, and protective coating applications is biaxial straining. With such tests, the fracture and deformation mechanisms occurring under multi-axial stress states can be [...] Read more.
A common method to examine the reliability of thin films and small volumes of irradiated materials being used in aerospace, energy, and protective coating applications is biaxial straining. With such tests, the fracture and deformation mechanisms occurring under multi-axial stress states can be investigated, which can strongly differ from the simpler uniaxial one. However, devices that can apply a precise and synchronously applied biaxial strain tend to be too large for foils or thin films and do not allow for additional observation methods to be applied to examine film fracture or deformation during the test. A prototype device that can apply synchronous equi-biaxial and semi-biaxial strains and can be combined with multiple in situ methods is introduced. The device is light and compact in design, which allows it to be mounted on optical light microscopes, atomic force microscopes, inside scanning electron microscopes, and even on X-ray beamlines for reflection or transmission measurements. Additionally, digital image correlation was utilized in two geometries to measure strains on a local or global level. The possible errors associated with the device and experiments on polyimide foils and a 100 nm tungsten film on polyimide are presented. Full article
Show Figures

Figure 1

18 pages, 3757 KB  
Article
Alginate Hydrogel with Pluronic F-68 Enhances Cryopreservation Efficiency in Peach Germplasm
by Olena Bobrova, Milos Faltus, Viktor Husak, Jiri Zamecnik, Barbora Tunklova, Stanislav Narozhnyi and Alois Bilavcik
Gels 2025, 11(12), 947; https://doi.org/10.3390/gels11120947 - 25 Nov 2025
Cited by 2 | Viewed by 822
Abstract
The long-term conservation of Prunus persica (peach), a crop of significant agronomic and genetic value, remains challenging due to its recalcitrance to conventional cryopreservation methods. Low tolerance to dehydration and cryoprotectant toxicity often results in poor survival and regrowth, thereby limiting the reliability [...] Read more.
The long-term conservation of Prunus persica (peach), a crop of significant agronomic and genetic value, remains challenging due to its recalcitrance to conventional cryopreservation methods. Low tolerance to dehydration and cryoprotectant toxicity often results in poor survival and regrowth, thereby limiting the reliability of germplasm storage. This study evaluated whether combining an alginate hydrogel matrix with Pluronic F-68 improves vitrification efficiency and post-thaw regeneration of peach shoot tips by enhancing dehydration dynamics and reducing cryo-injury. Shoot tips were immobilized in thin sodium alginate layers on aluminum foil strips, with the hydrogel providing mechanical stabilization and moderating water loss during exposure to PVS3 and subsequent liquid nitrogen immersion. To further mitigate cryoinjury, Pluronic F-68, a non-ionic surfactant with membrane-stabilizing properties, was incorporated into the system. Differential scanning calorimetry revealed that the hydrogel reached complete vitrification after 120 min in PVS3, whereas encapsulated shoot tips required 150 min for full suppression of crystallization. The optimized system achieved 71% post-cryopreservation survival and 40% regrowth, compared with 25% and 9% in non-encapsulated controls. PF-68 accelerated vitrification kinetics, lowered crystallization enthalpies, and improved post-thaw viability. These findings demonstrate that engineered hydrogel–surfactant matrices can stabilize the microenvironment during vitrification and offer a promising approach for the long-term cryopreservation of peach germplasm. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

14 pages, 5975 KB  
Article
Impact Butt Joining of Copper C1100 and Aluminum Alloy A6061-T6 Plates and Rolling of Joined Plate
by Minoru Yamashita, Yuya Nishimura and Makoto Nikawa
Metals 2025, 15(11), 1207; https://doi.org/10.3390/met15111207 - 29 Oct 2025
Viewed by 656
Abstract
Impact butt joining of copper 5 mm thick C1100 and aluminum alloy A6061-T6 plates was carried out, according to a method recently devised by one of the authors. The joining method results in newly created surfaces being obtained by very large plastic deformation [...] Read more.
Impact butt joining of copper 5 mm thick C1100 and aluminum alloy A6061-T6 plates was carried out, according to a method recently devised by one of the authors. The joining method results in newly created surfaces being obtained by very large plastic deformation under high-speed conditions, wherein the two materials are subjected simultaneously to compression and a high-speed sliding motion. The new surface of C1100 is created by expansion, whereas for A6061-T6, the new surface is created by removal of the softened surface layer. This layer forms a foil, which is extruded from the joining interface by the compressive force. Using a high-speed video camera, the formation of the foil was observed to take place even in the early stages of deformation. The distribution of joint efficiency was evaluated by examining the joint boundary. When the compressive force increased, some specimens fractured in the C1100 region. The zone affected by the joining process was highly limited, to within 0.8 mm of the boundary; i.e., 20% of the plate thickness. The thickness of the joined plate was reduced by repetitive rolling operations, in which the true strain was about −1. This indicates that the layer of the intermetallic compounds is very thin. Once rolled, the joined sheet exhibited a maximum joint efficiency of 99.3%. In cases where the joining efficiency exceeded 80%, the main region exhibiting fracturing was in the A6061-T6 alloy. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Light Alloys)
Show Figures

Figure 1

12 pages, 3438 KB  
Article
Atomic-Scale Modulation of Lithium Metal Electrode Interfaces by Monolayer Graphene: A Molecular Dynamics Study
by Haoyu Yang, Runze Chen, Shouhang Fu, Shunxiang Mo, Yulin Chen and Jianfang Cao
Materials 2025, 18(21), 4925; https://doi.org/10.3390/ma18214925 - 28 Oct 2025
Viewed by 707
Abstract
Graphene, owing to its exceptional mechanical properties and interfacial modulation capability, is considered an ideal material for enhancing the interfacial strength and damage resistance during the fabrication of ultra-thin lithium foils. Although previous studies have demonstrated the reinforcing effects of graphene on lithium [...] Read more.
Graphene, owing to its exceptional mechanical properties and interfacial modulation capability, is considered an ideal material for enhancing the interfacial strength and damage resistance during the fabrication of ultra-thin lithium foils. Although previous studies have demonstrated the reinforcing effects of graphene on lithium metal interfaces, most analyses have been restricted to single-temperature or idealized substrate conditions, lacking systematic investigations under practical, multi-temperature environments. Consequently, the influence of graphene coatings on lithium-ion conductivity and mechanical stability under real thermal conditions remains unclear. To address this gap, we employ LAMMPS-based molecular dynamics simulations to construct atomic-scale models of pristine lithium and graphene-coated lithium (C/Li) interfaces at three representative temperatures. Through comprehensive analyses of dislocation evolution, root-mean-square displacement, frictional response, and lithium-ion diffusion, we find that graphene coatings synergistically alleviate interfacial stress, suppress crack initiation, reduce friction, and enhance ionic conductivity, with these effects being particularly pronounced at elevated temperatures. These findings reveal the coupled mechanical and electrochemical regulation imparted by graphene, providing a theoretical basis for optimizing the structure of next-generation high-performance lithium metal anodes and laying the foundation for advanced interfacial engineering in battery technologies. Full article
Show Figures

Graphical abstract

14 pages, 1528 KB  
Article
The Impact of the Bill of Quantity Export Process from BIM on the Accuracy of the LCA Results
by Tajda Potrc Obrecht, Jakub Veselka, Daniel Plazza, Michael Ortmann, Nicolas Alaux, Bernardette Soust-Verdaguer, Deepshi Kaushal and Alexander Passer
Sustainability 2025, 17(20), 9354; https://doi.org/10.3390/su17209354 - 21 Oct 2025
Cited by 1 | Viewed by 809
Abstract
The construction industry is responsible for a significant amount of greenhouse gas emissions. Therefore, buildings have the potential to play a central role in climate change mitigation. It is also known that building projects are unique and complex, which is why a high [...] Read more.
The construction industry is responsible for a significant amount of greenhouse gas emissions. Therefore, buildings have the potential to play a central role in climate change mitigation. It is also known that building projects are unique and complex, which is why a high degree of process automation is necessary. Two key methods can be employed to calculate the environmental impacts of a construction process: Building Information Modeling (BIM) and Life Cycle Assessment (LCA). Currently, both methods are being considered as a part of advanced building projects. Database (BIM) models can be used as a precise inventory of materials and as an input for LCA. This study aims to (1) review the current status of published BIM-LCA workflows, (2) use a common case study among participants from various countries to compare the individual workflows and the calculated results, (3) identify potential sources of errors in all workflows on the common case study, and (4) provide recommendations and suggestions for developing BIM-LCA models based on the example of the common case study. The outcomes show that the main sources of differences emerge from not including all materials or from the inconsistencies in the exported material lists of the bill of quantities. The reasons for the missing materials stem primarily from the inadequate decomposition of composite materials, oversight of certain materials, and exclusion of thin materials such as foils. Inconsistencies arise from the incorrect handling of composite materials, the grouping of similar materials, and rounding inaccuracies. These issues highlight that errors occur early in the life cycle inventory phase, which forms the foundation of subsequent LCA phases, thereby impacting the final results and potentially leading to inaccurate assessments of environmental impacts. Ensuring accuracy at this stage is therefore critical for supporting reliable sustainability assessments. Consequently, recommendations are proposed to mitigate errors across various stages of the process to enhance the accuracy of LCA outcomes. Full article
Show Figures

Figure 1

23 pages, 4239 KB  
Article
Trefftz Method for Time-Dependent Boiling Heat Transfer Calculations in a Mini-Channel Utilising Various Spatial Orientations of the Flow
by Magdalena Piasecka, Sylwia Hożejowska, Artur Maciąg and Anna Pawińska
Energies 2025, 18(17), 4752; https://doi.org/10.3390/en18174752 - 6 Sep 2025
Viewed by 1035
Abstract
The main objective of this study was to investigate boiling heat transfer during refrigerant flow in a mini-channel heat sink. The test section consisted of multiple parallel mini-channels, each with a depth of 1 mm. The working fluid was heated by a thin [...] Read more.
The main objective of this study was to investigate boiling heat transfer during refrigerant flow in a mini-channel heat sink. The test section consisted of multiple parallel mini-channels, each with a depth of 1 mm. The working fluid was heated by a thin layer of Haynes-230 alloy with a thickness of 0.1 mm. The outer surface temperature of the heater was measured using infrared thermography, while other thermal and flow-based parameters were recorded via a dedicated data acquisition system. The mini-channel heat sink was tested in seven different spatial orientations, with inclination angles relative to the horizontal plane of 45°, 60°, 75°, 90°, 105°, 120°, and 135°. The analysis focused on the early stage of the experiment, corresponding to the forced convection, boiling incipience, and subcooled boiling region. A time-dependent, two-dimensional model of heat transfer during flow boiling of a refrigerant in asymmetrically heated mini-channels was developed. The temperatures of both the heating foil and the working fluid (Fluorinert FC-770) were described using appropriate forms of the Fourier–Kirchhoff equation, subject to relevant boundary conditions. Two sets of time-dependent Trefftz functions were employed to solve the governing equations: one set corresponding to the two-dimensional Fourier equation and another, newly derived, for the energy equation in the fluid. The results include thermographic images of the heated surface, temperature distributions, fluid temperatures, local heat-transfer coefficients, and boiling curves. A comparison of the heat-transfer coefficients obtained using the Trefftz-based approach and those calculated using Fourier’s law demonstrated satisfactory agreement. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

Back to TopTop