Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, S.; Liu, C.; Hao, S.; Fu, W.; Peng, J.; Wu, B.; Zheng, N. Antioxidant high-conductivity copper paste for low-cost flexible printed electronics. npj Flex. Electron. 2022, 6, 17. [Google Scholar] [CrossRef]
- Qin, R.; Hu, M.; Zhang, N.; Guo, Z.; Yan, Z.; Li, J.; Liu, J.; Shan, G.; Yang, J. Flexible fabrication of flexible electronics: A general laser ablation strategy for robust large-area copper-based electronics. Adv. Electron. Mater. 2019, 5, 1900365. [Google Scholar] [CrossRef]
- Zhu, R.; Ma, B.; Zhang, H.; Zhang, S.; Zhu, J. Interaction between PCB-Cu corrosion and electrochemical migration under the Coupling of electric field and thin liquid film. Surf. Interfaces 2024, 51, 104767. [Google Scholar] [CrossRef]
- Tyagi, A.; Tripathi, K.M.; Gupta, R.K. Recent progress in micro-scale energy storage devices and future aspects. J. Mater. Chem. A 2015, 3, 22507–22541. [Google Scholar] [CrossRef]
- Guo, L.; Li, S.; He, Z.; Fu, Y.; Qiu, F.; Liu, R.; Yang, G. Electroplated copper additives for advanced packaging: A review. ACS Omega 2024, 9, 20637–20647. [Google Scholar] [CrossRef]
- Yamamoto, M.; Karasawa, R.; Okuda, S.; Takamatsu, S.; Itoh, T. Long wavy copper stretchable interconnects fabricated by continuous microcorrugation process for wearable applications. Eng. Rep. 2020, 2, e12143. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, D.; Wang, Y.; Yu, Z.; Li, Q.; Wang, F.; Li, Y.; Guo, Y.; Miao, J.; Cui, D. A cost-effective and solderability stretchable circuit boards for wearable devices. Sens. Actuators A Phys. 2021, 331, 112924. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Q.; Payne, G.F.; Sun, R.; Wang, X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 2019, 11, 725–732. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, P.; Wang, X.; Wang, Z.; Liu, D.; Yang, B.; Cao, W. CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J. Mater. Chem. A 2012, 22, 18283–18290. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Xu, J.; Zeng, H. Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, F.; Vervust, T.; Vanfleteren, J. Stretchable electronics technology for large area applications: Fabrication and mechanical characterization. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 229–235. [Google Scholar] [CrossRef]
- Zhong, F.; Zhang, X.; Yu, Z.; Yang, H.; Guan, Y.; Niu, W.; Li, B.; Ding, Y.; Wang, F. Scalable production of electrodeposited ultra-thin copper foils with high strength and ductility as a current collector for lithium-ion batteries. Mater. Sci. Eng. A 2025, 943, 148850. [Google Scholar] [CrossRef]
- Gu, X.; Wang, X.; Ma, Y.; Zhang, H.; Lu, J.; Wang, K.; Liu, H. Investigation on grain size effect and forming mechanism of laser shock hydraulic microforming of copper foil. Int. J. Adv. Manuf. Technol. 2021, 114, 1049–1064. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, X. Layer thickness dependent tensile deformation mechanisms in sub-10 nm multilayer nanowires. J. Appl. Phys. 2012, 111, 124313. [Google Scholar] [CrossRef]
- Gignac, L.; Rodbell, K.; Cabral, C., Jr.; Andricacos, P.; Rice, P.; Beyers, R.; Locke, P.; Klepeis, S. Characterization of plated Cu thin film microstructures. MRS Online Proc. Libr. 1999, 562, 209. [Google Scholar] [CrossRef]
- Mathew, R.T.; Singam, S.; Kollu, P.; Bohm, S.; Prasad, M. Achieving exceptional tensile strength in electrodeposited copper through grain refinement and reinforcement effect by co-deposition of few layered graphene. J. Alloys Compd. 2020, 840, 155725. [Google Scholar] [CrossRef]
- Chen, X.; Lu, L. Work hardening of ultrafine-grained copper with nanoscale twins. Scr. Mater. 2007, 57, 133–136. [Google Scholar] [CrossRef]
- Altenberger, I.; Kuhn, H.-A.; Gholami, M.; Mhaede, M.; Wagner, L. Ultrafine-grained precipitation hardened copper alloys by swaging or accumulative roll bonding. Metals 2015, 5, 763–776. [Google Scholar] [CrossRef]
- Laube, S.; Kauffmann, A.; Ruebeling, F.; Freudenberger, J.; Heilmaier, M.; Greiner, C. Solid solution strengthening and deformation behavior of single-phase Cu-base alloys under tribological load. Acta Mater. 2020, 185, 300–308. [Google Scholar] [CrossRef]
- Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009, 324, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, G.; Zhao, L.; Lian, J.; Jiang, Z.; Jiang, Q. The origin of the ultrahigh strength and good ductility in nanotwinned copper. Mater. Sci. Eng. A 2010, 527, 4270–4274. [Google Scholar] [CrossRef]
- Tran, D.-P.; Chen, K.-J.; Tu, K.-N.; Chen, C.; Chen, Y.-T.; Chung, S. Electrodeposition of slanted nanotwinned Cu foils with high strength and ductility. Electrochim. Acta 2021, 389, 138640. [Google Scholar] [CrossRef]
- Chen, K.-X.; Gao, L.-Y.; Li, Z.; Sun, R.; Liu, Z.-Q. Research progress of electroplated nanotwinned copper in microelectronic packaging. Mater. Sci. 2023, 16, 4614. [Google Scholar] [CrossRef]
- Lee, K.-P.; Lu, M.-H.; Tran, D.-P.; Ke, C.-T.; Chen, P.-C.; Su, P.-J.; Chen, C. Design Strategy and Thermal Stability Characterization of High-Strength Nanotwinned Cu-Ni Foils. Results Eng. 2025, 27, 106783. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Anderoglu, O.; Misra, A.; Ronning, F.; Wang, H.; Zhang, X. Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 2009, 106, 024313. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Chen, M.; Tang, Y.; Fan, X. Electrodeposition of 15 μm nanotwinned Cu foils with low warpage and excellent mechanical properties. J. Alloys Compd. 2025, 1010, 178156. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, Y.; Luo, C.; Feng, T.; Dong, G.; Gao, H.; La, P. Regulation of Microstructure and Mechanical Properties of DC Electrodeposited Copper Foils by Electrolyte Parameters. Coatings 2025, 15, 521. [Google Scholar] [CrossRef]
- Dhara, T.; Sarkar, D.; Chakraborty, S.; Mukherjee, P.P.; DasGupta, S. New insights into the modulation of island density of electrodeposits using pulsatile waveforms. J. Phys. Chem. C 2024, 128, 10650–10659. [Google Scholar] [CrossRef]
- Han, W.; Shen, C.; Zhu, D. High-density nanotwinned copper foils electrodeposited under low temperatures for lithium-ion batteries. Energy Environ. Sci. 2025, 320, 135241. [Google Scholar] [CrossRef]
- Kao, Y.-J.; Li, Y.-J.; Shen, Y.-A.; Chen, C.-M. Significant Hall–Petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration. Sci. Rep. 2023, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lu, L.; Lu, Q.; Jin, Z.; Lu, K. Tensile properties of copper with nano-scale twins. Scr. Mater. 2005, 52, 989–994. [Google Scholar] [CrossRef]
- Schneider, M.; George, E.; Manescau, T.; Záležák, T.; Hunfeld, J.; Dlouhý, A.; Eggeler, G.; Laplanche, G. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. Int. J. Plast. 2020, 124, 155–169. [Google Scholar] [CrossRef]
- Nieh, T.G.; Wang, J.G. Hall–Petch relationship in nanocrystalline Ni and Be–B alloys. Intermetallics 2005, 13, 377–385. [Google Scholar] [CrossRef]
- Quek, S.S.; Chooi, Z.H.; Wu, Z.; Zhang, Y.W.; Srolovitz, D. The inverse hall–petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis. J. Mech. Phys. Solids 2016, 88, 252–266. [Google Scholar] [CrossRef]
- Lu, L.; Chen, X.; Huang, X.; Lu, K.J.S. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef]
- Balogh, L.; Ungár, T.; Zhao, Y.; Zhu, Y.; Horita, Z.; Xu, C.; Langdon, T.G. Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. Acta Mater. 2008, 56, 809–820. [Google Scholar] [CrossRef]
- Yuan, R.; Beyerlein, I.J.; Zhou, C. Statistical dislocation activation from grain boundaries and its role in the plastic anisotropy of nanotwinned copper. Acta Mater. 2016, 110, 8–18. [Google Scholar] [CrossRef]
- Li, G.; Yang, Y.; Gou, B.; Zhang, J.; Li, J.; Wang, Y.; Cao, L.; Liu, G.; Ding, X.; Sun, J. Stabilizing defective coherent twin boundaries for strong and stable nanocrystalline nanotwinned Cu. Acta Mater. 2022, 241, 118368. [Google Scholar] [CrossRef]











| Thickness (μm) | UTS (MPa) | Percentage Reduction (%) | YS (MPa) | Percentage Reduction (%) | Elongation (%) | Percentage Increase (%) |
|---|---|---|---|---|---|---|
| 5 | 792 ± 23 | - | 600 ± 11 | - | 2 ± 0.6 | - |
| 10 | 742 ± 12 | 6.3 | 546 ± 10 | 9.0 | 2.2 ± 0.5 | 10 |
| 15 | 724 ± 14 | 8.5 | 540 ± 13 | 10.0 | 2.6 ± 0.6 | 30 |
| 20 | 709 ± 20 | 10.4 | 527 ± 12 | 12.1 | 3.5 ± 0.5 | 26 |
| 25 | 685 ± 20 | 13.5 | 502 ± 11 | 16.3 | 4.3 ± 0.7 | 75 |
| 30 | 651 ± 9 | 17.8 | 467 ± 10 | 22.1 | 4.7 ± 0.7 | 135 |
| Thickness (μm) | UTS (MPa) | Percentage Reduction (%) | YS (MPa) | Percentage Reduction (%) | Elongation (%) | Percentage Increase (%) |
|---|---|---|---|---|---|---|
| 5 | 663 ± 8 | - | 530 ± 10 | - | 1.7 ± 0.5 | - |
| 10 | 684 ± 8 | −3.1 | 534 ± 12 | 0 | 3.0 ± 0.4 | 76 |
| 15 | 662 ± 7 | 0 | 520 ± 11 | 1.8 | 3.3 ± 0.5 | 94 |
| 20 | 633 ± 9 | 4.5 | 496 ± 18 | 6.4 | 4.4 ± 0.2 | 158 |
| 25 | 658 ± 6 | 0 | 514 ± 10 | 3 | 5.1 ± 0.6 | 200 |
| 30 | 624 ± 7 | 5.8 | 489 ± 10 | 7.7 | 5.3 ± 0.6 | 211 |
| Thickness (μm) | FG-Cu Grain Size (nm) | Percentage Increase (%) | NT-Cu Grain Size (nm) | Percentage Increase (%) |
|---|---|---|---|---|
| 5 | 139 | - | 176 | - |
| 10 | 180 | 29.4 | 212 | 20.4 |
| 20 | 290 | 108.6 | 261 | 48.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, F.-C.; Tran, D.-P.; Chen, C. Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures. Materials 2026, 19, 36. https://doi.org/10.3390/ma19010036
Chen F-C, Tran D-P, Chen C. Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures. Materials. 2026; 19(1):36. https://doi.org/10.3390/ma19010036
Chicago/Turabian StyleChen, Fu-Chian, Dinh-Phuc Tran, and Chih Chen. 2026. "Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures" Materials 19, no. 1: 36. https://doi.org/10.3390/ma19010036
APA StyleChen, F.-C., Tran, D.-P., & Chen, C. (2026). Structure–Property Relationship in Ultra-Thin Copper Foils: From Nanotwinned to Fine-Grained Microstructures. Materials, 19(1), 36. https://doi.org/10.3390/ma19010036

