Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = thienopyrimidine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7516 KiB  
Article
Novel Thienopyrimidine-Hydrazinyl Compounds Induce DRP1-Mediated Non-Apoptotic Cell Death in Triple-Negative Breast Cancer Cells
by Saloni Malla, Angelique Nyinawabera, Rabin Neupane, Rajiv Pathak, Donghyun Lee, Mariam Abou-Dahech, Shikha Kumari, Suman Sinha, Yuan Tang, Aniruddha Ray, Charles R. Ashby, Mary Qu Yang, R. Jayachandra Babu and Amit K. Tiwari
Cancers 2024, 16(15), 2621; https://doi.org/10.3390/cancers16152621 - 23 Jul 2024
Cited by 2 | Viewed by 2738
Abstract
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this [...] Read more.
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Graphical abstract

17 pages, 4925 KiB  
Article
Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure
by Elshaymaa I. Elmongy, Wejdan S. Alanazi, Alhanouf I. Aldawsari, Asma A. Alfaouri and Reem Binsuwaidan
Pharmaceuticals 2024, 17(2), 188; https://doi.org/10.3390/ph17020188 - 31 Jan 2024
Cited by 3 | Viewed by 3016
Abstract
This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine–sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an [...] Read more.
This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine–sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an antifungal target protein. All screened compounds showed promising binding affinity ranges, with perfect fitting not exceeding 1.9 Å. The synthesized compounds were tested for their antimicrobial activity using agar well diffusion and minimum inhibitory concentration tests against six bacterial strains in addition to two Candida strains. Compounds 8iii and 12ii showed varying degrees of inhibition against Staphylococcus aureus and Escherichia coli bacterial strains, whereas the best antifungal activity against Candida was displayed by compound 8iii. Compound 12ii, the cyclohexathienopyrimidine coupled with sulfadiazine at position 3, has the best antibacterial activity, which is consistent with molecular docking results at the active site of the oxidoreductase protein. Interestingly, compound 12ii also has the highest docking binding energy at the antifungal squalene epoxidase active site. Investigating the physicochemical properties of the synthesized hybrids revealed their high tolerability with cell membranes, and moderate to poor oral bioavailability, and that all are drug-like candidates, among which 4i, the cyclohexathieno[2,3-d] pyrimidine core with sulphaguanidine incorporated at position 4, recorded the best score (1.58). Full article
(This article belongs to the Special Issue Computer-Aided Drug Design and Drug Discovery)
Show Figures

Figure 1

7 pages, 1456 KiB  
Proceeding Paper
A Robust Regression-Based Modeling to Predict Antiplasmodial Activity of Thiazolyl–Pyrimidine Hybrid Derivatives against Plasmodium falciparum
by Kevin S. Umoette, Charles O. Nnadi and Wilfred O. Obonga
Chem. Proc. 2023, 14(1), 52; https://doi.org/10.3390/ecsoc-27-16167 - 15 Nov 2023
Cited by 1 | Viewed by 1033
Abstract
Thiazolyl–pyrimidine hybrid plays significant roles in the biological activities and SAR of thiazolylpyrimidines (Tzpd), thiazolopyrimidines, and thienopyrimidines due to the combination of the thiazole and pyrimidine pharmacophores. The study developed regression-based models for the prediction of antiplasmodial activity of 43 Tzpd hybrid obtained [...] Read more.
Thiazolyl–pyrimidine hybrid plays significant roles in the biological activities and SAR of thiazolylpyrimidines (Tzpd), thiazolopyrimidines, and thienopyrimidines due to the combination of the thiazole and pyrimidine pharmacophores. The study developed regression-based models for the prediction of antiplasmodial activity of 43 Tzpd hybrid obtained from the ChEMBL database. The molecular descriptors (145 features) were scaled down to 6 using the recursive feature elimination. The X- and Y-matrix were split into 34 train and 9 test sets using a split ratio of 0.20. Regression models were built using scikit-learn algorithms: multiple linear regression (MLR), k-Nearest Neighbors (kNN), Support Vector Regressor (SVR), and Random Forest Regressor (RFR) to predict the pIC50 of the test set. The models were evaluated using R2, mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), p-values, F-statistic, and variance inflation factor (VIF). Of the 145 features calculated for the 43 Tzpd, 6 molecular features, FCASA-, MNDO_LUMO, E_str, vsurf_HB1, vsurf_G, and vsurf_DD12 (p < 0.05; VIF < 5), were found to significantly influence the antiplasmodial activity. Fivefold cross-validation performance scores of MLR, kNN, SVR, and RFR showed that the performance metrics of MLR (MSE = 0.1453; R2 = 0.680; MAE = 0.290; RMSE = 0.381; pIC50(predicted) = 8.06 − 0.45vsurf_G + 0.37FCASA- − 0.42MNDO_LUMO − 0.20E_str + 0.30vsurf_HB1 − 0.38vsurf_DD12) outperformed other models. The study developed predictive models and provided insights into the chemical features necessary for the optimization of thiazolyl–pyrimidine to enhance antiplasmodial activity. Full article
Show Figures

Figure 1

21 pages, 2869 KiB  
Article
2-Alkyl-Substituted-4-Amino-Thieno[2,3-d]Pyrimidines: Anti-Proliferative Properties to In Vitro Breast Cancer Models
by Ivan Iliev, Anelia Mavrova, Denitsa Yancheva, Stefan Dimov, Galya Staneva, Alexandrina Nesheva, Iana Tsoneva and Biliana Nikolova
Molecules 2023, 28(17), 6347; https://doi.org/10.3390/molecules28176347 - 30 Aug 2023
Cited by 2 | Viewed by 2915
Abstract
Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 25 were synthesized, and their cyto- and phototoxicity against [...] Read more.
Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 25 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 μg/mL (IC50 0.045 μM), followed by compound 4 (IC50 28.89 μg/mL or IC50 0.11 μM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 μg/mL i.e., 1.4 μM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 μg/mL (IC50 0.16 μM), and 2-ethyl derivative 4 revealed IC50 62.86 μg/mL (IC50 0.24 μM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound’s effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness. Full article
Show Figures

Figure 1

18 pages, 4103 KiB  
Article
In Silico Screening and Anticancer-Apoptotic Evaluation of Newly Synthesized Thienopyrimidine/Sulfonamide Hybrids
by Elshaymaa I. Elmongy, Faizah A. Binjubair, Ohoud Y. Alshehri, Kholoud A. Baeshen, Zaha A. Almukhalfi and Hanan A. Henidi
Int. J. Mol. Sci. 2023, 24(13), 10827; https://doi.org/10.3390/ijms241310827 - 29 Jun 2023
Cited by 8 | Viewed by 1955
Abstract
This work describes the design and synthesis of new hybrids of thienopyrimidine and sulfonamides. The binding affinity of the prepared compounds to FGFR-1 enzyme and caspase-3 was investigated via molecular docking. The cytotoxic effect was estimated for the synthesized compounds against human breast [...] Read more.
This work describes the design and synthesis of new hybrids of thienopyrimidine and sulfonamides. The binding affinity of the prepared compounds to FGFR-1 enzyme and caspase-3 was investigated via molecular docking. The cytotoxic effect was estimated for the synthesized compounds against human breast cancer cell lines (MCF-7 and MDA-MB231) using Doxorubicin as a reference. All the tested compounds exhibited moderate to excellent anticancer efficacy against both tested cell lines, among which 3b and 4bi were the best. All the synthesized compounds exhibited distinguishing selectivity index values greater than Doxorubicin. The influence of the new hybrids under inquiry was further examined on both FGFR-1 and Caspase-3. The results revealed that compound 3b showed observed concordance between anti-proliferative activity and Caspase-3 activity. In respect to the compounds’ effect on the apoptosis, compound 3b significantly increased the population of late apoptotic cells and necrotic cells. In silico pharmacokinetic investigation revealed that compound 3b showed the best intestinal absorption, BBB permeability, and, along with 4bi and 4bii, the best CNS penetrability. Full article
Show Figures

Figure 1

16 pages, 2026 KiB  
Article
Synthesis of 3-(Pyridin-2-yl)quinazolin-2,4(1H,3H)-diones via Annulation of Anthranilic Esters with N-pyridyl Ureas
by Svetlana O. Baykova, Kirill K. Geyl, Sergey V. Baykov and Vadim P. Boyarskiy
Int. J. Mol. Sci. 2023, 24(8), 7633; https://doi.org/10.3390/ijms24087633 - 21 Apr 2023
Cited by 8 | Viewed by 2335
Abstract
A new route for the synthesis of quinazolin-2,4(1H,3H)-diones and thieno [2,3-d]pyrimidine-2,4(1H,3H)-diones substituted by pyridyl/quinolinyl moiety in position 3 has been developed. The proposed method concluded in an annulation of substituted anthranilic esters or [...] Read more.
A new route for the synthesis of quinazolin-2,4(1H,3H)-diones and thieno [2,3-d]pyrimidine-2,4(1H,3H)-diones substituted by pyridyl/quinolinyl moiety in position 3 has been developed. The proposed method concluded in an annulation of substituted anthranilic esters or 2-aminothiophene-3-carboxylates with 1,1-dimethyl-3-(pyridin-2-yl) ureas. The process consists of the formation of N-aryl-N′-pyridyl ureas followed by their cyclocondensation into the corresponding fused heterocycles. The reaction does not require the use of metal catalysts and proceeds with moderate to good yields (up to 89%). The scope of the method is more than 30 examples, including compounds with both electron-withdrawing and electron-donating groups, as well as diverse functionalities. At the same time, strong electron-acceptor substituents in the pyridine ring of the starting ureas reduce the product yield or even prevent the cyclocondensation step. The reaction can be easily scaled to gram quantities. Full article
Show Figures

Figure 1

21 pages, 13460 KiB  
Article
Structure-Activity Relationship Studies Based on 3D-QSAR CoMFA/CoMSIA for Thieno-Pyrimidine Derivatives as Triple Negative Breast Cancer Inhibitors
by Jin-Hee Kim and Jin-Hyun Jeong
Molecules 2022, 27(22), 7974; https://doi.org/10.3390/molecules27227974 - 17 Nov 2022
Cited by 10 | Viewed by 2759
Abstract
Triple-negative breast cancer (TNBC) is defined as a kind of breast cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). This cancer accounts for 10–15% of all breast cancers and has the features of high invasiveness [...] Read more.
Triple-negative breast cancer (TNBC) is defined as a kind of breast cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). This cancer accounts for 10–15% of all breast cancers and has the features of high invasiveness and metastatic potential. The treatment regimens are still lacking and need to develop novel inhibitors for therapeutic strategies. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses, based on a series of forty-seven thieno-pyrimidine derivatives, were performed to identify the key structural features for the inhibitory biological activities. The established comparative molecular field analysis (CoMFA) presented a leave-one-out cross-validated correlation coefficient q2 of 0.818 and a determination coefficient r2 of 0.917. In comparative molecular similarity indices analysis (CoMSIA), a q2 of 0.801 and an r2 of 0.897 were exhibited. The predictive capability of these models was confirmed by using external validation and was further validated by the progressive scrambling stability test. From these results of validation, the models were determined to be statistically reliable and robust. This study could provide valuable information for further optimization and design of novel inhibitors against metastatic breast cancer. Full article
(This article belongs to the Special Issue Computational Approaches in Drug Discovery and Design)
Show Figures

Figure 1

18 pages, 2869 KiB  
Article
4-Substituted Thieno[3,2-d]pyrimidines as Dual-Stage Antiplasmodial Derivatives
by Prisca Lagardère, Romain Mustière, Nadia Amanzougaghene, Sébastien Hutter, Jean-François Franetich, Nadine Azas, Patrice Vanelle, Pierre Verhaeghe, Nicolas Primas, Dominique Mazier, Nicolas Masurier and Vincent Lisowski
Pharmaceuticals 2022, 15(7), 820; https://doi.org/10.3390/ph15070820 - 1 Jul 2022
Cited by 6 | Viewed by 2560
Abstract
Malaria remains one of the major health problems worldwide. The increasing resistance of Plasmodium to approved antimalarial drugs requires the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Based on the structure of Gamhepathiopine, a 2-tert-butylaminothieno[3,2- [...] Read more.
Malaria remains one of the major health problems worldwide. The increasing resistance of Plasmodium to approved antimalarial drugs requires the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Based on the structure of Gamhepathiopine, a 2-tert-butylaminothieno[3,2-d]pyrimidin-4(3H)-one hit, active on the sexual and asexual stages of the parasite and thanked for the introduction of various substituents at position 4 of the thienopyrimidine core by nucleophilic aromatic substitution and pallado-catalyzed coupling reactions, a series of 4-substituted thieno[3,2-d]pyrimidines were identified as displaying in vitro activities against both the erythrocytic stage of P. falciparum and the hepatic stage of P. berghei. Among the 28 compounds evaluated, the chloro analogue of Gamhepathiopine showed good activity against the erythrocytic stage of P. falciparum, moderate toxicity on HepG2, and better activity against hepatic P. berghei parasites, compared to Gamhepathiopine. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Infectious Diseases)
Show Figures

Figure 1

18 pages, 4059 KiB  
Article
In Vitro Anticancer Activity Screening of Novel Fused Thiophene Derivatives as VEGFR-2/AKT Dual Inhibitors and Apoptosis Inducers
by Rana M. Abdelnaby, Afaf A. El-Malah, Rasha R. FakhrEldeen, Marwa M. Saeed, Rania I. Nadeem, Nancy S. Younis, Hanaa M. Abdel-Rahman and Nehad M. El-Dydamony
Pharmaceuticals 2022, 15(6), 700; https://doi.org/10.3390/ph15060700 - 2 Jun 2022
Cited by 13 | Viewed by 3072
Abstract
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing [...] Read more.
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing new inhibitors, which were evaluated as antiproliferative agents in the HepG2 and PC-3 cell lines. The compounds 3b (IC50 = 3.105 and 2.15 μM) and 4c (IC50 = 3.023 and 3.12 μM) were the most promising candidates on both cells with good selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where 4c inhibited VEGFR-2 and AKT at IC50 = 0.075 and 4.60 μM, respectively, while 3b showed IC50 = 0.126 and 6.96 μM, respectively. Moreover, they resulted in S phase cell cycle arrest with subsequent caspase-3-induced apoptosis. Lastly, docking studies evaluated the binding patterns of these active derivatives and demonstrated a similar fitting pattern to the reference ligands inside the active sites of both VEGFR-2 and AKT (allosteric pocket) crystal structures. To conclude, these thiophene derivatives represent promising antiproliferative leads inhibiting both VEGFR-2 and AKT and inducing apoptosis in liver cell carcinoma. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
Design, Cytotoxicity and Antiproliferative Activity of 4-Amino-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates against MFC-7 and MDA-MB-231 Breast Cancer Cell Lines
by Anelia Mavrova, Stephan Dimov, Inna Sulikovska, Denitsa Yancheva, Ivan Iliev, Iana Tsoneva, Galya Staneva and Biliana Nikolova
Molecules 2022, 27(10), 3314; https://doi.org/10.3390/molecules27103314 - 21 May 2022
Cited by 8 | Viewed by 3092
Abstract
Novel 4-amino-thieno[2,3-d]pyrimidine-6-carboxylates substituted at the second position were prepared by cyclocondensation of 2-amino-3-cyano-thiophene and aryl nitriles in an acidic medium. The design of the target compounds was based on structural optimization. The derivatives thus obtained were tested in vitro against human and mouse [...] Read more.
Novel 4-amino-thieno[2,3-d]pyrimidine-6-carboxylates substituted at the second position were prepared by cyclocondensation of 2-amino-3-cyano-thiophene and aryl nitriles in an acidic medium. The design of the target compounds was based on structural optimization. The derivatives thus obtained were tested in vitro against human and mouse cell lines. The examination of the compound effects on BLAB 3T3 and MFC-10A cells showed that they are safe, making them suitable for subsequent experiments to establish their antitumor activity. The photoirritancy factor of the compounds was calculated. Using the MTT test, the antiproliferative activity to MCF-10A, MCF-7 and MDA-MB-231 cell lines was estimated. The best antiproliferative effect in respect to the MCF-7 cell line revealed compound 2 with IC50 4.3 ± 0.11 µg/mL (0.013 µM). The highest selective index with respect to MCF-7 cells was shown by compound 3 (SI = 19.3), and to MDA-MB-231 cells by compound 2 (SI = 3.7). Based on energy analysis, the most stable conformers were selected and optimized by means of density functional theory (DFT). Ligand efficiency, ligand lipophilicity efficiency and the physicochemical parameters of the target 4-amino-thienopyrimidines were determined. The data obtained indicated that the lead compound among the tested substances is compound 2. Full article
Show Figures

Graphical abstract

22 pages, 1928 KiB  
Article
Biological Evaluation of New Thienopyridinium and Thienopyrimidinium Derivatives as Human Choline Kinase Inhibitors
by Pilar María Luque-Navarro, Elena Mariotto, Marco Ballarotto, Gianluca Rubbini, Francisco José Aguilar-Troyano, Alberto Fasiolo, Archimede Torretta, Emilio Parisini, Antonio Macchiarulo, Alejandro Laso, Carmen Marco, Giampietro Viola, María Paz Carrasco-Jimenez and Luisa Carlota López-Cara
Pharmaceutics 2022, 14(4), 715; https://doi.org/10.3390/pharmaceutics14040715 - 27 Mar 2022
Cited by 7 | Viewed by 2704
Abstract
Due to its role in lipid biosynthesis, choline kinase α1 (CKα1) is an interesting target for the development of new antitumor agents. In this work, we present a series of 41 compounds designed based on the well-known and successful strategy of introducing thienopyridine [...] Read more.
Due to its role in lipid biosynthesis, choline kinase α1 (CKα1) is an interesting target for the development of new antitumor agents. In this work, we present a series of 41 compounds designed based on the well-known and successful strategy of introducing thienopyridine and pyrimidine as bioisosteres of other heterocycles in active antitumor compounds. Notwithstanding the fact that some of these compounds do not show significant enzymatic inhibition, others, in contrast, feature substantially improved enzymatic and antiproliferative inhibition values. This is also confirmed by docking analysis, whereby compounds with longer linkers and thienopyrimidine cationic head have been identified as the most compelling. Among the best compounds is Ff-35, which inhibits the growth of different tumor cells at submicromolar concentrations. Moreover, Ff-35 is more potent in inhibiting CKα1 than other previous biscationic derivatives. Treatment of A549, Hela, and MDA-MB-231 cells with Ff-35 results in their arrest at the G1 phase of the cell cycle. Furthermore, the compound induces cellular apoptosis in a concentration-dependent manner. Altogether, these findings indicate that Ff-35 is a promising new chemotherapeutic agent with encouraging preclinical potential. Full article
Show Figures

Figure 1

10 pages, 2491 KiB  
Communication
In Silico Evaluation of a Promising Key Intermediate Thieno [2,3-d] Pyrimidine Derivative with Expected JAK2 Kinase Inhibitory Activity
by Elshaymaa I. Elmongy and Hanan Ali Henidi
Molbank 2022, 2022(1), M1352; https://doi.org/10.3390/M1352 - 9 Mar 2022
Cited by 9 | Viewed by 3122
Abstract
This work describes the synthesis and the cytotoxic evaluation of thiophene and thienopyrimidine derivatives. The investigated compound was subjected to target prediction that indicated its high affinity to kinases and to Janus kinase 2 (JAK2) specifically. Molecular docking screening was performed on three [...] Read more.
This work describes the synthesis and the cytotoxic evaluation of thiophene and thienopyrimidine derivatives. The investigated compound was subjected to target prediction that indicated its high affinity to kinases and to Janus kinase 2 (JAK2) specifically. Molecular docking screening was performed on three different JAK2 proteins downloaded from the Protein Data Bank (PDB: 5AEP, 4C62 and 3ZMM). In vitro kinase inhibitory activity was evaluated and then compound cytotoxicity was performed on three different cancerous cell lines (HT-29, HepG-2, and MCF-7). Marked cytotoxic activity of the thienopyrimidine derivative against the HepG-2 cell line was demonstrated, reflected by its IC50 value of 8.001 ± 0.0445 μM, which is better than that of the reference standard (IC50 13.91 ± 2.170 μM). Pharmacokinetic studies revealed good well permeability and GI absorption with no violations against Lipinski’s rule. Full article
Show Figures

Figure 1

17 pages, 2455 KiB  
Article
In-Silico Screening of Novel Synthesized Thienopyrimidines Targeting Fms Related Receptor Tyrosine Kinase-3 and Their In-Vitro Biological Evaluation
by Elshaymaa I. Elmongy, Najla Altwaijry, Nashwah G. M. Attallah, Manal Mubarak AlKahtani and Hanan Ali Henidi
Pharmaceuticals 2022, 15(2), 170; https://doi.org/10.3390/ph15020170 - 29 Jan 2022
Cited by 22 | Viewed by 3581
Abstract
The present investigation describes the design strategy and synthesis of novel thienopyrimidine compounds in addition to their anticancer activity targeting tyrosine kinase FLT3 enzyme. The synthesized compounds were subjected to a cytotoxic study where compounds 9a and 9b showed the most potent cytotoxicity [...] Read more.
The present investigation describes the design strategy and synthesis of novel thienopyrimidine compounds in addition to their anticancer activity targeting tyrosine kinase FLT3 enzyme. The synthesized compounds were subjected to a cytotoxic study where compounds 9a and 9b showed the most potent cytotoxicity against HT-29, HepG-2, and MCF-7 cell lines reflected by their IC50 values for 9a (1.21 ± 0.34, 6.62 ± 0.7 and 7.2 ± 1.9 μM), for 9b (0.85 ± 0.16, 9.11 ± 0.3 and 16.26 ± 2.3 μM) and better than that of reference standard which recorded (1.4 ± 1.16, 13.915 ± 2.2, and 8.43 ± 0.5 μM), respectively. Compounds’ selectivity to malignant cells was determined using selectivity assay, interestingly, all the tested compounds demonstrated an excellent selectivity index (SI) range from 20.2 to 99.7. Target in-silico prediction revealed the FLT3 kinase enzyme was the kinase enzyme of highest probability. Molecular docking studies were performed on the prepared compounds which showed promising binding affinity for FLT3 kinase enzyme and the main interactions between the synthesized ligands and kinase active site were similar to those between the co-crystallized ligand and the receptor. Further biological exploration was performed using in-vitro FLT3 kinase enzyme inhibition assay. The results showed that the 2-morpholinoacetamido derivative 10a exhibited highest FLT3 inhibitory activity among the tested compounds followed by compound 9a then 12. Pharmacokinetic assessment disclosed that all the investigated compounds were considered as “drug-like” molecules with promising bioavailability. Full article
(This article belongs to the Special Issue Design of Enzyme Inhibitors as Potential Drugs 2022)
Show Figures

Figure 1

58 pages, 77792 KiB  
Review
Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents
by Prisca Lagardère, Cyril Fersing, Nicolas Masurier and Vincent Lisowski
Pharmaceuticals 2022, 15(1), 35; https://doi.org/10.3390/ph15010035 - 27 Dec 2021
Cited by 32 | Viewed by 6099
Abstract
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers—thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines—and their anti-infective properties. Broad-spectrum thienopyrimidines with biological [...] Read more.
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers—thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines—and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure–activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand–receptor interactions were modeled when the biological target was identified and the crystal structure was solved. Full article
(This article belongs to the Special Issue Heterocyclic Compounds and Their Application in Therapy)
Show Figures

Graphical abstract

15 pages, 1183 KiB  
Article
Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines
by Sergiy V. Vlasov, Olena D. Vlasova, Hanna I. Severina, Konstantin Yu. Krolenko, Oleksandr V. Borysov, Amjad Ibrahim M. Abu Sharkh, Vitaliy S. Vlasov and Victoriya A. Georgiyants
Sci. Pharm. 2021, 89(4), 49; https://doi.org/10.3390/scipharm89040049 - 18 Nov 2021
Cited by 14 | Viewed by 5356
Abstract
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD [...] Read more.
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD inhibitors in the series of carboxamide derivatives of thienopyrimidines became a background for further modification of the similar structures aimed at the development of promising antibacterial agents. As part of this research, we carried out the construction of heterocyclic hybrids bearing the moieties of thieno[2,3-d]pyrimidine and benzimidazole starting from 3,5-dimethyl-4-oxo-2-thioxo-1H-thieno[2,3-d]pyrimidine-6-carboxylic acid, which was used as the pivotal intermediate. The hybrid molecule of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2-thioxo-1H-thieno[2,3-d]pyrimidin-4-one prepared via condensation of the carboxylic acid with ortho-phenylenediamine was further alkylated with aryl/hetaryl chloroacetamides and benzyl chloride to produce the series of S-alkyl derivatives. The results of molecular docking studies for the obtained series of S-alkyl benzimidazole-thienopyrimidines showed their high affinity to the TrmD isolated from the P. aeruginosa. The results of antimicrobial activity screening revealed the antimicrobial properties for all of the studied molecules against both Gram-positive and Gram-negative bacteria and the Candida albicans fungal strain. The highest antimicrobial activity was determined for 2-{[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl]thio}-N-(4-isopropylphenyl)acetamide, which also had the highest affinity to the TrmD inhibitor’s binding site according to the docking studies results. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design 2.0)
Show Figures

Figure 1

Back to TopTop