Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = thermodynamic of phase stabilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3888 KB  
Article
From MAX to MXene: Unveiling Robust Magnetism and Half-Metallicity in Cr2ZnC and Its Half-Metallic 2D Cr2C Through Ab-Initio Investigation
by Ahmed Lokbaichi, Ahmed Gueddouh, Djelloul Gueribiz, Mourad Rougab, Brahim Lagoun, Fatima Elhamra, Ahmed Mahammedi and Brahim Marfoua
Nanomaterials 2026, 16(2), 110; https://doi.org/10.3390/nano16020110 - 14 Jan 2026
Viewed by 294
Abstract
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, [...] Read more.
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, yields a dramatically enhanced magnetic moment of 12.80 μB (vs. 1.88 μB), confirming the necessity of this approach for Cr-based carbides. The phase stability is confirmed through rigorous analysis of its thermodynamic, dynamic, and mechanical properties. For the derived 2D Cr2C, results confirm a robust half-metallic state with a total magnetic moment of 8.00 μB, characterized by a metallic spin-majority channel and a semiconducting spin-minority channel with a 2.41 eV direct gap, leading to near-ideal spin polarization. These combined features establish Cr2C as a highly promising candidate for next-generation spintronic applications and 2D magnetic devices requiring room-temperature stability. Full article
(This article belongs to the Special Issue Advances in Nanoscale Spintronics)
Show Figures

Graphical abstract

18 pages, 999 KB  
Article
Direct Liquid Phase Hydroxylation of Benzene to Phenol over Iron-Containing Mordenite Catalysts: Combined DLS–EPR Study and Thermodynamic–Stability Analysis
by E. H. Ismailov, L. Kh. Qasimova, S. N. Osmanova, A. I. Rustamova, L. V. Huseynova, S. A. Mammadkhanova and Sh. F. Tagiyeva
Catalysts 2026, 16(1), 89; https://doi.org/10.3390/catal16010089 - 13 Jan 2026
Viewed by 344
Abstract
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen [...] Read more.
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen peroxide solution. The study utilizes a combination of catalytic activity measurements, dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) spectra. The system is initially shown to exhibit high phenol selectivity; however, over time, DLS measurements indicate aggregation of the catalyst particles with an increase in the average particle diameter from 1.8 to 2.6 μm and the formation of byproducts–dihydroxybenzenes. Iron is present predominantly as magnetite nanoparticles (Fe3O4) ~10 nm in diameter, stabilized on the outer surface of mordenite, with minor leaching (<10%) due to the formation of iron ion complexes with ascorbic acid as a result of the latter’s interaction with magnetite particles. Using a thermodynamic approach based on the Ulich formalism (first and second approximations), it is shown that the reaction of benzene hydroxylation H2O2 in the liquid phase is thermodynamically quite favorable (ΔG° = −(289–292) kJ·mol−1 in the range of 293–343 K, K = 1044–1052). It is shown that ascorbic acid acts as a redox mediator (reducing Fe3+ to Fe2+) and a regulator of the catalytic medium activity. The stability of the catalytic system is examined in terms of the Lyapunov criterion: it is shown that the total Gibbs free energy (including the surface contribution) can be considered as a Lyapunov functional describing the evolution of the system toward a steady state. Ultrasonic (US) treatment of the catalytic system is shown to redisperse aggregated particles and restore its activity. It is established that the catalytic activity is due to nanosized Fe3O4 particles, which react with H2O2 to form hydroxyl radicals responsible for the selective hydroxylation of benzene to phenol. Full article
Show Figures

Graphical abstract

23 pages, 7007 KB  
Review
Fe-Based Catalysts in MgH2 Hydrogen Storage: Mechanistic Insights, Stability Challenges, and a Roadmap for Scalable Design
by Quanhui Hou, Qianyang Wang, Xue Du, Zhihao Xu, Xiao Xu, Yunxuan Zhou and Zhao Ding
Coatings 2026, 16(1), 92; https://doi.org/10.3390/coatings16010092 - 11 Jan 2026
Viewed by 190
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts [...] Read more.
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts have emerged as attractive candidates due to their abundance, compositional tunability, and effective promotion of hydrogen sorption reactions in MgH2 systems. This review critically summarizes recent progress in Fe-based catalysts for MgH2 hydrogen storage, encompassing elemental Fe, iron oxides, Fe-based alloys, and advanced composite catalysts with nanostructured and multicomponent architectures. Mechanistic insights into catalytic enhancement are discussed, with particular emphasis on interfacial electron transfer, catalytic phase evolution, hydrogen diffusion pathways, and synergistic effects between Fe-containing species and MgH2, supported by experimental and theoretical studies. In addition to catalytic activity, key stability challenges—including catalyst agglomeration, phase segregation, interfacial degradation, and performance decay during cycling—are analyzed in relation to structural evolution and kinetic–thermodynamic trade-offs. Finally, a roadmap for the scalable design of Fe-based catalysts is proposed, highlighting rational catalyst selection, interface engineering, and compatibility with large-scale synthesis. This review aims to bridge fundamental mechanisms with practical design considerations for developing durable and high-performance MgH2-based hydrogen storage materials. Full article
(This article belongs to the Special Issue The Research of Change: Catalysts for a Sustainable Future)
Show Figures

Figure 1

31 pages, 3764 KB  
Article
Design and Fabrication of a Compact Evaporator–Absorber Unit with Mechanical Enhancement for LiBr–H2O Vertical Falling Film Absorption, Part II: Control-Volume Modeling and Thermodynamic Performance Analysis
by Genis Díaz-Flórez, Teodoro Ibarra-Pérez, Carlos Alberto Olvera-Olvera, Santiago Villagrana-Barraza, Ma. Auxiliadora Araiza-Esquivel, Hector A. Guerrero-Osuna, Ramón Jaramillo-Martínez, Mayra A. Torres-Hernández and Germán Díaz-Flórez
Technologies 2026, 14(1), 33; https://doi.org/10.3390/technologies14010033 - 4 Jan 2026
Viewed by 416
Abstract
This study reports the thermodynamic performance of a patented compact vertical evaporator–absorber unit for LiBr–H2O absorption cooling, extending Part I by translating validated prototype data into a rigorous control-volume assessment of coupled transport. Coolant-side calorimetry was used to determine the absorption [...] Read more.
This study reports the thermodynamic performance of a patented compact vertical evaporator–absorber unit for LiBr–H2O absorption cooling, extending Part I by translating validated prototype data into a rigorous control-volume assessment of coupled transport. Coolant-side calorimetry was used to determine the absorption heat-transfer rate (Qabs), while a mass–energy balance provided an estimate of the absorption mass-transfer rate (m˙abs) across twelve manually imposed thermal-load phases with tagged fan-OFF/ON sub-intervals. Linear trend (slope) analysis was applied to quantify phase-resolved dynamic behavior. Fan assistance produced three load-dependent regimes: (i) stabilization of downward trends under low and zero loads, yielding slope-based relative improvements above 100% in the most critical weak-gradient phases; (ii) acceleration of recovery at intermediate loads; and (iii) moderation of strongly positive drifts at high loads. The global thermal resistance (Rth) decreased by more than 30% in passive and low-load phases, and Wilcoxon signed-rank tests confirmed statistically significant reductions in most intervals (p < 0.05). Uncertainty contributions and robustness were quantified through an uncertainty budget decomposition and sensitivity analyses, and a subsystem-level normalization (ηEA = Qabs/Qin) is reported to support comparisons across loads without invoking cycle COP. Overall, active vapor-flow management using a low-power internal fan widens the useful operating envelope of compact absorbers and provides a validated thermodynamic baseline with practical, regime-aware control guidelines for decentralized low-carbon cooling technologies. Full article
Show Figures

Figure 1

24 pages, 12079 KB  
Article
Microstructure and Properties of 316L Lattice/Al Composites Fabricated by Infiltration with Different Aspect Ratios of Lattice
by Liqiang Liu, Yue Liu, Yi Liu, Junfa Wang, Longquan Wang and Jiacheng Wei
Coatings 2026, 16(1), 50; https://doi.org/10.3390/coatings16010050 - 2 Jan 2026
Viewed by 357
Abstract
The interfacial behavior between lattice reinforcement and aluminum matrix plays an important role in determining the mechanical and tribological properties of lattice-reinforced aluminum matrix composites. In this study, 316L lattices with different aspect ratios were prepared by laser powder bed elting (LPBF) technology, [...] Read more.
The interfacial behavior between lattice reinforcement and aluminum matrix plays an important role in determining the mechanical and tribological properties of lattice-reinforced aluminum matrix composites. In this study, 316L lattices with different aspect ratios were prepared by laser powder bed elting (LPBF) technology, and LY12 aluminum alloy was infiltrated under vacuum conditions. The effects of lattice aspect ratio on the interfacial reaction, microstructure, hardness, compressive strength, and wear resistance of the composites were systematically studied. First-principles calculations show that FeAl2 and FeAl3 intermetallic compounds are preferentially formed at the interface, showing good thermodynamic stability and mechanical properties. The microstructure analysis shows that the increase in aspect ratio promotes the formation of coarse FeAl3 phase and network AlCu, while a too-large aspect ratio leads to the instability of microstructure and the generation of microcracks. When the lattice constant is 10 mm and the diameter of the support is 1 mm (BCC-10-1), the composite material has the best wear resistance, and the specific wear rate is 3.07 × 10−4 mm3/(N·m). These findings provide valuable insights into the design of high-performance lattice-reinforced aluminum matrix composites with customized interface properties. Full article
(This article belongs to the Special Issue Surface Modification Techniques Utilizing Plasma and Photonic Methods)
Show Figures

Figure 1

22 pages, 3899 KB  
Review
Novel Features, Applications, and Recent Developments of High-Entropy Ceramic Coatings: A State-of-the-Art Review
by Gurudas Mandal, Barun Haldar, Rahul Samanta, Guojun Ma, Sandip Kunar, Sabbah Ataya, Mithun Nath and Swarup Kumar Ghosh
Coatings 2026, 16(1), 48; https://doi.org/10.3390/coatings16010048 - 2 Jan 2026
Viewed by 612
Abstract
This state-of-the-art review provides a comprehensive, critical synthesis of the rapidly expanding field of HECCs, emphasizing the unique scientific challenges that distinguish these materials from conventional ceramics and high-entropy alloys. Key challenges of HECCs include accurately predicting stable phases and quantifying resultant material [...] Read more.
This state-of-the-art review provides a comprehensive, critical synthesis of the rapidly expanding field of HECCs, emphasizing the unique scientific challenges that distinguish these materials from conventional ceramics and high-entropy alloys. Key challenges of HECCs include accurately predicting stable phases and quantifying resultant material properties, optimizing complex fabrication and processing techniques, and establishing a robust correlation between the intricate microstructural characteristics and macroscopic performance. Unlike previous reviews that focus on individual ceramic families, this article integrates the novel features, diverse applications, and recent developmental breakthroughs across carbides, nitrides, borides, and oxides to reveal the unifying principles governing configurational disorder, phase stability, and microstructure property relationships in HECCs. A key novelty of this review work is the systematic mapping of fabrication pathways, including CTR, PAS, SPS, and reactive sintering, against the underlying thermodynamic and kinetic constraints specific to multicomponent ceramic systems. The review introduces emerging ideas such as HEDFT, machine-learning-assisted phase prediction, and entropy–enthalpy competition as foundational tools for next-generation HECC design and performance analysis. Additionally, it uniquely presents densification behavior, diffusion barriers, defect chemistry, and residual stress evolution with mechanical, thermal, and tribological performance across the coating classes. By consolidating theoretical intuitions with experimental developments, this article provides a novel roadmap for predictive compositional design, development, microstructural engineering, and targeted application of HECCs in extreme environments. This work aims to support researchers and coating industries toward the rational development of high-performance HECCs and establish a unified framework for future research in high-entropy ceramic technologies. Full article
Show Figures

Figure 1

21 pages, 21740 KB  
Article
Simulation of Oxygen Diffusion in Lead–Bismuth Eutectic for Gas-Phase Oxygen Management
by Zhihong Tang, Bin Yang, Wenjun Zhang, Ruohan Chen, Shusheng Guo, Junfeng Li, Liyuan Wang and Xing Huang
J. Nucl. Eng. 2026, 7(1), 5; https://doi.org/10.3390/jne7010005 - 1 Jan 2026
Viewed by 207
Abstract
Lead–bismuth eutectic (LBE), while advantageous for advanced nuclear reactors due to its thermophysical properties, faces oxidation and corrosion challenges during operation. This study aims to optimize gas-phase oxygen control by computationally analyzing oxygen transport dynamics in an LBE loop. High-fidelity simulations were performed [...] Read more.
Lead–bismuth eutectic (LBE), while advantageous for advanced nuclear reactors due to its thermophysical properties, faces oxidation and corrosion challenges during operation. This study aims to optimize gas-phase oxygen control by computationally analyzing oxygen transport dynamics in an LBE loop. High-fidelity simulations were performed using ANSYS Fluent and STAR-CCM+ based on the CORRIDA loop geometry, employing detailed meshing for convergence. Steady-state analyses revealed localized oxygen enrichment near the gas–liquid interface (peaking at ∼3×106 wt%), decreasing to ∼5.06.8×108 wt% at the outlet. Transient simulations from an oxygen-deficient state (1×108 wt%) demonstrated distribution stabilization within 150 s, driven by convection-enhanced diffusion. Parametric studies identified a non-monotonic relationship between inlet velocity and oxygen uptake, with optimal performance at 0.7–0.9 m/s, while increasing temperature from 573 K to 823 K monotonically enhanced the outlet concentration by >200% due to improved diffusivity/solubility. The average mass transfer coefficient (0.6–0.7) aligned with literature values (±20% deviation), validating the model’s treatment of interface thermodynamics and turbulence. These findings the advance mechanistic understanding of oxygen transport in LBE and directly inform the design of oxygenation systems and corrosion mitigation strategies for liquid metal-cooled reactors. Full article
Show Figures

Figure 1

16 pages, 2546 KB  
Article
W-Re/Cr Cosegregation Enhanced Thermodynamic Stability and Cohesion of the γ-Ni/γ′-Ni3Al Phase Boundary
by Liang Peng, Hong-Tao Xue, Fawaz Alnoman Mohammed Ahmed, Jun-Qiang Ren, Fu-Ling Tang, Xue-Feng Lu and Jun-Chen Li
Metals 2026, 16(1), 53; https://doi.org/10.3390/met16010053 - 31 Dec 2025
Viewed by 243
Abstract
The thermodynamic instability and relatively low mechanical strength of γ/γ′ phase boundaries in Ni-based single-crystal superalloys compromise the service safety of these materials. The interfacial segregation behavior of alloying elements is expected to enhance the thermodynamic stability and mechanical strength of γ/γ′ phase [...] Read more.
The thermodynamic instability and relatively low mechanical strength of γ/γ′ phase boundaries in Ni-based single-crystal superalloys compromise the service safety of these materials. The interfacial segregation behavior of alloying elements is expected to enhance the thermodynamic stability and mechanical strength of γ/γ′ phase boundaries. In the present research, first-principles computations grounded in density functional theory were performed to examine the unclarified cosegregation characteristics of W-Re/Cr solutes at the γ-Ni/γ′-Ni3Al phase boundary, as well as the impacts of such cosegregation on interfacial formation heat and Griffith fracture work. The results indicated that Re and Cr atoms tend to segregate preferentially at the γ-L1-3.52-cp site within the W-alloyed phase boundary. This phenomenon can be attributed to the attractive interactions between W and Re/Cr, along with the fact that this site exhibits the most negative segregation energy. The thermodynamic stability of W-Re and W-Cr cosegregated phase boundaries is significantly enhanced, being much higher than that of clean or W-segregated phase boundaries, which is ascribed to deeper pseudogaps at the Fermi level. Notably, the preferred fracture path remains in region-1 after cosegregation, as directly evidenced by its lower Griffith fracture work compared to region-2. This disparity is rationalized by charge density analysis, which reveals a pronounced charge accumulation and consequently stronger bonding in region-2. Our results may provide atomistic insights into the solute cosegregation behaviors and their interfacial strengthening and stabilizing effects, and also the interfacial composition manipulation of Ni-based single-crystal superalloys. Full article
Show Figures

Figure 1

22 pages, 5454 KB  
Article
Extreme Strengthening of Nickel by Ultralow Additions of SiC Nanoparticles: Synergy of Microstructure Control and Interfacial Reactions During Spark Plasma Sintering
by Leonid Agureev, Svetlana Savushkina and Artem Ashmarin
Inventions 2026, 11(1), 1; https://doi.org/10.3390/inventions11010001 - 29 Dec 2025
Viewed by 233
Abstract
Ni–ySiC system (where y = 0.001, 0.005, and 0.015 wt.%) composite materials with enhanced mechanical properties have been fabricated and comprehensively investigated. The composites were synthesized using a combined technology involving preliminary mechanical activation of powder components in a planetary mill followed by [...] Read more.
Ni–ySiC system (where y = 0.001, 0.005, and 0.015 wt.%) composite materials with enhanced mechanical properties have been fabricated and comprehensively investigated. The composites were synthesized using a combined technology involving preliminary mechanical activation of powder components in a planetary mill followed by consolidation via spark plasma sintering (SPS) at 850 °C. The microstructure and phase composition were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The physico-mechanical properties were evaluated by density measurements (hydrostatic weighing), three-point bending tests (25 °C and 400 °C), and Young’s modulus measurement using an ultrasonic method (25–750 °C). It was found that the introduction of ultralow amounts of SiC nanoparticles (0.001 wt.%) leads to an extreme increase in flexural strength: by 115% at 20 °C (up to 1130 MPa) and by 86% at 400 °C (up to 976 MPa) compared to pure nickel. Microstructural analysis revealed the formation of an ultrafine-grained structure (0.15–0.4 µm) with the presence of pyrolytic carbon and probable nickel silicide interlayers at the grain boundaries. Thermodynamic and kinetic modeling, including the calculation of chemical potentials and diffusion coefficients, confirmed the possibility of reactions at the Ni/SiC interface with the formation of nickel silicides (Ni2Si, NiSi) and free carbon. The scientific novelty of the work lies in establishing a synergistic strengthening mechanism combining the Hall–Petch, Orowan (dispersion), and solid solution strengthening effects, and in demonstrating the property extremum at an ultralow content of the dispersed phase (0.001 wt.%), explained from the standpoint of quantum-chemical analysis of phase stability. The obtained results are of practical importance for the development of high-strength and thermally stable nickel composites, promising for application in aerospace engineering. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

17 pages, 2190 KB  
Article
The Mechanism of Calcium Leaching from Steel Slag Based on the “Water-Acetic Acid” Two-Step Leaching Route
by Kai Zhang, Qiong Cang, Lijie Peng, Yitong Wang, Shan Zhang, Hongyang Li, Shan Yu, Baojia Hu, Xin Yao, Peipei Du and Yajun Wang
Processes 2025, 13(12), 4077; https://doi.org/10.3390/pr13124077 - 17 Dec 2025
Viewed by 435
Abstract
Converter steel slag (BOFS) contains abundant reactive Ca-bearing minerals and represents a promising feedstock for indirect CO2 mineralization. However, conventional acid leaching suffers from excessive reagent consumption and low process sustainability. This study develops a “water–acetic acid” two-step leaching strategy aimed at [...] Read more.
Converter steel slag (BOFS) contains abundant reactive Ca-bearing minerals and represents a promising feedstock for indirect CO2 mineralization. However, conventional acid leaching suffers from excessive reagent consumption and low process sustainability. This study develops a “water–acetic acid” two-step leaching strategy aimed at reducing acid/alkali usage while enhancing calcium recovery. Thermodynamic calculations were performed to elucidate the hydrolysis behaviors of primary phases (f-CaO, C3S, and β-C2S) and the stability of secondary minerals in BOFS. The kinetic behavior and dissolution mechanisms of water-leached residues in acetic acid were further analyzed. Parametric experiments were conducted to evaluate the effects of the liquid-to-solid ratio (L/S), temperature, stirring rate, and acid concentration. Results show that the L/S is the dominant factor controlling Ca dissolution in both steps, while temperature exerts opposite effects: lower temperatures favor water leaching due to the exothermic nature of silicate hydrolysis, whereas higher temperatures enhance acid leaching. The proposed two-step route achieves a Ca recovery of 75.9%, representing a 7.6% improvement over direct acid leaching, while lowering acid consumption by ∼90%. This work provides mechanistic insight and process evidence supporting the efficient and sustainable utilization of BOFS for indirect CO2 mineralization. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

55 pages, 3943 KB  
Review
Latest Advancements and Mechanistic Insights into High-Entropy Alloys: Design, Properties and Applications
by Anthoula Poulia and Alexander E. Karantzalis
Materials 2025, 18(24), 5616; https://doi.org/10.3390/ma18245616 - 14 Dec 2025
Cited by 1 | Viewed by 1330
Abstract
High-entropy alloys (HEAs) are a class of multi-principal element materials composed of five or more elements in near-equimolar ratios. This unique compositional design generates high configurational entropy, which stabilizes simple solid solution phases and reduces the tendency for intermetallic compound formation. Unlike conventional [...] Read more.
High-entropy alloys (HEAs) are a class of multi-principal element materials composed of five or more elements in near-equimolar ratios. This unique compositional design generates high configurational entropy, which stabilizes simple solid solution phases and reduces the tendency for intermetallic compound formation. Unlike conventional alloys, HEAs exhibit a combination of properties that are often mutually exclusive, such as high strength and ductility, excellent thermal stability, superior corrosion and oxidation resistance. The exceptional mechanical performance of HEAs is attributed to mechanisms including lattice distortion strengthening, sluggish diffusion, and multiple active deformation pathways such as dislocation slip, twinning, and phase transformation. Advanced characterization techniques such as transmission electron microscopy (TEM), atom probe tomography (APT), and in situ mechanical testing have revealed the complex interplay between microstructure and properties. Computational approaches, including CALPHAD modeling, density functional theory (DFT), and machine learning, have significantly accelerated HEA design, allowing prediction of phase stability, mechanical behavior, and environmental resistance. Representative examples include the FCC-structured CoCrFeMnNi alloy, known for its exceptional cryogenic toughness, Al-containing dual-phase HEAs, such as AlCoCrFeNi, which exhibit high hardness and moderate ductility and refractory HEAs, such as NbMoTaW, which maintain ultra-high strength at temperatures above 1200 °C. Despite these advances, challenges remain in controlling microstructural homogeneity, understanding long-term environmental stability, and developing cost-effective manufacturing routes. This review provides a comprehensive and analytical study of recent progress in HEA research (focusing on literature from 2022–2025), covering thermodynamic fundamentals, design strategies, processing techniques, mechanical and chemical properties, and emerging applications, through highlighting opportunities and directions for future research. In summary, the review’s unique contribution lies in offering an up-to-date, mechanistically grounded, and computationally informed study on the HEAs research-linking composition, processing, structure, and properties to guide the next phase of alloy design and application. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Graphical abstract

15 pages, 6689 KB  
Article
Study of Selective Recovery of Lead- and Zinc-Based Products from Leachate After Alkaline Leaching of Copper Shaft Furnace Dust
by Michaela Ružičková, Martina Laubertová and Michal Marcin
Metals 2025, 15(12), 1362; https://doi.org/10.3390/met15121362 - 11 Dec 2025
Viewed by 351
Abstract
A leachate from alkaline leaching of copper shaft furnace (CSF) dust as a hazardous waste was used in this study for performing a chemical precipitation experiment of lead, zinc, and copper. The precipitation processes for lead, zinc, and copper were theoretically optimized based [...] Read more.
A leachate from alkaline leaching of copper shaft furnace (CSF) dust as a hazardous waste was used in this study for performing a chemical precipitation experiment of lead, zinc, and copper. The precipitation processes for lead, zinc, and copper were theoretically optimized based on a thermodynamic study. To determine suitable operating conditions, metal phase stability, reaction mechanisms, and precipitation order were analyzed using the Hydra/Medusa and HSC Chemistry v.10 software packages. In the first experimental stage, treatment of the alkaline leachate resulted in the formation of insoluble lead sulfate (PbSO4), while zinc remained dissolved for subsequent recovery. In the second stage, the zinc-bearing solution was treated with Na2CO3, producing a mixed zinc precipitate consisting of Zn5(OH)6(CO3)2(s). This study determined that the optimal conditions for chemically precipitating lead as PbSO4 from alkaline leachate (pH 13.5) are the use of 1 mol/L H2SO4 at pH 3.09 and Eh 0.22 V at 25 °C, while optimal zinc precipitation from this solution (pH 3.02) is achieved with 2 mol/L Na2CO3 at pH 9.39 and Eh –0.14 V at 25 °C. A small amount of copper present in the solution co-precipitated and was identified as an impurity in the zinc product. The chemical composition of the resulting precipitates was confirmed by SEM–EDX analysis. Full article
(This article belongs to the Special Issue Studies on Metal Leaching, Extraction and Recovery)
Show Figures

Figure 1

18 pages, 2311 KB  
Article
TD-NMR-Based Determination of the Entrapped Water Yield of Water-in-Oil-in-Water Double Emulsions: Influence of Xanthan Gum Addition
by Yulin Hu, Ferre Rebry and Paul Van der Meeren
Molecules 2025, 30(24), 4680; https://doi.org/10.3390/molecules30244680 - 6 Dec 2025
Viewed by 337
Abstract
Water-in-oil-in-water (W/O/W) double emulsions (DEs) are considered promising systems for encapsulating, protecting, and delivering hydrophilic compounds. However, their thermodynamic instability limits their practical application. The addition of stabilizers and/or thickeners is a straightforward strategy to improve their stability. However, the high viscosity of [...] Read more.
Water-in-oil-in-water (W/O/W) double emulsions (DEs) are considered promising systems for encapsulating, protecting, and delivering hydrophilic compounds. However, their thermodynamic instability limits their practical application. The addition of stabilizers and/or thickeners is a straightforward strategy to improve their stability. However, the high viscosity of DEs complicates the accurate determination of their entrapped water yield (EY), especially when applying techniques based on phase separation. In this study, two TD-NMR-based techniques (T2 relaxometry, and NMR diffusometry) were compared to analytical photocentrifugation to evaluate their effectiveness in determining the entrapped water yield of DEs formulated with various concentrations (0–0.8 wt%) of xanthan gum (Xan) in the external aqueous (W2) phase. For EY determination, analytical photocentrifugation led to overestimated results for DEs containing xanthan, primarily due to the high viscosity, which inhibited the complete separation between the cream and serum layers. In contrast, after optimizing measurement and analysis conditions to minimize interference from water and/or solute exchange between the inner and outer aqueous phases, T2 relaxometry and NMR diffusometry yielded comparable EY values for all DEs with or without Xan. Hence, these two TD-NMR-based techniques can be considered direct and reliable methods for EY determination in viscous DE system. Full article
(This article belongs to the Special Issue NMR and MRI in Materials Analysis: Opportunities and Challenges)
Show Figures

Figure 1

15 pages, 3428 KB  
Article
The Influence Mechanism of Mn(II) on the Transformation of Ce-Adsorbed Hexagonal Birnessite
by Meiqing Chen, Wenjie Dai, Yingying Liu, Guanzheng Zhuang, Yanfu Wei, Zhi Dang and Pingxiao Wu
Separations 2025, 12(12), 335; https://doi.org/10.3390/separations12120335 - 5 Dec 2025
Viewed by 318
Abstract
Birnessite has a strong ability to fix rare-earth elements (REEs), but the transformation process of birnessite and its effects on the migration of these elements are not well understood. This study examines how pH and Mn(II) concentrations influence the transformation of cerium-adsorbed hexagonal [...] Read more.
Birnessite has a strong ability to fix rare-earth elements (REEs), but the transformation process of birnessite and its effects on the migration of these elements are not well understood. This study examines how pH and Mn(II) concentrations influence the transformation of cerium-adsorbed hexagonal birnessite (Ce/HB) and the behaviors of Ce and Mn. The results show that the effect of Mn(II) on Ce/HB transformation strongly depended on solution pH. At a pH of 5.0, HB initially underwent transformation into feitknechtite, followed by further disproportionation that resulted in the regeneration of HB and Mn(II). Concurrently, redox reactions occur between Mn(IV) in MnO2 (a secondary phase of HB) and Ce(III)/Mn(II), creating a local redox gradient that facilitates partial HB transformation. At pH = 7.0, Mn(II) reduces the crystallinity of transformed products while enhancing the thermodynamic stability of feitknechtite, making it the dominant manganese oxide phase. At pH = 9.0, high-concentration Mn(II) causes lattice distortion in original HB; Ce(III) acts as a structural inducer, promoting mineral transition from hexagonal to orthorhombic symmetry, while excess soluble Mn(II) precipitates new feitknechtite. Additionally, surplus Mn(II) could engage in interfacial redox reactions with high-valent manganese oxides to generate secondary feitknechtite. Ce primarily exists as Ce(IV), forming CeO2 on the mineral surface via oxidation reactions that significantly increase hydroxylation and surface reactivity. This study clarifies the transformation pathways of manganese oxides and the migration and transformation patterns of Ce and Mn in rare-earth-rich mining areas. Full article
(This article belongs to the Special Issue Novel Functional Separation Materials for Water Treatment)
Show Figures

Figure 1

34 pages, 14375 KB  
Article
Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension
by Limei Sun, Yang Liu, Xiujuan Zhu, Yang Wang, Qingzhen Li and Zengliang Li
Processes 2025, 13(12), 3922; https://doi.org/10.3390/pr13123922 - 4 Dec 2025
Viewed by 404
Abstract
Smoothed particle hydrodynamics (SPHs) is a Lagrangian meshless method with distinct strengths in managing unstable and complex interface behaviors. This study develops an integrated multiphase SPH framework by merging multiple algorithms and techniques to enhance stability and accuracy. The multiphase model is validated [...] Read more.
Smoothed particle hydrodynamics (SPHs) is a Lagrangian meshless method with distinct strengths in managing unstable and complex interface behaviors. This study develops an integrated multiphase SPH framework by merging multiple algorithms and techniques to enhance stability and accuracy. The multiphase model is validated by several benchmark examples, including square droplet deformation, single bubble rising, and two bubbles rising. The selection of numerical parameters for multiphase simulations is also discussed. The validated model is then applied to simulate oil–water–gas bubbly flows. Interface behaviors, such as coalescence, fragmentation, deformation, etc., are reproduced, which helps to take into account multiphysics interactions in industrial processes. The rising processes of many oil droplets for oil–water separation are first simulated, showing the advantages and stability of the SPH model in dealing with complex interface behaviors. To fully explore the potential of the model, the model is further extended to the field of wax removal. The melting process of the wax layer due to heat conduction is simulated by coupling the thermodynamic model and the phase change model. Interesting behaviors such as wax layer cracking, droplet detachment, and thermally driven flow instabilities are captured, providing insights into wax deposition mitigation strategies. This study provides an effective numerical model for bubbly flows in petroleum engineering and lays a research foundation for extending the application of the SPH method in other engineering fields, such as multiphase reactor design and environmental fluid dynamics. Full article
Show Figures

Figure 1

Back to TopTop