Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension
Abstract
1. Introduction
2. Methodology and Modeling
2.1. Fluid Dynamics Equations
2.2. SPH Formulation of Governing Equations
2.3. Surface Tension Modeling
2.3.1. Standard Algorithm
2.3.2. Corrected Algorithm
2.3.3. For Three Fluid Phases
2.4. Interface Repulsive Force
3. Numerical Implementation of the Multiphase SPH Model
Particle Searching Procedure
4. Model Validations
4.1. Numerical Parameter Settings
4.2. Square Droplet Evolution
4.3. Single Bubble Rising
4.4. Two Bubbles Rising and Coalescence
5. Application to Oil–Water–Gas Bubbly Flows
5.1. Single Oil Droplet Rising in Still Water
5.2. Oil Droplets Rising and Coalescence
5.2.1. Three Oil Droplets
5.2.2. A Set of Oil Droplets
5.3. Interaction Between Single Oil Droplets and Gas Bubbles
6. Extension to Wax Removal Process
7. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Yang, S.; Wang, H. Investigation of multi-inlet arrangement effect on mesoscale bubble dynamics in the gas–liquid-solid reactor via VOF-DEM. Chem. Eng. Sci. 2024, 301, 120710. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, J.; Li, Q. Numerical simulation of large bubble-rising behavior in nuclear reactor using diffuse interface method. Int. J. Energy Res. 2018, 42, 276–283. [Google Scholar] [CrossRef]
- Bhondayi, C. Flotation froth phase bubble size measurement. Miner. Process. Extr. Metall. Rev. 2022, 43, 251–273. [Google Scholar] [CrossRef]
- Fang, X.L.; Colagrossi, A.; Wang, P.P.; Zhang, A.M. An accurate and robust axisymmetric SPH method based on Riemann solver with applications in ocean engineering. Ocean Eng. 2022, 244, 110369. [Google Scholar] [CrossRef]
- Laupsien, D.; Le Men, C.; Cockx, A.; Liné, A. Effects of liquid viscosity and bubble size distribution on bubble plume hydrodynamics. Chem. Eng. Res. Des. 2022, 180, 451–469. [Google Scholar] [CrossRef]
- Chekifi, T. Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas. Instrum. 2018, 59, 118–125. [Google Scholar] [CrossRef]
- Szewc, K.; Pozorski, J.; Minier, J.P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. Int. J. Multiph. Flow 2013, 50, 98–105. [Google Scholar] [CrossRef]
- Chekifi, T. Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles. Fluid Dyn. Mater. Process. 2019, 15, 545–555. [Google Scholar] [CrossRef]
- Sheng, J.J. Enhanced oil recovery in shale reservoirs by gas injection. J. Nat. Gas Sci. Eng. 2015, 22, 252–259. [Google Scholar] [CrossRef]
- Nazari, S.; Hassanzadeh, A.; He, Y.; Khoshdast, H.; Kowalczuk, P.B. Recent developments in generation, detection and application of nanobubbles in flotation. Minerals 2022, 12, 462. [Google Scholar] [CrossRef]
- Chekifi, T.; Boukraa, M.; Aissani, M. DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing. J. Vis. 2021, 24, 519–530. [Google Scholar] [CrossRef]
- Chekifi, T.; Dennai, B.; Khelfaoui, R. Computational Investigation of Droplets Behaviour inside Passive Microfluidic Oscillator. Fluid Dyn. Mater. Process. 2017, 13, 173–187. [Google Scholar] [CrossRef]
- Grenier, N.; Le Touzé, D.; Colagrossi, A.; Antuono, M.; Colicchio, G. Viscous bubbly flows simulation with an interface SPH model. Ocean Eng. 2013, 69, 88–102. [Google Scholar] [CrossRef]
- Chekifi, T.; Dennai, B.; Khelfaoui, R. Numerical simulation of droplet breakup, splitting and sorting in a microfluidic device. Fluid Dyn. Mater. Process. 2015, 11, 205–220. [Google Scholar] [CrossRef]
- Mulbah, C.; Kang, C.; Mao, N.; Zhang, W.; Shaikh, A.R.; Teng, S. A review of VOF methods for simulating bubble dynamics. Prog. Nucl. Energy 2022, 154, 104478. [Google Scholar] [CrossRef]
- Pan, K.L.; Chen, Z.J. Simulation of bubble dynamics in a microchannel using a front-tracking method. Comput. Math. Appl. 2014, 67, 290–306. [Google Scholar] [CrossRef]
- Zheng, B.X.; Sun, L.; Yu, P. A novel interface method for two-dimensional multiphase SPH: Interface detection and surface tension formulation. J. Comput. Phys. 2021, 431, 110119. [Google Scholar] [CrossRef]
- Dong, X.W.; Hao, G.N.; Yu, R. Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior. Eng. Appl. Comput. Fluid Mech. 2022, 16, 588–629. [Google Scholar] [CrossRef]
- Dang, B.L.; Nguyen-Xuan, H.; Wahab, M.A. An effective approach for VARANS-VOF modelling interactions of wave and perforated breakwater using gradient boosting decision tree algorithm. Ocean Eng. 2023, 268, 113398. [Google Scholar] [CrossRef]
- Chen, Z.; Zong, Z.; Liu, M.B.; Zou, L.; Li, H.T.; Shu, C. An SPH model for multiphase flows with complex interfaces and large density differences. J. Comput. Phys. 2015, 283, 169–188. [Google Scholar] [CrossRef]
- Zhang, A.M.; Sun, P.N.; Ming, F.R. An SPH modeling of bubble rising and coalescing in three dimensions. Comput. Methods Appl. Mech. Eng. 2015, 294, 189–209. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Q.; Liu, Y.; Liu, X. Improved mesh-free SPH approach for loose top coal caving modeling. Particuology 2024, 95, 1–27. [Google Scholar] [CrossRef]
- Dong, X.W.; Hao, G.N.; Liu, Y. Efficient mesh-free modeling of liquid droplet impact on elastic surfaces. Eng. Comput. 2023, 39, 3441–3471. [Google Scholar] [CrossRef]
- Sun, P.N.; Pilloton, C.; Antuono, M.; Colagrossi, A. Inclusion of an acoustic damper term in weakly-compressible SPH models. J. Comput. Phys. 2023, 483, 112056. [Google Scholar] [CrossRef]
- Huang, C.; Hu, C.; An, Y.; Shi, C.; Feng, C.; Wang, H.; Liu, Q.; Wang, X. Numerical simulation of the large-scale Huangtian (China) landslide-generated impulse waves by a GPU-accelerated three-dimensional soil–water coupled SPH model. Water Resour. Res. 2023, 59, e2022WR034157. [Google Scholar] [CrossRef]
- Huang, C.; Sun, Y.; An, Y.; Shi, C.; Feng, C.; Liu, Q.; Yang, X.; Wang, X. Three-dimensional simulations of large-scale long run-out landslides with a GPU-accelerated elasto-plastic SPH model. Eng. Anal. Bound. Elem. 2022, 145, 132–148. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, R.; Guo, K.; Tian, W.; Qiu, S.; Su, G.H. An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction. Comput. Math. Appl. 2023, 145, 41–57. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Zhang, G.; Feng, S.; Sun, Z. Simulating multi-phase sloshing flows with the SPH method. Appl. Ocean Res. 2022, 118, 102989. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Qian, Z.; Liu, M. Smoothed-Interface SPH Model for Multiphase Fluid-Structure Interaction. J. Comput. Phys. 2024, 518, 113336. [Google Scholar] [CrossRef]
- Li, M.K.; Zhang, A.M.; Ming, F.R.; Sun, P.N.; Peng, Y.X. An axisymmetric multiphase SPH model for the simulation of rising bubble. Comput. Methods Appl. Mech. Eng. 2020, 366, 113039. [Google Scholar] [CrossRef]
- Joshi, S.; Franc, J.P.; Ghigliotti, G.; Fivel, M. SPH modelling of a cavitation bubble collapse near an elasto-visco-plastic material. J. Mech. Phys. Solids 2019, 125, 420–439. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Dong, X.; Yin, L.; Cheng, Z. A volume-adaptive mesh-free model for FSI Simulation of cavitation erosion with bubble collapse. Comput. Part. Mech. 2024, 11, 2325–2351. [Google Scholar] [CrossRef]
- Rahmat, A.; Tofighi, N.; Yildiz, M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method. Int. J. Heat Fluid Flow 2016, 62, 313–323. [Google Scholar] [CrossRef]
- Patino-Narino, E.A.; Galvis, A.F.; Sollero, P.; Pavanello, R.; Moshkalev, S.A. A consistent multiphase SPH approximation for bubble rising with moderate Reynolds numbers. Eng. Anal. Bound. Elem. 2019, 105, 1–19. [Google Scholar] [CrossRef]
- Cen, C.; Fourtakas, G.; Lind, S.; Rogers, B.D. A single-phase GPU-accelerated surface tension model using SPH. Comput. Phys. Commun. 2024, 295, 109012. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Bilotta, G.; Yuan, Q.E.; Gong, Z.X.; Liu, H. Multi-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and its applications in high-speed water entry. J. Comput. Phys. 2023, 490, 112339. [Google Scholar] [CrossRef]
- Guan, X.S.; Sun, P.N.; Xu, Y.; Lyu, H.G.; Geng, L.M. Numerical studies of complex fluid-solid interactions with a six degrees of freedom quaternion-based solver in the SPH framework. Ocean Eng. 2024, 291, 116484. [Google Scholar] [CrossRef]
- Ming, F.R.; Sun, P.N.; Zhang, A.M. Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 2017, 52, 2665–2684. [Google Scholar] [CrossRef]
- Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 2003, 191, 448–475. [Google Scholar] [CrossRef]
- Xu, X.; Yu, P. A technique to remove the tensile instability in weakly compressible SPH. Comput. Mech. 2018, 62, 963–990. [Google Scholar] [CrossRef]
- Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling Low Reynolds Number Incompressible Flows Using SPH. J. Comput. Phys. 1997, 136, 214–226. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Adami, S.; Hu, X.Y.; Adams, N.A. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J. Comput. Phys. 2010, 229, 5011–5021. [Google Scholar] [CrossRef]
- Zhuang, T.; Wu, J.; Zhang, T.; Dong, X. A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow. AIP Adv. 2022, 12, 025329. [Google Scholar] [CrossRef]
- Dong, X.; Liu, J.; Liu, S.; Li, Z. Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model. Acta Mech. Sin. 2019, 35, 32–44. [Google Scholar] [CrossRef]
- Zhang, T.; Zhuang, T.; Gao, C.; Dong, X. Numerical modeling and simulation of underwater explosions interacting with discrete rigid bodies. AIP Adv. 2023, 13, 105003. [Google Scholar] [CrossRef]





























| Parameters | Symbol | Values |
|---|---|---|
| Particle spacing | ||
| Smoothing length | h | 1.4Δx |
| Sound speed | c | Equation (8) |
| Unit time step | dt | Equation (39) |
| Coefficient for the background pressure | 60 | |
| Coefficient for the numerical interface force | 0.02 |
| Fluid | Density (kg/m3) | Viscosity (kg m−1s−1) | Surface Tension (N/m) |
|---|---|---|---|
| l | 1.0 | 0.2 | 1.0 |
| g | 0.1 | 0.2 |
| Fluid | Density (kg/m3) | Viscosity (kg m−1s−1) | Diameter (m) | Surface Tension (N/m) | Gravity (m/s2) |
|---|---|---|---|---|---|
| Phase 1 | 1000.0 | 10.0 | 0.25 | 24.5 | 9.8 |
| Phase 2 | 100.0 | 1.0 |
| Fluid | Density (kg/m3) | Viscosity (kg m−1s−1) | Surface Tension (N/m) |
|---|---|---|---|
| l | 1000.0 | 0.156 | 4.9 |
| g | 100.0 | 0.078 | 4.9 |
| Fluid | Density (kg/m3) | Viscosity (kg m−1s−1) | Droplet Diameter (mm) | Surface Tension Coefficient (N/m) |
|---|---|---|---|---|
| Water | 1000.0 | 0.001 | 4.0 | 0.01, 0.005, 0.0025, 0.00125 |
| Oil | 800.0 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Liu, Y.; Zhu, X.; Wang, Y.; Li, Q.; Li, Z. Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension. Processes 2025, 13, 3922. https://doi.org/10.3390/pr13123922
Sun L, Liu Y, Zhu X, Wang Y, Li Q, Li Z. Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension. Processes. 2025; 13(12):3922. https://doi.org/10.3390/pr13123922
Chicago/Turabian StyleSun, Limei, Yang Liu, Xiujuan Zhu, Yang Wang, Qingzhen Li, and Zengliang Li. 2025. "Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension" Processes 13, no. 12: 3922. https://doi.org/10.3390/pr13123922
APA StyleSun, L., Liu, Y., Zhu, X., Wang, Y., Li, Q., & Li, Z. (2025). Multiphase SPH Framework for Oil–Water–Gas Bubbly Flows: Validation, Application, and Extension. Processes, 13(12), 3922. https://doi.org/10.3390/pr13123922
