Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,194)

Search Parameters:
Keywords = thermo-mechanical performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

20 pages, 14936 KiB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Viewed by 32
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

31 pages, 11979 KiB  
Article
Fire-Induced Collapse Analysis of Warehouse Structures Using FDS and Thermomechanical Modeling
by Fatih Yesevi Okur
Buildings 2025, 15(15), 2635; https://doi.org/10.3390/buildings15152635 - 25 Jul 2025
Viewed by 202
Abstract
This study investigates the fire dynamics and structural response of steel-framed warehouse racking systems under various fire scenarios, emphasizing the critical importance of fire safety measures in mitigating structural damage. Through advanced computational simulations (Fire Dynamics Simulator) and thermomechanical analysis, this research reveals [...] Read more.
This study investigates the fire dynamics and structural response of steel-framed warehouse racking systems under various fire scenarios, emphasizing the critical importance of fire safety measures in mitigating structural damage. Through advanced computational simulations (Fire Dynamics Simulator) and thermomechanical analysis, this research reveals that fire intensity and progression are highly influenced by the ignition point and the stored material types, with maximum recorded temperatures reaching 720 °C and 970 °C in different scenarios. The results highlight the localization of significant strain and drift ratios in structural elements near the ignition zone, underscoring their vulnerability. This study demonstrates the rapid loss of load-bearing capacity in steel elements at elevated temperatures, leading to severe deformations and increased collapse risks. Key findings emphasize the necessity of strategically positioned sprinkler systems and the integration of passive fire protection measures, such as fire-resistant coatings, to enhance structural resilience. Performance-based fire design approaches, aligning with FEMA-356 criteria, offer realistic frameworks for improving the fire safety of warehouse structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 8078 KiB  
Article
Experimental Testing of the Efficiency, Stability, and Compatibility of Fillers in the Conservation and Restoration of Water-Gilded Wooden Heritage
by María-Ángeles Carabal-Montagud, Laura Osete-Cortina, Ángel Vicente-Escuder and Celia Laguarda-Gómez
Appl. Sci. 2025, 15(15), 8276; https://doi.org/10.3390/app15158276 - 25 Jul 2025
Viewed by 179
Abstract
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced [...] Read more.
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced by thermo-hygrometric variations. This study, conducted as part of the DorART Project, analyzed the behavior of nine formulations, both commercial and non-commercial, selected through a review of the state-of-the-art specialized literature, along with the use of participatory science, which focused on the practices and materials most commonly used by professionals in the field. The experimental design was based on three types of specimens: two with wooden supports, selected for evaluating their interaction with the original material and with the traditional water gilding technique, and a third type for analyzing the individual behavior of the tested materials. Analyses of adhesion, tensile strength, Shore C hardness, gloss, abrasion test results, wettability, pH changes, and chemical composition were performed using ATR-FTIR spectroscopy. The results showed significant differences depending on the type of curing used and the composition and aging behavior of the specimen. Some of the fillers demonstrated improved compatibility with water-based gilding, facilitating workability and providing structural strength. M3 and M9 demonstrated an optimal balance of workability and aging stability. The results of this study can help restorers select materials based on their specific needs, considering the requirements of mechanical adaptation to the substrate, compatibility, and durability. Full article
Show Figures

Figure 1

13 pages, 3189 KiB  
Article
Synthesis of Thermo-Responsive Hydrogel Stabilizer and Its Impact on the Performance of Ecological Soil
by Xiaoyan Zhou, Weihao Zhang, Peng Yuan, Zhao Liu, Jiaqiang Zhao, Yue Gu and Hongqiang Chu
Appl. Sci. 2025, 15(15), 8279; https://doi.org/10.3390/app15158279 - 25 Jul 2025
Viewed by 150
Abstract
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and [...] Read more.
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and applied it to ecological soil. The effects of HSZ on the rheological, mechanical, and vegetation performance of ecological soil were investigated, and the mechanism of the responsive carrier in the stabilizer was explored. The experimental results show that the ecological soil containing HSZ has high flowability before response, but its flowability rapidly decreases and consistency sharply increases after response. After the addition of HSZ, the 7 d unconfined compressive strength of the ecological soil reaches 1.55 MPa. The pH value of the ecological soil generally ranges from 6.5 to 8.0, and plant growth in a simulated vegetation box is favorable. Conductivity and viscosity tests demonstrate that the core–shell microcarriers, upon thermal response, release crosslinking components from the carrier, which rapidly react with the precursor solution components to form a curing system. This study provides a novel method for regulating ecological soil using a responsive stabilizer, further expanding its capacity to adapt to various complex scenarios. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

18 pages, 2920 KiB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 207
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 3399 KiB  
Article
Relationship Between Filler Type, Thermomechanical Properties, and Aging of RTV Silicone Foams
by Xavier M. Torres, John R. Stockdale, Adam Pacheco, Shelbie A. Legett, Lindsey B. Bezek, Bart Benedikt, Andrea Labouriau and Santosh Adhikari
Polymers 2025, 17(14), 1998; https://doi.org/10.3390/polym17141998 - 21 Jul 2025
Viewed by 263
Abstract
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence [...] Read more.
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence of unreacted functional groups of the prepolymers, residues from acid, and catalytically active tin (II) species. Here, an optimized thermal treatment of an RTV foam that achieves completion of curing reactions and deactivation of reactive species is proposed. Foams that were thermally aged for three months under compressive load showed no signs of compression set, indicative of the effectiveness of the implemented post-curing approach. In addition, the effects of fillers (diatomaceous earth, fumed silica, and carbon nanofibers) on thermomechanical properties were investigated. Tensile strength, tear strength, and thermal conductivity increased when these fillers were added to the unfilled RTV formulation, with carbon nanofibers (CNFs) being the most effective filler. Rheological studies of RTV formulations indicated that 2.5 wt.% of CNFs is the upper limit that can be added to the RTV formulation. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

17 pages, 6246 KiB  
Article
A Multi-Step Topological Optimization Approach for Spacer Shape Design in Double-Sided SiC MOSFET Power Modules Considering Thermo-Mechanical Effects
by Yuhang Guo, Ke Chen, Wentao Jiang, Longnv Li and Gaojia Zhu
Energies 2025, 18(14), 3850; https://doi.org/10.3390/en18143850 - 19 Jul 2025
Viewed by 196
Abstract
Double-Side-Cooled (DSC) power modules, widely utilized in various industrial and transportation applications, are favored for their remarkable high cooling efficiency and minimal packaging parasitics. To extend the life cycle, the design and optimization of metal or alloy spacers have garnered significant research attention [...] Read more.
Double-Side-Cooled (DSC) power modules, widely utilized in various industrial and transportation applications, are favored for their remarkable high cooling efficiency and minimal packaging parasitics. To extend the life cycle, the design and optimization of metal or alloy spacers have garnered significant research attention due to their role in mitigating thermal-expansion-mismatch-induced stresses. Among the optimization approaches, topology optimization (TO) methods have the merit of generating innovative spacer shapes, thereby maximizing the buffering effects. However, without certain design considerations and constraints predetermined, the overall processes can become computationally costly. This paper proposes an efficient strategy for finding the optimized spacer topology for a double-sided 1700 V/400 A DSC SiC MOSFET power module. First, comparative thermal-stress investigations are carried out to predetermine the spacer height prior to TOs. Subsequently, to identify the appropriate optimization target, different objectives are employed in the TOs of a 2D simplified model. Following this, TO with the selected target function is performed on 3D simplified models featuring diverse spacer combination architectures, with the preferable one chosen based on the outcomes. Eventually, leveraging the predetermined spacer height, objective function, and preliminary structure, a 3D TO spacer design utilizing a full-domain model is conducted to validate the effectiveness of the proposed methodologies. The final spacer design reduces the maximum von-Mises stress in the attachment by 19.42% (from 111.78 MPa with brick spacers of the same height to 90.07 MPa). The proposed multi-step TO method can therefore be used to improve the thermo-mechanical lifetime of DSC power modules. Full article
Show Figures

Figure 1

17 pages, 9827 KiB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 269
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

21 pages, 4823 KiB  
Article
Thermo-Mechanical Behavior of Polymer-Sealed Dual-Cavern Hydrogen Storage in Heterogeneous Rock Masses
by Chengguo Hu, Xiaozhao Li, Bangguo Jia, Lixin He and Kai Zhang
Energies 2025, 18(14), 3797; https://doi.org/10.3390/en18143797 - 17 Jul 2025
Viewed by 143
Abstract
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of [...] Read more.
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of a dual-cavern hydrogen storage system with polymer-based sealing layers. The model incorporates non-isothermal gas behavior, rock heterogeneity via a Weibull distribution, and fracture networks represented through stochastic geometry. Two operational scenarios, single-cavern and dual-cavern cycling, are simulated to evaluate stress evolution, displacement, and inter-cavity interaction under repeated pressurization. Results reveal that simultaneous operation of adjacent caverns amplifies tensile and compressive stress concentrations, especially in inter-cavity rock bridges (i.e., the intact rock zones separating adjacent caverns) and fracture-dense zones. Polymer sealing layers remain under compressive stress but exhibit increased residual deformation under cyclic loading. Contour analyses further show that fracture orientation and spatial distribution significantly influence stress redistribution and deformation localization. The findings highlight the importance of considering thermo-mechanical coupling and rock fracture mechanics in the design and operation of multicavity UHS systems. This modeling framework provides a robust tool for evaluating storage performance and informing safe deployment in complex geological environments. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Viewed by 275
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
Optimization Design of Dynamic Cable Configuration Considering Thermo-Mechanical Coupling Effects
by Ying Li, Guanggen Zou, Suchun Yang, Dongsheng Qiao and Bin Wang
J. Mar. Sci. Eng. 2025, 13(7), 1336; https://doi.org/10.3390/jmse13071336 - 13 Jul 2025
Viewed by 285
Abstract
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize [...] Read more.
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize dynamic extreme tension and curvature under constraints of global configuration variables and safety thresholds. The framework employs a Radial Basis Function (RBF) surrogate model coupled with NSGA-II algorithm, yielding validated Pareto solutions (≤6.15% max error vs. simulations). Results demonstrate universal reduction in extreme responses across optimized configurations, with the thermo-mechanically optimized solution achieving 20.24% fatigue life enhancement. This work establishes the first methodology quantifying thermo-mechanical coupling effects on offshore cable safety and fatigue performance. This configuration design scheme exhibits better safety during actual service conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 380
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 394
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 333
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

Back to TopTop