Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = thermal stress management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4393 KiB  
Article
Development and Preclinical Evaluation of Fixed-Dose Capsules Containing Nicergoline, Piracetam, and Hawthorn Extract for Sensorineural Hearing Loss
by Lucia Maria Rus, Andrei Uncu, Sergiu Parii, Alina Uifălean, Simona Codruța Hegheș, Cristina Adela Iuga, Ioan Tomuță, Ecaterina Mazur, Diana Șepeli, Irina Kacso, Fliur Macaev, Vladimir Valica and Livia Uncu
Pharmaceutics 2025, 17(8), 1017; https://doi.org/10.3390/pharmaceutics17081017 - 5 Aug 2025
Abstract
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural [...] Read more.
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural hearing loss. Methods: The first phase methodology comprised preformulation studies (DSC, FTIR, and PXRD) to assess compatibility among active substances and excipients. Subsequently, four formulations were prepared and tested for flowability, dissolution behavior in acidic and neutral media, and stability under oxidative, thermal, and photolytic stress. Quantification of the active substances and flavonoids was performed using validated spectrophotometric and HPLC-UV methods. Results: Among the tested variants, the F1 formulation (4.5 mg NIC, 200 mg PIR, 50 mg HE, 2.5 mg magnesium stearate, 2.5 mg sodium starch glycolate, and 240.5 mg monohydrate lactose per capsule) displayed optimal technological properties, superior dissolution in acidic media, and was further selected for evaluation. The antioxidant activity of the formulation was confirmed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Trolox Equivalent Antioxidant Capacity (TEAC), and iron chelation tests, and was primarily attributed to the flavonoid content of the HE. Acute toxicity tests in mice and rats indicated a high safety margin (LD50 > 2500 mg/kg), while ototoxicity assessments showed no adverse effects on auditory function. Conclusions: The developed formulation displayed good stability, safety, and therapeutic potential, while the applied workflow could represent a model for the development of future fixed-dose combinations. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals, 2nd Edition)
Show Figures

Figure 1

22 pages, 2542 KiB  
Article
Wheat Under Warmer Nights: Shifting of Sowing Dates for Managing Impacts of Thermal Stress
by Roshan Subedi, Mani Naiker, Yash Chauhan, S. V. Krishna Jagadish and Surya P. Bhattarai
Agriculture 2025, 15(15), 1687; https://doi.org/10.3390/agriculture15151687 - 5 Aug 2025
Abstract
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed [...] Read more.
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed under three sowing dates—1 May (Early), 15 June (Mid), and 1 August (Late)—within the recommended sowing window for the region. In a parallel growth chamber study, the plants were exposed to two nighttime temperature regimes, of 15 °C (normal) and 20 °C (high), with consistent daytime conditions from booting to maturity. Late sowing resulted in shortened vegetative growth and grain filling periods and increased exposure to HNT during the reproductive phase. This resulted in elevated floret sterility, lower grain weight, and up to 40% yield loss. AVT#6 exhibited greater sensitivity to HNT despite maturing earlier. Leaf gas exchange analysis revealed increased nighttime respiration (Rn) and reduced assimilation (A), resulting in higher Rn/A ratio for late-sown crops. The results from controlled environment chambers resembled trends of the field experiment, producing lower grain yield and biomass under HNT. Cumulative nighttime hours above 20 °C correlated more strongly with yield losses than daytime heat. These findings highlight the need for HNT-tolerant genotypes and optimized sowing schedules under future climate scenarios. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

32 pages, 3972 KiB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Viewed by 159
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 257
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 - 2 Aug 2025
Viewed by 220
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

18 pages, 3060 KiB  
Article
Unveiling the Impact of Climatic Factors on the Distribution Patterns of Caragana spp. in China’s Three Northern Regions
by Weiwei Zhao, Yujia Liu, Yanxia Li, Chunjing Zou and Hideyuki Shimizu
Plants 2025, 14(15), 2368; https://doi.org/10.3390/plants14152368 - 1 Aug 2025
Viewed by 168
Abstract
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, [...] Read more.
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, and Northwest China), Caragana spp. exhibit distribution patterns whose regulatory mechanisms by environmental factors remain unclear, with a long-term lack of climatic explanations influencing their spatial distribution. This study integrated 2373 occurrence records of 44 Caragana species in China’s Three Northern Regions with four major environmental variable categories. Using the Biomod2 ensemble model, current and future climate scenario-based suitable habitats for Caragana spp. were predicted. This study innovatively combined quantitative analyses with Kira’s thermal indexes (warmth index, coldness index) and Wenduo Xu’s humidity index (HI) to elucidate species-specific relationships between distribution patterns and hydrothermal climatic constraints. The main results showed that (1) compared to other environmental factors, climate is the key factor affecting the distribution of Caragana spp. (2) The current distribution centroid of Caragana spp. is located in Alxa Left Banner, Inner Mongolia. In future scenarios, the majority of centroids will shift toward lower latitudes. (3) The suitable habitats for Caragana spp. will expand overall under future climate scenarios. High-stress scenarios exhibit greater spatial changes than low-stress scenarios. (4) Hydrothermal requirements varied significantly among species in China’s Three Northern Regions, and 44 Caragana species can be classified into five distinct types based on warmth index (WI) and humidity index (HI). The research findings will provide critical practical guidance for ecological initiatives such as the Three-North Shelterbelt Program and the restoration and management of degraded ecosystems in arid and semi-arid regions under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

13 pages, 10728 KiB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 261
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 277
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

23 pages, 6922 KiB  
Article
Cycling-Induced Degradation Analysis of Lithium-Ion Batteries Under Static and Dynamic Charging: A Physical Testing Methodology Using Low-Cost Equipment
by Byron Patricio Acosta-Rivera, David Sebastian Puma-Benavides, Juan de Dios Calderon-Najera, Leonardo Sanchez-Pegueros, Edilberto Antonio Llanes-Cedeño, Iván Fernando Sinaluisa-Lozano and Bolivar Alejandro Cuaical-Angulo
World Electr. Veh. J. 2025, 16(8), 411; https://doi.org/10.3390/wevj16080411 - 22 Jul 2025
Viewed by 370
Abstract
Given the rising importance of cost-effective solutions in battery research, this study employs an accessible testing approach using low-cost, sensor-equipped platforms that enable broader research and educational applications. It presents a comparative evaluation of lithium-ion battery degradation under two charging strategies: static charging [...] Read more.
Given the rising importance of cost-effective solutions in battery research, this study employs an accessible testing approach using low-cost, sensor-equipped platforms that enable broader research and educational applications. It presents a comparative evaluation of lithium-ion battery degradation under two charging strategies: static charging (constant current at 1.2 A) and dynamic charging (stepped current from 400 mA to 800 mA) over 200 charge–discharge cycles. A custom-built, low-cost test platform based on an ESP32 microcontroller was developed to provide real-time monitoring of voltage, current, temperature, and internal resistance, with automated control and cloud-based data logging. The results indicate that static charging provides greater voltage stability and a lower increase in internal resistance (9.3%) compared to dynamic charging (30.17%), suggesting reduced electrochemical stress. Discharge time decreased for both strategies, by 6.25% under static charging and 18.46% under dynamic charging, highlighting capacity fade and aging effects. Internal resistance emerged as a reliable indicator of degradation, closely correlating with reduced runtime. These findings underscore the importance of selecting charging profiles based on specific application needs, as dynamic charging, while offering potential thermal benefits, may accelerate battery aging. Furthermore, the low-cost testing platform proved effective for long-term evaluation and degradation analysis, offering an accessible alternative to commercial battery cyclers. The insights gained contribute to the development of adaptive battery management systems that optimize performance, lifespan, and safety in electric vehicle applications. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 254
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

25 pages, 11642 KiB  
Article
Non-Invasive Estimation of Crop Water Stress Index and Irrigation Management with Upscaling from Field to Regional Level Using Remote Sensing and Agrometeorological Data
by Emmanouil Psomiadis, Panos I. Philippopoulos and George Kakaletris
Remote Sens. 2025, 17(14), 2522; https://doi.org/10.3390/rs17142522 - 20 Jul 2025
Viewed by 458
Abstract
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop [...] Read more.
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop water stress index, integrating infrared canopy temperature, air temperature, relative humidity, and thermal and near-infrared imagery. To achieve this, a state-of-the-art aerial micrometeorological station (AMMS), equipped with an infrared thermal sensor, temperature–humidity sensor, and advanced multispectral and thermal cameras is mounted on an unmanned aerial system (UAS), thus minimizing crop field intervention and permanently installed equipment maintenance. Additionally, data from satellite systems and ground micrometeorological stations (GMMS) are integrated to enhance and upscale system results from the local field to the regional level. The research was conducted over two years of pilot testing in the municipality of Trifilia (Peloponnese, Greece) on pilot potato and watermelon crops, which are primary cultivations in the region. Results revealed that empirical irrigation applied to the rhizosphere significantly exceeded crop water needs, with over-irrigation exceeding by 390% the maximum requirement in the case of potato. Furthermore, correlations between high-resolution remote and proximal sensors were strong, while associations with coarser Landsat 8 satellite data, to upscale the local pilot field experimental results, were moderate. By applying a comprehensive model for upscaling pilot field results, to the overall Trifilia region, project findings proved adequate for supporting sustainable irrigation planning through simulation scenarios. The results of this study, in the context of the overall services introduced by the project, provide valuable insights for farmers, agricultural scientists, and local/regional authorities and stakeholders, facilitating improved regional water management and sustainable agricultural policies. Full article
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 359
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 2035 KiB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 298
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 1160 KiB  
Review
MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA)
by Giuseppina Gullifa, Elena Papa, Giordano Putzolu, Gaia Rizzo, Marialuisa Ruocco, Chiara Albertini, Roberta Risoluti and Stefano Materazzi
Chemosensors 2025, 13(7), 258; https://doi.org/10.3390/chemosensors13070258 - 16 Jul 2025
Viewed by 452
Abstract
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a [...] Read more.
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a result of the reactions and changes that occur. The analysis of these gases during the thermally induced reaction is scientifically referred to as evolved gas analysis (EGA), which is essential for confirming the occurrence of the induced reactions. Pyrolyzers, thermobalances, or simple heaters can increase the temperature of the analyzed samples according to a programmed and software-managed ramp, allowing for control over both the heating rate and isothermal stages. The atmosphere can also be varied to simulate pyrolysis or thermo-oxidative processes. This way, each induced reaction generates a unique evolved gas, which can be linked to a theoretically hypothesized mechanism. Mass spectrometry (MS) and coupled gas chromatography–mass spectrometry (GC-MS) are fundamental analytical methods used for on-line thermally induced evolved gas analysis (OLTI-EGA). Full article
Show Figures

Figure 1

Back to TopTop