Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observational Data
3. Results
3.1. Annual Cycle of Climate Variables
3.2. Annual Cycle of Extreme Climate Indices
3.3. Frequency Distribution
3.4. Trends in Extremes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Souza, V.A.S.D.; Rotunno Filho, O.C.; Rodriguez, D.A.; Moreira, D.M.; Rudke, A.P.; Andrade, C.D. Dinâmica da conversão de floresta e tendências climáticas na bacia do rio Madeira. Ciênc. Florest. 2022, 32, 2007–2034. [Google Scholar] [CrossRef]
- Governo do Estado do Amazonas. Plano de Gestão da Reserva de Desenvolvimento Sustentável do Rio Madeira; Série Técnica Planos de Gestão; Secretaria do Estado do Meio Ambiente e Desenvolvimento Sustentável/Centro Estadual de Unidades de Conservação: Novo Aripuanã, Brazil, 2014; Volume I. Available online: https://pdfhost.io/v/l~HCQy6hg_Plano_de_Gestao_RDS_Rio_Madeira_volume_Ipdf.pdf (accessed on 20 June 2024).
- Cavalcanti, I.F.; Souza, D.C.; Kubota, P.Y.; Coelho, C.A.S.; Figueroa, S.N.; Baker, J.C.A. The global monsoon system representation in BAM-v1.2 and HadGEM3 climate simulations. Int. J. Climatol. 2022, 42, 8089–8111. [Google Scholar] [CrossRef]
- Peña, C.A.S.; Panduro, I.L.V.; Araújo, L.M.N.; Barbosa, H.A.; Filho, O.C.R.; Marques, M.C.S.; Pereira, W.J.X.; Rodriguez, D.A. Análise Espacial de Eventos Extremos na Bacia do Rio Madeira. In Proceedings of the XXIII Simpósio Brasileiro de Recursos Hídricos, Foz do Iguaçu, Brasil, 24–28 November 2019; pp. 1–9. Available online: https://anais.abrhidro.org.br/job.php?Job=5507 (accessed on 16 December 2024).
- Clarke, B.; Barnes, C.; Rodrigues, R.; Zachariah, M.; Stewart, S.; Raju, E.; Baumgart, N.; Heinrich, D.; Libonati, R.; Santos, D.; et al. Climate Change, Not El Niño, Main Driver of Exceptional Drought in Highly Vulnerable Amazon River Basin; Grantham Institute for Climate Change: London, UK, 2024; 143p, Available online: http://hdl.handle.net/10044/1/108761 (accessed on 11 March 2025).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. Available online: https://www.schweizerbart.de/papers/metz/detail/22/82078/Koppen_s_climate_classification_map_for_Brazil?af=crossref (accessed on 25 July 2024). [CrossRef] [PubMed]
- Sousa, D.D.P.; Frare, J.C.V.; Farias, V.D.D.S.; Nunes, H.G.G.C.; Martins, M.S.; de Lima, A.F.T.; Tavares, L.B.; Costa, D.L.P.; Lima, M.J.A.d.; de Carvalho, C.J.R.; et al. Acai palm base temperatures and thermal time requirements in eastern Amazon. Pesquisa Agropecuária Brasileira 2022, 57, e01667. [Google Scholar] [CrossRef]
- UCB. Reserva de Desenvolvimento Sustentável. 2024. Available online: https://uc.socioambiental.org/pt-br/arp/4773 (accessed on 13 March 2025).
- Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A.D. Hole-Filled SRTM for the Globe: Version 4: Data Grid. CGIAR Consortium for Spatial Information. 2008. Available online: https://srtm.csi.cgiar.org/ (accessed on 18 April 2025).
- Laureanti, N.C.; Tavares, P.D.S.; Tavares, M.; Rodrigues, D.C.; Gomes, J.L.; Chou, S.C.; Correia, F.W.S. Extreme seasonal droughts and floods in the Madeira River Basin, Brazil: Diagnosis, causes, and trends. Climate 2024, 12, 111. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- ETCCDI. ETCCDI Climate Change Indices. 2024. Available online: https://etccdi.pacificclimate.org/indices.shtml (accessed on 23 April 2025).
- Karl, T.R.; Nicholls, N.; Ghazi, A. Clivar/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. Clim. Change 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Camarinha, P.I. Relatório Final das Análises Climáticas para a Baixada Santista Considerando Dados Observados e Modelagem do Clima Futuro. MunicípiosPaulistas Resilientes. 2021. Available online: https://smastr16.blob.core.windows.net/home/2022/02/relatorio-final-baixada-santista-out_2021_completo-23.02.pdf (accessed on 18 July 2024).
- Santos, C.A.C.D.; Satyamurty, P.; Santos, E.M.D. Tendências de índices de extremos climáticos para a região de Manaus-AM. Acta Amaz. 2012, 42, 329–336. [Google Scholar] [CrossRef]
- CEPED (Centro Universitário De Estudos E Pesquisas Sobre Desastres). Atlas Brasileiro de Desastres Naturais: 1991–2012. 2013. Available online: https://educacao.cemaden.gov.br/wp-content/uploads/2017/07/atlas_brasileiro_desastres_naturais.pdf (accessed on 20 April 2025).
- Cortez, B.N.; Pires, G.F.; Avila-Diaz, A.; Fonseca, H.P.; Oliveira, L.R. Nonstationary extreme precipitation in Brazil. Hydrol. Sci. J. 2022, 67, 1372–1383. [Google Scholar] [CrossRef]
- Teixeira, D.B.S.; Cecílio, R.A.; Moreira, M.C.; Pires, G.F.; Filho, E.I.F. Recent advancements in rainfall erosivity assessment in Brazil: A review. CATENA 2022, 219, 106572. Available online: https://www.sciencedirect.com/science/article/pii/S0341816222005586?via%3Dihub (accessed on 17 April 2025). [CrossRef]
- Soldini, L.; Darvini, G. Variation in the Extreme Temperatures and Related Climate Indices for the Marche Region, Italy. Climate 2025, 13, 58. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J.; The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology. 1993. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 8 August 2024).
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Mann, H. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. Available online: https://www.jstor.org/stable/1907187 (accessed on 10 July 2025). [CrossRef]
- Kendall, M.G. Rank Correlation Methods. In Econometrica, 4th ed.; Charles Griffin: London, UK, 1975; Available online: https://archive.org/details/rankcorrelationm0000kend (accessed on 10 July 2025).
- Sen, P.H. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. Available online: https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934 (accessed on 11 July 2025). [CrossRef]
- Chen, C.; Kirabaeva, K.; Kolerus, C.E.; Parry, I.; Vernon, N. Changing Climate in Brazil: Key Vulnerabilities and Opportunities; International Monetary Fund: Washington, DC, USA, 2024; Volume 185, Available online: https://ssrn.com/abstract=4946567 (accessed on 11 July 2025). [CrossRef]
- Herraiz, A.D.; de Alencastro Graça, P.M.L.; Fearnside, P.M. Amazonian flood impacts on managed Brazilnut stands along Brazil’s Madeira River: A sustainable forest management system threatened by climate change. For. Ecol. Manag. 2017, 406, 46–52. [Google Scholar] [CrossRef]
- Gomes, D.C.; Ferreira, N.S.; Lima, A.M.M.; Serrao, E.A.O. Variabilidade Espaço-Temporal da Precipitação: Bacia Hidrográfica do Rio Madeira. Rev. Geogr. Acad. 2019, 13, 90–104. Available online: https://biblat.unam.mx/hevila/Revistageograficaacademica/2019/vol13/no1/6.pdf (accessed on 17 July 2024).
- Silva, N.D.S.; Alves, J.M.B.; Silva, E.M.D.; de Sousa, G.M. Ocorrência de ondas de calor com dados de reanálises em áreas do nordeste, Amazônia e centro-sudeste do Brasil. Rev. Bras. Meteorol. 2023, 37, 441–451. [Google Scholar] [CrossRef]
- Viana, L.P.; Herdies, D.L. Estudo de Caso de um Evento Extremo de Incursão de Ar Frio em Julho de 2013 sobre a Bacia Amazônica Brasileira. Rev. Bras. Meteorol. 2018, 33, 27–39. [Google Scholar] [CrossRef]
- Pastana, D.N.B.; Modena, E.D.S.; Wadt, L.H.D.O.; Neves, E.d.; Martorano, L.G.; Guedes, A.C.L.; Souza, R.L.d.; Costa, F.F.; Batista, A.P.B.; Guedes, M.C. Strong El Niño reduces fruit production of Brazil-nut trees in the eastern Amazon. Acta Amaz. 2021, 51, 270–279. [Google Scholar] [CrossRef]
- Meir, P.; Madeira, T.E.; Galbraith, D.R.; Brando, P.M.; Costa, A.C.L.D.; Rowland, L.; Ferreira, L.V. Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments. BioScience 2015, 65, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.C.; Jimenez, J.C.; Marengo, J.A.; Schongart, J.; Ronchail, J.; Lavado-Casimiro, W.; Ribeiro, J.V.M. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 2024, 14, 8107. [Google Scholar] [CrossRef] [PubMed]
- Depetris, P.J. The Importance of Monitoring River Water Discharge. Front. Water 2021, 3, 745912. [Google Scholar] [CrossRef]
- Amarante, O.A.C.; Zack, M.B.J.; Sá, A.L. Atlas do Potencial Eólico Brasileiro, 1st ed.; Centro de Referência para Energia Solar e Eólica (CRESESB): Brasília, Brazil, 2001; 45p, Available online: https://cresesb.cepel.br/index.php?section=publicacoes&task=livro (accessed on 15 July 2025).
- Pereira, E.B.; Martins, F.R.; Gonçalves, A.R.; Costa, R.S.; Lima, F.J.L.; Rüther, R.; Abreu, S.L.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G. Atlas Brasileiro de Energia Solar, 2nd ed.; INPE: São José dos Campos, Brazil, 2017; 80p. [Google Scholar]
- Júnior, J.S.; Tomasella, J.; Rodriguez, D.A. Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin. Clim. Change 2015, 129, 117–129. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Lopes, L.G.; Carriello, F.; Siqueira, J.L., Jr.; Pinto, G.L.; Tomasella, J.; Chou, S.C. Previsões de cheias extremas nos horizontes sazonais e de curto e médio prazos na bacia do rio Madeira: Estudo de caso da enchente de 30 de março de 2014 em Porto Velho. CEP 2017, 24210, 346. [Google Scholar] [CrossRef]
- Dereczynski, C.; Chou, S.C.; Lyra, A.; Sondermann, M.; Regoto, P.; Tavares, P.; Chagas, D.; Gomes, J.L.; Rodrigues, D.C.; Skansi, M.d.M. Downscaling of climate extremes over South America–Part I: Model evaluation in the reference climate. Weather. Clim. Extrem. 2020, 29, 100273. [Google Scholar] [CrossRef]
Variable | Dataset | Resolution/Location | Source | Period |
---|---|---|---|---|
Precipitation | Recreio Station | 5.296° S, 60.701° W | INMET | 2001–2022 |
10-m Wind | ERA5 | 0/−10° S, −65/−55° W | Copernicus | 2001–2023 |
100-m wind | ERA5 | 0/−10° S, −65/−55° W | Copernicus | 2001–2023 |
Solar Radiation | ERA5 | 0/−10° S, −65/−55° W | Copernicus | 2001–2022 |
Discharge rate | Manicoré Station | 5.871° S, 61.302° W | ANA | 2001–2023 |
2 m Temperature | Manicoré Station | 5.871° S, 61.302° W | INMET | 2001–2022 |
Indices | Definition | Unit |
---|---|---|
PRCPTOT | Total annual accumulated precipitation | mm |
Rx1day | Maximum accumulated precipitation in 1 day | mm |
Rx5days | Maximum accumulated precipitation in 5 days | mm |
R80 | Rainy days > 80 mm/day | days |
R100 | Rainy days > 100 mm/day | days |
TNn | Minimum value of Minimum Temperature in the Period | °C |
CSDI | Cold Spell Duration Index | days |
WSDI | Warm-Spell Duration Index | days |
CDD | Consecutive Dry Days | days |
SPI | Standardized Precipitation Index | – |
Index | Rx1day | Rx5day | CDD | R80 | R100 | PRCPTOT | SPI < 0 |
---|---|---|---|---|---|---|---|
Mann–Kendall Significance test | PST | PST | PNST | PST | PNST | PNST | NNST |
Trend | +1.41 mm | +3.32 mm | +0.06 days | +0.4 days | +0.04 days | +8.36 mm | −0.04 |
PST: Significant positive trend PNST: Nonsignificant positive trend NNST: Nonsignificant negative trend |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, M.G.; Chou, S.C.; Laureanti, N.C.; Tavares, P.d.S.; Marengo, J.A.; Gomes, J.L.; Medeiros, G.S.; Correia, F.W. Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil. Geographies 2025, 5, 36. https://doi.org/10.3390/geographies5030036
Tavares MG, Chou SC, Laureanti NC, Tavares PdS, Marengo JA, Gomes JL, Medeiros GS, Correia FW. Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil. Geographies. 2025; 5(3):36. https://doi.org/10.3390/geographies5030036
Chicago/Turabian StyleTavares, Matheus Gomes, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros, and Francis Wagner Correia. 2025. "Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil" Geographies 5, no. 3: 36. https://doi.org/10.3390/geographies5030036
APA StyleTavares, M. G., Chou, S. C., Laureanti, N. C., Tavares, P. d. S., Marengo, J. A., Gomes, J. L., Medeiros, G. S., & Correia, F. W. (2025). Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil. Geographies, 5(3), 36. https://doi.org/10.3390/geographies5030036