MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA)
Abstract
1. Introduction
2. Applications to Polymer Characterization
3. Applications to Biomass Characterization
4. Applications to Coals Characterization
5. Fire Simulations and Flame Retardant Characterization
6. Applications to Cellulose and Lignin Characterization
7. Characterization of Microplastics, Nanoplastics, and Waste Plastics
8. Applications in Cultural Heritage
9. Analysis of Polluttants
10. Applications for Food Characterization
11. Forensic Analysis
12. Thermal Behavior of Waste
13. Other Applications
14. Discussion, Conclusions, and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akoueson, F.; Chbib, C.; Monchy, S.; Paul-Pont, I.; Doyen, P.; Dehaut, A.; Duflos, G. Identification and Quantification of Plastic Additives Using Pyrolysis-GC/MS: A Review. Sci. Total Environ. 2021, 773, 145073. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Barceló, D. Pyrolysis Gas Chromatography-Mass Spectrometry in Environmental Analysis: Focus on Organic Matter and Microplastics. TrAC Trends Anal. Chem. 2020, 130, 115964. [Google Scholar] [CrossRef]
- Seeley, M.E.; Wang, Q.; Bacosa, H.; Rosenheim, B.E.; Liu, Z. Environmental Petroleum Pollution Analysis Using Ramped Pyrolysis-Gas Chromatography–Mass Spectrometry. Org. Geochem. 2018, 124, 180–189. [Google Scholar] [CrossRef]
- Seeley, M.E.; Lynch, J.M. Previous Successes and Untapped Potential of Pyrolysis–GC/MS for the Analysis of Plastic Pollution. Anal. Bioanal. Chem. 2023, 415, 2873–2890. [Google Scholar] [CrossRef] [PubMed]
- Gnoffo, C.; Frache, A. Identification of Plastics in Mixtures and Blends through Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers 2024, 16, 71. [Google Scholar] [CrossRef]
- Harata, K.; Kitagawa, S.; Iiguni, Y.; Ohtani, H. Identification of Polymer Species in a Complex Mixture by Pyrolysis-Gas Chromatography-Atmospheric Pressure Chemical Ionization-High Resolution Time-of-Flight Mass Spectrometry as a Basis for Environmental Microplastic Analysis. J. Anal. Appl. Pyrolysis 2020, 148, 104828. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustain. Chem. Eng. 2022, 10, 91–103. [Google Scholar] [CrossRef]
- Luo, B.; Liu, H.; Shan, R.; Zhang, J.; Yuan, H.; Chen, Y. Enhanced Gas/Oil Production from Catalytic Fast Pyrolysis of Polyethylene over Cu/Ce Co-Modified ZSM-5. Waste Biomass Valorization 2024, 16, 1645–1657. [Google Scholar] [CrossRef]
- Yao, L.; Zhu, J.; Li, S.; Ma, Y.; Yue, C. Analysis of Liquid Products and Mechanism of Thermal/Catalytic Pyrolysis of HDPE. J. Therm. Anal. Calorim. 2022, 147, 14257–14266. [Google Scholar] [CrossRef]
- Peng, Y.; Dai, L.; Dai, A.; Wu, Q.; Zou, R.; Liu, Y.; Ruan, R.; Wang, Y. Catalytic Process toward Green Recycling of Polyvinyl Chloride: A Study on Thermodynamic, Kinetic and Pyrolysis Characteristics. J. Anal. Appl. Pyrolysis 2022, 168, 105719. [Google Scholar] [CrossRef]
- Ylitervo, P.; Richards, T. Gaseous Products from Primary Reactions of Fast Plastic Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 158, 105248. [Google Scholar] [CrossRef]
- Coralli, I.; Rombolà, A.G.; Torri, C.; Fabbri, D. Analytical Pyrolysis of Poly(Dimethylsiloxane) and Poly(Oxyethylene) Siloxane Copolymers. Application to the Analysis of Sewage Sludges. J. Anal. Appl. Pyrolysis 2021, 158, 105236. [Google Scholar] [CrossRef]
- Coralli, I.; Rombolà, A.G.; Fabbri, D. Analytical Pyrolysis of the Bioplastic PBAT Poly(Butylene Adipate-Co-Terephthalate). J. Anal. Appl. Pyrolysis 2024, 181, 106577. [Google Scholar] [CrossRef]
- Coralli, I.; Fabbri, D.; Facchin, A.; Torri, C.; Stevens, L.A.; Snape, C.E. Analytical Pyrolysis of Polyethyleneimines. J. Anal. Appl. Pyrolysis 2023, 169, 105838. [Google Scholar] [CrossRef]
- Ramgobin, A.; Fontaine, G.; Bourbigot, S. Investigation of the Thermal Stability and Fire Behavior of High Performance Polymer: A Case Study of Polyimide. Fire Saf. J. 2021, 120, 103060. [Google Scholar] [CrossRef]
- Pal, S.K.; Prabhudesai, V.S.; Vinu, R. Catalytic Upcycling of Post-Consumer Multilayered Plastic Packaging Wastes for the Selective Production of Monoaromatic Hydrocarbons. J. Environ. Manag. 2024, 351, 119630. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, G.; Lei, S.; Xiao, H.; Yang, H.; Chen, H. Coupling Dechlorination and Catalytic Pyrolysis to Produce Carbon Nanotubes from Mixed Polyvinyl Chloride and Polyethylene. Waste Manag. 2024, 178, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Vouvoudi, E.C.; Rousi, A.T.; Achilias, D.S. Effect of the Catalyst Type on Pyrolysis Products Distribution of Polymer Blends Simulating Plastics Contained in Waste Electric and Electronic Equipment. Sustain. Chem. Pharm. 2023, 34, 101145. [Google Scholar] [CrossRef]
- Celluzzi, A.; Paolini, A.; D’Oria, V.; Risoluti, R.; Materazzi, S.; Pezzullo, M.; Casciardi, S.; Sennato, S.; Bordi, F.; Masotti, A. Biophysical and Biological Contributions of Polyamine-Coated Carbon Nanotubes and Bidimensional Buckypapers in the Delivery of Mirnas to Human Cells. Int. J. Nanomed. 2017, 13, 1–18. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Xuan, D.; Lu, Z.; Luo, F.; Li, S.; Ye, Y.; Wang, D.; Miao, C.; Liu, Z.; et al. Insights into Pyrolysis Behavior of Polyacrylonitrile Precursors Using Py-GC/MS. Chem. Pap. 2021, 75, 5297–5311. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Jia, W.; Huang, K.; Ma, Y. Comparing the Aging Processes of PLA and PE: The Impact of UV Irradiation and Water. Processes 2024, 12, 635. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Hong, G.-D.; Zhao, W.; Liang, D.; Huang, Z.; Zhao, C.; Shan, R.; Yuan, H.-R.; Chen, Y. Investigation in the Pyrolysis of Polyester Coated on Aluminum-Based Beverage: Thermodynamic Properties, Product and Mechanism. J. Anal. Appl. Pyrolysis 2025, 185, 106878. [Google Scholar] [CrossRef]
- Volli, V.; Gollakota, A.R.K.; Shu, C.-M. Comparative Studies on Thermochemical Behavior and Kinetics of Lignocellulosic Biomass Residues Using TG-FTIR and Py-GC/MS. Sci. Total Environ. 2021, 792, 148392. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Amutio, M.; Artetxe, M.; Lopez, G.; Santamaria, L.; Lopez, J.E.; Olazar, M.; Saldarriaga, J.F. Exploring the Potential of Fast Pyrolysis of Invasive Biomass Species for the Production of Chemicals. J. Anal. Appl. Pyrolysis 2024, 183, 106817. [Google Scholar] [CrossRef]
- Lin, B.-J.; Chen, W.-H.; Lin, Y.-Y.; Chang, J.-S.; Farooq, A.; Singh, Y.; Ong, H.C.; Show, P.L. An Evaluation of Thermal Characteristics of Bacterium Actinobacillus Succinogenes for Energy Use and Circular Bioeconomy. Bioresour. Technol. 2020, 301, 122774. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Evrendilek, F.; Xie, W.; Kuo, J.; Buyukada, M. Bioenergy and Emission Characterizations of Catalytic Combustion and Pyrolysis of Litchi Peels via TG-FTIR-MS and Py-GC/MS. Renew. Energy 2020, 148, 1074–1093. [Google Scholar] [CrossRef]
- Chen, L.; Tu, Z.; Chen, Y.; Hu, J.; Wang, H. Bioenergy and Value-Added Chemicals of Banana Peel Waste (BPW): Deeper Insights from Thermal Kinetics, Thermodynamics, in-Situ Volatile Products Analysis, and Bio-Chars Application for Cd(II) Highly-Efficient Removal. Biomass Bioenergy 2024, 185, 107238. [Google Scholar] [CrossRef]
- Barati, B.; Zafar, F.F.; Qian, L.; Wang, S.; El-Fatah Abomohra, A. Bioenergy Characteristics of Microalgae under Elevated Carbon Dioxide. Fuel 2022, 321, 123958. [Google Scholar] [CrossRef]
- Xu, D.; Lin, J.; Ma, R.; Hou, J.; Sun, S.; Ma, N. Fast Pyrolysis of Algae Model Compounds for Bio-Oil: In-Depth Insights into the Volatile Interaction Mechanisms Based on DFT Calculations. Fuel 2023, 333, 126449. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, Q.; Li, P.; Barati, B.; Viswanathan, K.; Zhao, S.; Wang, S.; Cao, B.; Hu, Y. Biofuel Characteristic of Waste Clay Oil Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 156, 105117. [Google Scholar] [CrossRef]
- Uzoejinwa, B.B.; Cao, B.; Wang, S.; Hu, X.; Hu, Y.; Pan, C.; Li, B.; Anyadike, C.C.; Asoiro, F.U.; Oji, N.A.; et al. Catalytic Co-Pyrolysis of Macroalgal Components with Lignocellulosic Biomass for Enhanced Biofuels and High-Valued Chemicals. Int. J. Energy Res. 2022, 46, 2674–2697. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Wang, Z.; Guo, S.; Hao, Y.; Gao, Y.; Xin, M.; Ran, Y.; Li, S.; Ji, R.; et al. Kinetic Analysis and Pyrolysis Behavior of Pine Needles by TG-FTIR and Py-GC/MS. BioResources 2023, 18, 6412–6429. [Google Scholar] [CrossRef]
- da Costa, M.M.; Guimarães, T.; França, K.D.; Silva, L.S.; de Almeida, R.F.; Henrique, T.C.; Fernandes, S.A.; Tuler, G.V.; Bittencourt, R.C.; de Paula Barbosa, V.O.; et al. 2,3-Dihydrobenzofuran Production Eco-Friendly by Fast Pyrolysis from Dendrocalamus Asper Biomass. Biomass Convers. Biorefin. 2023, 15, 575–584. [Google Scholar] [CrossRef]
- Usino, D.O.; Sar, T.; Ylitervo, P.; Richards, T. Effect of Acid Pretreatment on the Primary Products of Biomass Fast Pyrolysis. Energies 2023, 16, 2377. [Google Scholar] [CrossRef]
- Güdücü, I.; Alper, K.; Evcil, T.; Tekin, K.; Ohtani, H.; Karagöz, S. Effects of Hydrothermal Carbonization on Products from Fast Pyrolysis of Cellulose. J. Energy Inst. 2021, 99, 299–306. [Google Scholar] [CrossRef]
- Muzyka, R.; Sobek, S.; Dudziak, M.; Ouadi, M.; Sajdak, M. A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors. Energies 2023, 16, 3528. [Google Scholar] [CrossRef]
- Calabuig, E.; Marcilla, A. Effect of a Mesoporous Catalyst on the Flash Pyrolysis of Tobacco. Thermochim. Acta 2021, 705, 179032. [Google Scholar] [CrossRef]
- Gu, W.; Yu, Z.; Fang, S.; Dai, M.; Chen, L.; Ma, X. Effects of Hydrothermal Carbonization on Catalytic Fast Pyrolysis of Tobacco Stems. Biomass Convers. Biorefin. 2020, 10, 1221–1236. [Google Scholar] [CrossRef]
- Yin, N.; Song, Y.; Wu, L.; Dong, P.; Wang, C.; Zhou, J.; Zhang, X. Analysis of Tar and Pyrolysis Gas from Low-Rank Coal Pyrolysis Assisted by Apple Branch. J. Renew. Sustain. Energy 2023, 15, 043102. [Google Scholar] [CrossRef]
- Coura, M.R.; Demuner, A.J.; Demuner, I.F.; Firmino, M.J.M.; Ribeiro, R.A.; Gomes, F.J.B.; Carvalho, A.M.M.L.; Costa, M.M.; Martins, C.A.; Blank, D.E.; et al. Coffee Biomass Residue as a Raw Material for Cellulose Production and Py-GC/MS Analysis. Waste Biomass Valorization 2024, 15, 349–364. [Google Scholar] [CrossRef]
- Gan, X.; Chen, Z.; Ma, W.; Luo, P.; Xie, R. Comprehensive Evaluation of the Physicochemical Properties and Pyrolysis Mechanism of Products from the Slow Pyrolysis of Waste Coffee Shells. Renew. Energy 2024, 237, 121680. [Google Scholar] [CrossRef]
- Rueda, M.P.; Comino, F.; Aranda, V.; Domínguez-Vidal, A.; Ayora-Cañada, M.J. Analytical Pyrolysis (Py-GC-MS) for the Assessment of Olive Mill Pomace Composting Efficiency and the Effects of Compost Thermal Treatment. J. Anal. Appl. Pyrolysis 2022, 168, 105711. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, J.; Qiu, W.; Cheng, Q.; Fan, G.; Song, G.; Zhang, S. Kinetics and Behavior Analysis of Lobster Shell Pyrolysis by TG-FTIR and Py-GC/MS. J. Anal. Appl. Pyrolysis 2022, 165, 105580. [Google Scholar] [CrossRef]
- Magdziarz, A.; Jerzak, W.; Wądrzyk, M.; Sieradzka, M. Benefits from Co-Pyrolysis of Biomass and Refuse Derived Fuel for Biofuels Production: Experimental Investigations. Renew. Energy 2024, 230, 120808. [Google Scholar] [CrossRef]
- Sun, T.; Chen, Z.; Wang, R.; Yang, Y.; Zhang, L.; Li, Y.; Liu, P.; Lei, T. Influences of the Reaction Temperature and Catalysts on the Pyrolysis Product Distribution of Lignocellulosic Biomass (Aspen Wood and Rice Husk). Polymers 2023, 15, 3104. [Google Scholar] [CrossRef]
- Patel, A.; Agrawal, B.; Rawal, B.R. Elemental Composition of Biodiesel Produced by Fast Pyrolysis of Eucalyptus Leaves. J. Eng. Res. Kuwait 2021, 2021. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, A.; Wang, J.; Zhou, G.; Li, Y.; Wang, K.; Wang, S. Experimental Study of Tobacco Waste Pyrolysis in a Fluidized Bed Reactor. Chem. Ind. For. Prod. 2022, 42, 47–54. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Chen, L.; Yang, S.; Xie, X.; Gao, M.; Zhao, B.; Si, H.; Li, J.; Hua, D. Catalytic Fast Pyrolysis of Biomass into Aromatic Hydrocarbons over Mo-Modified ZSM-5 Catalysts. Catalysts 2020, 10, 1051. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Li, S.; Xia, S.; Cai, N.; Chen, W.; Chen, Y.; Yang, H.; Wang, X.; Chen, H. Catalytic Pyrolysis of Biomass to Produce Aromatic Hydrocarbons over Calcined Dolomite and ZSM-5. Energy Fuels 2021, 35, 16629–16636. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Chen, W.; Yang, H.; Chen, H. Catalytic Pyrolysis of Cotton Stalk to Produce Aromatic Hydrocarbons over Fe Modified CaO Catalysts and ZSM-5. J. Anal. Appl. Pyrolysis 2022, 166, 105635. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, H.; Xie, S.; Li, G.; Du, Z.; Wang, X.; Luo, Y. Highly Selective Production of Valuable Aromatic Hydrocarbons/Phenols from Forestry and Agricultural Residues Using Ni/ZSM-5 Catalyst. Processes 2022, 10, 1970. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, F.; Wu, G.; Fu, J.; Qiao, K. Catalytic Fast Pyrolysis of Biomass to Aromatics over Hierarchical HZSM-5. Huagong XuebaoCIESC J. 2020, 71, 5200–5207. [Google Scholar] [CrossRef]
- Ma, C.; Kumagai, S.; Sato, M.; Nakai, Y.; Saito, Y.; Watanabe, A.; Watanabe, C.; Teramae, N.; Yoshioka, T. Investigating the Degradation and Products of Thermo-Oxidation of Polyimide-Based Engineering Plastics. J. Anal. Appl. Pyrolysis 2024, 181, 106575. [Google Scholar] [CrossRef]
- Li, K.; Wang, B.; Bolatibieke, D.; Nan, D.-H.; Zhang, Z.-X.; Cui, M.-S.; Lu, Q. Catalytic Fast Pyrolysis of Biomass with Ni-P-MCM-41 to Selectively Produce Levoglucosenone. J. Anal. Appl. Pyrolysis 2020, 148, 104824. [Google Scholar] [CrossRef]
- Li, C.; Yellezuome, D.; Li, Y.; Liu, R. Catalytic Pyrolysis of Rice Straw for High Yield of Aromatics over Modified ZSM-5 Catalysts and Its Kinetics. Renew. Energy 2023, 209, 569–580. [Google Scholar] [CrossRef]
- Grams, J. Chromatographic Analysis of Bio-Oil Formed in Fast Pyrolysis of Lignocellulosic Biomass. Rev. Anal. Chem. 2020, 39, 65–77. [Google Scholar] [CrossRef]
- Prabhakara, H.M.; Bramer, E.A.; Brem, G. Hydrotalcite as a Deoxygenation Catalyst in Fast Pyrolysis of Biomass for the Production of High Quality Bio-Oil. J. Anal. Appl. Pyrolysis 2022, 161, 105431. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, Z. Exploiting Sugarcane Waste Molasses and Dephenolized Cottonseed Protein as the Promising Component for Eco-Friendly Wood-Based Panel Adhesive Formulation. Wood Mater. Sci. Eng. 2024, 19, 858–867. [Google Scholar] [CrossRef]
- Muñoz, M.; Rosero, M.; García, A.N.; Marcilla, A. Effect of Alkaline Catalysts on the Valorization of Sugarcane Bagasse via Pyrolysis. Ind. Crops Prod. 2024, 211, 118225. [Google Scholar] [CrossRef]
- Li, Y.; Hu, B.; Fu, H.; Zhang, Z.-X.; Guo, Z.-T.; Zhou, G.-Z.; Zhu, L.-J.; Liu, J.; Lu, Q. Fast Pyrolysis of Bagasse Catalyzed by Mixed Alkaline-Earth Metal Oxides for the Selective Production of 4-Vinylphenol. J. Anal. Appl. Pyrolysis 2022, 164, 105531. [Google Scholar] [CrossRef]
- Imman, S.; Khongchamnan, P.; Wanmolee, W.; Laosiripojana, N.; Kreetachat, T.; Sakulthaew, C.; Chokejaroenrat, C.; Suriyachai, N. Fractionation and Characterization of Lignin from Sugarcane Bagasse Using a Sulfuric Acid Catalyzed Solvothermal Process. RSC Adv. 2021, 11, 26773–26784. [Google Scholar] [CrossRef]
- Chaerusani, V.; Zahra, A.C.A.; Anniwaer, A.; Zhang, P.; Chaihad, N.; Rizkiana, J.; Kusakabe, K.; Kasai, Y.; Abudula, A.; Guan, G. Catalytic Upgrading of Bio-Oils Derived from Terrestrial and Marine Biomass over Various Types of Zeolites. J. Anal. Appl. Pyrolysis 2022, 168, 105735. [Google Scholar] [CrossRef]
- Mariyam, S.; Zuhara, S.; Parthasarathy, P.; McKay, G. A Review on Catalytic Fast Co-Pyrolysis Using Analytical Py-GC/MS. Molecules 2023, 28, 2313. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Cai, L.; Zhang, H.; Zuo, L.; Shi, S.Q.; Lam, S.S. A Review on the Modeling and Validation of Biomass Pyrolysis with a Focus on Product Yield and Composition. Biofuel Res. J. 2021, 8, 1296–1315. [Google Scholar] [CrossRef]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Okieimen, C.O.; Kusuma, H.S. Biomass Pyrolysis Technologies for Value-Added Products: A State-of-the-Art Review. Environ. Dev. Sustain. 2021, 23, 14324–14378. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Lu, W.; Ren, D.; Yuan, S. Exploring the Catalytic Conversion of Aromatic Model Compounds of Coal Pyrolysis over Ca(OH)2. J. Energy Inst. 2024, 117, 101850. [Google Scholar] [CrossRef]
- Deng, J.; Feng, Y.; Li, C.; Yuan, Z.; Shang, R.; Yuan, S. Highly Efficiency H2 Production for Real Coal Tar Steam Reforming over Ni-ca/H-Al Catalyst: Effects of Oxygen Vacancy, CaO Doping and Synthesis Methods. Appl. Energy 2024, 367, 123354. [Google Scholar] [CrossRef]
- Yang, Q.; Yao, Q.; Ma, D.; Liu, Y.; He, L.; Zhou, R.; Sun, M.; Ma, X. Investigation of the (Catalytic) Co-Pyrolysis of Shendong Coal and Coal Tar Based on Rapid Pyrolysis and ANN Modelling. J. Anal. Appl. Pyrolysis 2022, 163, 105486. [Google Scholar] [CrossRef]
- Wei, L.; Fan, Y.; Fang, F.; Guo, L.; Chen, Y.; Yang, T. Effect of Sodium and Mineral Types on Distribution of Tar and BTEXN under High Alkali Coal Fast Pyrolysis. Huagong XuebaoCIESC J. 2021, 72, 1702–1711. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, M.; Mo, W.; Wang, Y.; Yuan, J.; Wu, R.; Niu, J.; Ma, K.; Guo, W.; Wei, X.; et al. Effect of Solvent Treatment on the Composition and Structure of Santanghu Long Flame Coal and Its Rapid Pyrolysis Products. Molecules 2023, 28, 7074. [Google Scholar] [CrossRef]
- He, X.-Q.; Mo, W.-L.; Wang, Q.; Ma, Y.-Y.; Ma, F.-Y.; Fan, X.; Wei, X.-Y. Effect of Swelling Treatment by Organic Solvent on the Structure and Pyrolysis Performance of the Direct Coal Liquefaction Residue. Energy Fuels 2020, 34, 8685–8696. [Google Scholar] [CrossRef]
- Lv, T.; Xia, Z.; Fang, M.; Cen, J.; Yan, J.; Zeng, X.; Wang, Q. Insight into Carbon Structures and Pyrolysis Behaviors of Coal from the 13C CP/MAS NMR Spectra. J. Anal. Appl. Pyrolysis 2024, 182, 106693. [Google Scholar] [CrossRef]
- Lv, P.; Bai, Y.; Wang, J.; Song, X.; Su, W.; Yu, G.; Ma, Y. Investigation into the Interaction of Biomass Waste with Industrial Solid Waste during Co-Pyrolysis and the Synergetic Effect of Its Char Gasification. Biomass Bioenergy 2022, 159, 106414. [Google Scholar] [CrossRef]
- Wei, L.; Cui, B.; Guo, L.; Sun, Y. Effect of Sodium on Three-Phase Nitrogen Transformation during Coal Pyrolysis: A Qualitative and Semi-Quantitative Investigation. Fuel Process. Technol. 2021, 213, 106638. [Google Scholar] [CrossRef]
- Wu, C.-H.; Du, M.-L.; Cheng, X.; Ai, Q.-T.; Zhang, Y.; Lin, P.-C. Effects of Co and Mg Modified USY on Tar Product Distribution of Bark Coal Pyrolysis. Xiandai HuagongModern Chem. Ind. 2021, 41, 108–112. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Q.; Cao, R.; He, L.; Sun, M.; Ma, X. Mechanism of Phenols Evolution during Pyrolysis of Shendong Coal Macerals Swelled with Oxygen-Containing Organic Solvents: Experimental and DFT Study. Chem. Eng. J. 2024, 493, 152648. [Google Scholar] [CrossRef]
- Yu, G.; Bai, X.; Fan, X.; He, X.-Y.; Zou, H.-X.; Dilixiati, Y.; Wei, X.-Y.; Pidamaimaiti, G.; Pan, Y. In-Situ Evaluation of Volatile Products Released during Pyrolysis of Coals with Different Ranks. J. Energy Inst. 2024, 115, 101660. [Google Scholar] [CrossRef]
- He, L.; Yao, Q.; Cao, R.; Wang, L.; Wang, W.; Ma, D.; Sun, M.; Ma, X. Indentification of Coal-Origin Structural Units by Multi-Step Pyrolysis through Py-GC/MS and by DFT Calculation. Chem. Eng. J. 2024, 492, 152410. [Google Scholar] [CrossRef]
- Ramgobin, A.; Fontaine, G.; Bourbigot, S. A Case Study of Polyether Ether Ketone (I): Investigating the Thermal and Fire Behavior of a High-Performance Material. Polymers 2020, 12, 1789. [Google Scholar] [CrossRef]
- Feng, H.; Li, D.; Cheng, B.; Song, T.; Yang, R. A Cross-Linked Charring Strategy for Mitigating the Hazards of Smoke and Heat of Aluminum Diethylphosphonate/Polyamide 6 by Caged Octaphenyl Polyhedral Oligomeric Silsesquioxanes. J. Hazard. Mater. 2022, 424, 127420. [Google Scholar] [CrossRef]
- Xu, B.; Zhu, S.; Zhao, S.; Wang, X. A High-Phosphorus-Content Polyphosphonate with Combined Phosphorus Structures for Flame Retardant PET. Polymers 2023, 15, 1713. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Wu, G.; Chen, W.; Huang, G. A Novel Biobased Intumescent Flame Retardant through Combining Simultaneously Char-Promoter and Radical-Scavenger for the Application in Epoxy Resin. Polym. Degrad. Stab. 2022, 196, 109841. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, X.; Wu, Y. High Efficient Flame Retardant Finishing of PET Fabric Using Eco-Friendly DOPO. J. Text. Inst. 2022, 113, 1248–1255. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wang, H.; Zhu, Z.; Yin, X.; Mao, J. Low Flammability and Smoke Epoxy Resins with a Novel DOPO-Based Imidazolone Derivative. Polym. Adv. Technol. 2021, 32, 294–303. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B.; Wang, X.; Liu, Y. A Phosphorous-Based Bi-Functional Flame Retardant for Rigid Polyurethane Foam. Polym. Degrad. Stab. 2021, 186, 109516. [Google Scholar] [CrossRef]
- Wang, X.; Tu, H.; Xiao, H.; Lu, J.; Xu, J.; Gu, G. A Novel Halogen-Free Flame-Retardant Fabrication for the Study of Smoke Suppression and Flame Retardancy of Polystyrene. Polymer 2023, 283, 126240. [Google Scholar] [CrossRef]
- Liu, B.-W.; Zhao, H.-B.; Chen, L.; Chen, L.; Wang, X.-L.; Wang, Y.-Z. Eco-Friendly Synergistic Cross-Linking Flame-Retardant Strategy with Smoke and Melt-Dripping Suppression for Condensation Polymers. Compos. Part B Eng. 2021, 211, 108664. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Zhao, J. Enhancing the High Temperature Resistance of Nanocomposite Materials through Dimethyl Methyl Phosphate Impregnation-Coating Treatment. J. Polym. Sci. 2025, 63, 270–290. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Sun, N.; Duan, J.; Nan, S.; Dong, Z.; Zhang, Y.; Long, X.; Wang, B.; Xia, Y. Flame-Retardant Wood Composite Based on Carboxylated Cellulose Fibers and Algal Polysaccharides. ACS Appl. Polym. Mater. 2024, 6, 9353–9363. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Kulachenko, A.; Jurkjane, V.; Mathew, A.P.; Sevastyanova, O. A Comparative Study of Lignin-Containing Microfibrillated Cellulose Fibers Produced from Softwood and Hardwood Pulps. Cellulose 2024, 31, 907–926. [Google Scholar] [CrossRef]
- Kaszonyi, A.; Izsák, L.; Králik, M.; Jablonsky, M. Accelerated and Natural Aging of Cellulose-Based Paper: Py-GC/MS Method. Molecules 2022, 27, 2855. [Google Scholar] [CrossRef]
- Yu, Z.; Ahmad, M.S.; Shen, B.; Li, Y.; Ibrahim, M.; Bokhari, A.; Klemeš, J.J. Activated Waste Cotton Cellulose as Renewable Fuel and Value-Added Chemicals: Thermokinetic Analysis, Coupled Pyrolysis with Gas Chromatography and Mass Spectrometry. Energy 2023, 283, 128341. [Google Scholar] [CrossRef]
- Tang, K.; Hao, X.-W.; Wei, Q.-F.; Zhou, X.-F. Effects of Lignin Chemistry on Cellulose Extractioperformance towards Crop Straw/Stalk. Chiang Mai J. Sci. 2020, 47, 1204–1215. [Google Scholar]
- Ma, Z.; Wang, J.; Huang, M.; Cai, W.; Xu, J.; Yang, Y. Effects of Lignin Species and Catalyst Addition on Pyrolysis Products. Nongye Gongcheng XuebaoTransactions Chin. Soc. Agric. Eng. 2020, 36, 274–282. [Google Scholar] [CrossRef]
- Nakason, K.; Chukaew, P.; Utrarachkij, F.; Kuboon, S.; Kraithong, W.; Pichaiyut, S.; Wanmolee, W.; Panyapinyopol, B. Antimicrobial and Antioxidant Activities of Lignin By-Product from Sugarcane Leaf Conversion to Levulinic Acid and Hydrochar. Sustain. Mater. Technol. 2024, 40, e00973. [Google Scholar] [CrossRef]
- Zheng, X.; Zhong, Z.; Zhang, B.; Du, H.; Wang, W.; Li, Q.; Yang, Y.; Qi, R.; Li, Z. Catalytic Pyrolysis of Enzymatic Hydrolysis Lignin by Transition-Metal Modified HZSM-5/MCM-41 Core–Shell Catalyst for the Enhancement of Monocyclic Aromatic Hydrocarbons. J. Anal. Appl. Pyrolysis 2023, 169, 105849. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, L.; Yang, Y.; Li, Y.; Ren, S.; Dong, L.; Lei, T. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution. Int. J. Environ. Res. Public Health 2022, 19, 16837. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Hu, B.; Zhang, Z.-X.; Zhang, G.; Feng, S.-Y.; Wang, T.-P.; Lu, Q. Catalytic Fast Pyrolysis of Cellulose for Selective Production of 1-Hydroxy-3,6-Dioxabicyclo [3.2.1]Octan-2-One Using Nickel-Tin Layered Double Oxides. Ind. Crops Prod. 2021, 162, 113269. [Google Scholar] [CrossRef]
- Li, Y.; Hu, B.; Fu, H.; Wu, Y.-L.; Zhang, Z.-X.; Liu, J.; Zhang, B.; Lu, Q. Catalytic Fast Pyrolysis of Cellulose for the Selective Production of Levoglucosenone Using Phosphorus Molybdenum Tin Mixed Metal Oxides. Energy Fuels 2022, 36, 10251–10260. [Google Scholar] [CrossRef]
- Ma, S.; Li, H.; Zhang, G.; Iqbal, T.; Li, K.; Lu, Q. Catalytic Fast Pyrolysis of Walnut Shell for Alkylphenols Production with Nitrogen-Doped Activated Carbon Catalyst. Front. Environ. Sci. Eng. 2021, 15, 25. [Google Scholar] [CrossRef]
- Ma, S.-W.; Zhang, G.; Li, H.; Zhang, Z.-X.; Li, K.; Lu, Q. Catalytic Fast Pyrolysis of Walnut Shell with K/AC Catalyst for the Production of Phenolic-Rich Bio-Oil. Biomass Convers. Biorefin. 2022, 12, 2451–2462. [Google Scholar] [CrossRef]
- Zhong, W.-R.; Liu, H.-L.; Liu, H.; Hu, J.-H. Characterization of the Composition and Molecular Size Distribution of Lignin Pyrolysis Bio-Oil. J. Mol. Catal. 2023, 37, 151–163. [Google Scholar] [CrossRef]
- Liu, R.; Rahman, M.M.; Li, C.; Chai, M.; Sarker, M.; Wang, Y.; Cai, J. Catalytic Pyrolysis of Microcrystalline Cellulose Extracted from Rice Straw for High Yield of Hydrocarbon over Alkali Modified ZSM-5. Fuel 2021, 285, 119038. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Zhang, H.; Xiao, R. Fast Pyrolysis of Holocellulose for the Preparation of Long-Chain Ether Fuel Precursors: Effect of Holocellulose Types. Bioresour. Technol. 2021, 338, 125519. [Google Scholar] [CrossRef]
- Jia, X.; Che, Y.; Li, J.; Yan, B.; Cheng, Z.; Chen, G.; Zhao, J. From Cellulose to Tar: Analysis of Tar Formation Pathway with Distinguishing the Primary and Secondary Reactions. Bioresour. Technol. 2023, 390, 129846. [Google Scholar] [CrossRef]
- Gordobil, O.; Herrera, R.; Poohphajai, F.; Sandak, J.; Sandak, A. Impact of Drying Process on Kraft Lignin: Lignin-Water Interaction Mechanism Study by 2D NIR Correlation Spectroscopy. J. Mater. Res. Technol. 2021, 12, 159–169. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, S.; Wang, H.; Jing, S.; Hou, T.; Pang, S. Low-Temperature Deoxidization of Lignin and Its Impact on Liquid Products from Pyrolysis. Energy Fuels 2020, 34, 3422–3428. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. “lab-on-Click” Detection of Illicit Drugs in Oral Fluids by MicroNIR-Chemometrics. Anal. Chem. 2019, 91, 6435–6439. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Carcassi, E.; Masotti, A.; Materazzi, S. TGA/Chemometrics Addressing Innovative Preparation Strategies for Functionalized Carbon Nanotubes. J. Pharm. Anal. 2020, 10, 351–355. [Google Scholar] [CrossRef]
- Aiello, D.; Siciliano, C.; Mazzotti, F.; Di Donna, L.; Risoluti, R.; Napoli, A. Protein Extraction, Enrichment and MALDI MS and MS/MS Analysis from Bitter Orange Leaves (Citrus Aurantium). Molecules 2020, 25, 1485. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. MicroNIR/Chemometrics: A New Analytical Platform for Fast and Accurate Detection of Δ9-Tetrahydrocannabinol (THC) in Oral Fluids. Drug Alcohol Depend. 2019, 205, 107578. [Google Scholar] [CrossRef]
- Barker-Rothschild, D.; Stoyanov, S.R.; Gieleciak, R.; Cruickshank, M.; Filipescu, C.N.; Dunn, D.; Choi, P. Assessing the Impact of Drought-Induced Abiotic Stress on the Content and Composition of Douglas-Fir Lignin. ACS Sustain. Chem. Eng. 2023, 11, 13519–13526. [Google Scholar] [CrossRef]
- Chen, W.-H.; Ho, K.-Y.; Aniza, R.; Sharma, A.K.; Saravanakumar, A.; Hoang, A.T. A Review of Noncatalytic and Catalytic Pyrolysis and Co-Pyrolysis Products from Lignocellulosic and Algal Biomass Using Py-GC/MS. J. Ind. Eng. Chem. 2024, 134, 51–64. [Google Scholar] [CrossRef]
- Lauschke, T.; Dierkes, G.; Schweyen, P.; Ternes, T.A. Evaluation of Poly(Styrene-D5) and Poly(4-Fluorostyrene) as Internal Standards for Microplastics Quantification by Thermoanalytical Methods. J. Anal. Appl. Pyrolysis 2021, 159, 105310. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, H.; Siddiqui, M.Z.; Kang, H.-S.; Choi, J.-H.; Kumagai, S.; Watanabe, A.; Teramae, N.; Kwon, E.E.; Kim, Y.-M. A Comprehensive Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis for the Assessment of Microplastics in Various Salts. Food Chem. 2025, 467, 142193. [Google Scholar] [CrossRef]
- Biale, G.; La Nasa, J.; Fiorentini, L.; Ceccarini, A.; Carnaroglio, D.; Mattonai, M.; Modugno, F. Characterization and Quantification of Microplastics and Organic Pollutants in Mussels by Microwave-Assisted Sample Preparation and Analytical Pyrolysis. Environ. Sci. Adv. 2023, 3, 76–84. [Google Scholar] [CrossRef]
- Kumagai, S.; Sato, M.; Ma, C.; Nakai, Y.; Kameda, T.; Saito, Y.; Watanabe, A.; Watanabe, C.; Teramae, N.; Yoshioka, T. A Comprehensive Study into the Thermo-Oxidative Degradation of Sulfur-Based Engineering Plastics. J. Anal. Appl. Pyrolysis 2022, 168, 105754. [Google Scholar] [CrossRef]
- Ainali, N.M.; Bikiaris, D.N.; Lambropoulou, D.A. Aging Effects on Low- and High-Density Polyethylene, Polypropylene and Polystyrene under UV Irradiation: An Insight into Decomposition Mechanism by Py-GC/MS for Microplastic Analysis. J. Anal. Appl. Pyrolysis 2021, 158, 105207. [Google Scholar] [CrossRef]
- Jarosz, K.; Janus, R.; Wądrzyk, M.; Wilczyńska-Michalik, W.; Natkański, P.; Michalik, M. Airborne Microplastic in the Atmospheric Deposition and How to Identify and Quantify the Threat: Semi-Quantitative Approach Based on Kraków Case Study. Int. J. Environ. Res. Public Health 2022, 19, 12252. [Google Scholar] [CrossRef]
- Pipkin, W.; Belganeh, R.; Robberson, W.; Allen, H.L.; Cook, A.-M.; Watanabe, A. Identification of Microplastics in Environmental Monitoring Using Pyrolysis–GC–MS Analysis. LC-GC N. Am. 2021, 39, 179–186. [Google Scholar]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012–1047. [Google Scholar] [CrossRef]
- Matsui, K.; Ishimura, T.; Mattonai, M.; Iwai, I.; Watanabe, A.; Teramae, N.; Ohtani, H.; Watanabe, C. Identification Algorithm for Polymer Mixtures Based on Py-GC/MS and Its Application for Microplastic Analysis in Environmental Samples. J. Anal. Appl. Pyrolysis 2020, 149, 104834. [Google Scholar] [CrossRef]
- Li, Q.; Bai, Q.; Sheng, X.; Li, P.; Zheng, R.; Yu, S.; Liu, J. Influence of Particle Characteristics, Heating Temperature and Time on the Pyrolysis Product Distributions of Polystyrene Micro- and Nano-Plastics. J. Chromatogr. A 2022, 1682, 463503. [Google Scholar] [CrossRef] [PubMed]
- Biale, G.; La Nasa, J.; Mattonai, M.; Corti, A.; Vinciguerra, V.; Castelvetro, V.; Modugno, F. A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics. Polymers 2021, 13, 1997. [Google Scholar] [CrossRef] [PubMed]
- Funck, M.; Yildirim, A.; Nickel, C.; Schram, J.; Schmidt, T.C.; Tuerk, J. Identification of Microplastics in Wastewater after Cascade Filtration Using Pyrolysis-GC–MS. MethodsX 2020, 7, 100778. [Google Scholar] [CrossRef]
- Sefiloglu, F.Ö.; Stratmann, C.N.; Brits, M.; van Velzen, M.J.M.; Groenewoud, Q.; Vethaak, A.D.; Dris, R.; Gasperi, J.; Lamoree, M.H. Comparative Microplastic Analysis in Urban Waters Using μ-FTIR and Py-GC-MS: A Case Study in Amsterdam. Environ. Pollut. 2024, 351, 124088. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Cui, C.; Han, Y.; Xiao, Y.; Zhang, B.; Li, G. Association between Blood Microplastic Levels and Severity of Extracranial Artery Stenosis. J. Hazard. Mater. 2024, 480, 136211. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, Y.; Du, Z.; Li, L.; Zhang, M.; Ni, S.; Yue, Z.; Yang, K.; Wang, Y.; et al. Microplastics in Three Types of Human Arteries Detected by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). J. Hazard. Mater. 2024, 469, 133855. [Google Scholar] [CrossRef]
- Tian, J.; Liang, L.; Li, Q.; Li, N.; Zhu, X.; Zhang, L. Association between Microplastics in Human Amniotic Fluid and Pregnancy Outcomes: Detection and Characterization Using Raman Spectroscopy and Pyrolysis GC/MS. J. Hazard. Mater. 2025, 482, 136637. [Google Scholar] [CrossRef]
- Yang, W.; Wu, L.; Li, G.; Shi, L.; Zhang, J.; Liu, L.; Chen, Y.; Yu, H.; Wang, K.; Xin, L.; et al. Atlas and Source of the Microplastics of Male Reproductive System in Human and Mice. Environ. Sci. Pollut. Res. 2024, 31, 25046–25058. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and Characterization of Microplastics in the Human Testis and Semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef]
- Garcia, M.A.; Liu, R.; Nihart, A.; Hayek, E.E.; Castillo, E.; Barrozo, E.R.; Suter, M.A.; Bleske, B.; Scott, J.; Forsythe, K.; et al. Quantitation and Identification of Microplastics Accumulation in Human Placental Specimens Using Pyrolysis Gas Chromatography Mass Spectrometry. Toxicol. Sci. 2024, 199, 81–88. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y. Detection and Quantification of Microplastics in Endometrial Polyps and Their Role in Polyp Formation. Reprod. Toxicol. 2025, 132, 108757. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wang, X.; Li, D.; Wang, H.; Xu, H.; Liu, Y.; Kang, R.; Chen, Q.; Zheng, L.; et al. Discovery and Analysis of Microplastics in Human Bone Marrow. J. Hazard. Mater. 2024, 477, 135266. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Chen, T.; Chen, Z.; Du, L.; Qiu, X.; Zhang, Y.; Li, Y.; Zhu, Y.; Tan, Z.; Mo, Y.; et al. Micro(Nano)Plastics in Human Urine: A Surprising Contrast between Chongqing’s Urban and Rural Regions. Sci. Total Environ. 2024, 917, 170455. [Google Scholar] [CrossRef] [PubMed]
- Andersone, A.; Arshanitsa, A.; Akishin, Y.; Semenischev, A.; Telysheva, G. Microwave Assisted Torrefaction of Plant Biomass of Different Origin with a Focus on Solid Products Valorisation for Energy and Beyond. Chem. Eng. Trans. 2021, 86, 109–114. [Google Scholar] [CrossRef]
- La Nasa, J.; Biale, G.; Mattonai, M.; Modugno, F. Microwave-Assisted Solvent Extraction and Double-Shot Analytical Pyrolysis for the Quali-Quantitation of Plasticizers and Microplastics in Beach Sand Samples. J. Hazard. Mater. 2021, 401, 123287. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Rochman, C.M. Microwave-Assisted Extraction for Quantification of Microplastics Using Pyrolysis–Gas Chromatography/Mass Spectrometry. Environ. Toxicol. Chem. 2021, 40, 2733–2741. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, W.; Fu, J.; Siyal, A.A.; An, Q.; Zhou, C.; Liu, C.; Zhang, Y.; Chen, Z.; Yun, H.; et al. Microwave-Assisted Pyrolysis of Industrial Biomass Waste: Insights into Kinetic, Characteristics and Intrinsic Mechanisms. Energy 2024, 306, 132423. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Fischer, M.; Klein, O.; Zimmermann, T.; Fensky, F.; Siems, A.; Zonderman, A.; Hengstmann, E.; Kirchgeorg, T.; Pröfrock, D. An Analytical Strategy for Challenging Members of the Microplastic Family: Particles from Anti-Corrosion Coatings. J. Hazard. Mater. 2024, 470, 134173. [Google Scholar] [CrossRef]
- Li, Q.; Lai, Y.; Li, P.; Liu, X.; Yao, Z.; Liu, J.; Yu, S. Evaluating the Occurrence of Polystyrene Nanoparticles in Environmental Waters by Agglomeration with Alkylated Ferroferric Oxide Followed by Micropore Membrane Filtration Collection and Py-GC/MS Analysis. Environ. Sci. Technol. 2022, 56, 8255–8265. [Google Scholar] [CrossRef]
- Lou, F.; Wang, J.; Sun, C.; Song, J.; Wang, W.; Pan, Y.; Huang, Q.; Yan, J. Influence of Interaction on Accuracy of Quantification of Mixed Microplastics Using Py-GC/MS. J. Environ. Chem. Eng. 2022, 10, 108012. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, X.; Jin, X. Determination of Microplastics in Soil by Pyrolizer-GC-MS. Environ. Chem. 2022, 41, 1824–1826. [Google Scholar]
- Le Juge, C.; Grassl, B.; Allan, I.J.; Gigault, J. Identification of Polystyrene Nanoplastics from Natural Organic Matter in Complex Environmental Matrices by Pyrolysis–Gas Chromatography–Mass Spectrometry. Anal. Bioanal. Chem. 2023, 415, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Roscher, L.; Halbach, M.; Nguyen, M.T.; Hebeler, M.; Luschtinetz, F.; Scholz-Böttcher, B.M.; Primpke, S.; Gerdts, G. Microplastics in Two German Wastewater Treatment Plants: Year-Long Effluent Analysis with FTIR and Py-GC/MS. Sci. Total Environ. 2022, 817, 152619. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lee, L.M.; Yu, D.; Chan, S.H.; Li, A. An Optimized Multi-Technique Based Analytical Platform for Identification, Characterization and Quantification of Nanoplastics in Water. Talanta 2024, 272, 125800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zhu, P.; Jing, S.; Li, J.; Wanger, T.C.; Liu, W.; Liu, K.; Chen, X.; Li, L. Mass Concentrations, Compositions and Burial Fluxes of Nano- and Micro-Plastics in a Multi-Species Saltmarsh. Environ. Pollut. 2024, 363, 125181. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.-C.; Feng, Z.-Y.; Jin, B.; Liu, Y.; Meng, L.-Y. ACFs-NH2 Developed for Dispersive Solid Phase Extraction Combined with Py-GC/MS for Nanoplastic Analysis in Ambient Water Samples. J. Chromatogr. A 2024, 1736, 465382. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Wang, X.; Hou, F.; Li, P.; van der Hoek, J.P.; Liu, G. Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2023, 57, 3114–3123. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Jiao, M.; Liu, G.; Van Der Hoek, J.P. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 4988–4997. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Wang, X.; van der Hoek, J.P.; Liu, G. Mass Concentration and Removal Characteristics of Microplastics and Nanoplastics in a Drinking Water Treatment Plant. ACS ES T Water 2024, 4, 3348–3358. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, Y.; Liu, W.; Ma, X.; He, D.; Wang, Y.; Li, J.; Wu, W. Identification and Quantification of Nanoplastics in Different Crops Using Pyrolysis Gas Chromatography-Mass Spectrometry. Chemosphere 2024, 354, 141689. [Google Scholar] [CrossRef] [PubMed]
- La Nasa, J.; Biale, G.; Fabbri, D.; Modugno, F. A Review on Challenges and Developments of Analytical Pyrolysis and Other Thermoanalytical Techniques for the Quali-Quantitative Determination of Microplastics. J. Anal. Appl. Pyrolysis 2020, 149, 104841. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Lee, D.-Y.; Park, J.; Zhou, J.L.; Yoon, M.-H. Microplastic Particles in the Aquatic Environment: A Systematic Review. Sci. Total Environ. 2021, 775, 145793. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Huang, Q.; Yang, C.; Wang, L.; Lou, Z.; Zhou, Q.; Wang, T.; Ning, C. Microplastics in Landfill Leachate: A Comprehensive Review on Characteristics, Detection, and Their Fates during Advanced Oxidation Processes. Water 2023, 15, 252. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Sun, M.; Li, S.; Yu, X.; Dai, J. Microplastics in Soils and Plants: Current Research Status and Progress on Detection Methods. Earth Sci. Front. 2024, 31, 183–195. [Google Scholar] [CrossRef]
- Moteallemi, A.; Dehghani, M.H.; Momeniha, F.; Azizi, S. Nanoplastics as Emerging Contaminants: A Systematic Review of Analytical Processes, Removal Strategies from Water Environments, Challenges and Perspective. Microchem. J. 2024, 207, 111884. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, P.; Lou, X.; Zhou, Z.; Zhou, L.; Hu, Y.; Luan, Y.; Quan, C.; Fang, J.; Zou, H.; et al. A Review of Airborne Micro- and Nano-Plastics: Sampling Methods, Analytical Techniques, and Exposure Risks. Environ. Pollut. 2024, 363, 125074. [Google Scholar] [CrossRef]
- Cai, H.; Xu, E.G.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of Environmental Nanoplastics: Progress and Challenges. Chem. Eng. J. 2021, 410, 128208. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Liu, Q.; Li, Q. Ageing Characterization and Origin Traceability of Archaeological Amber Artefacts via FTIR Spectroscopy and Pyrolysis-Gas Chromatography/Mass Spectrometry. J. Cult. Herit. 2024, 69, 37–46. [Google Scholar] [CrossRef]
- Yao, N.; Wang, S.; Guo, H.; Hu, H.; Liu, Y.; Wei, S. Characterization and Identification of Paper Relics Using Py-GC/MS. Sci. Conserv. Archaeol. 2024, 36, 44–53. [Google Scholar] [CrossRef]
- Yao, N.; Wei, S. Characterization and Identification of Traditional Chinese Handmade Paper via Pyrolysis-Gas Chromatography-Mass Spectrometry. BioResources 2021, 16, 3942–3951. [Google Scholar] [CrossRef]
- Na, W.; An, G.; Kai, L.; Jingyuan, L.; Yong, L. Identification of Waxes Using Pyrolysis—Gas Chromatography/Mass Spectrometry. Sci. Conserv. Archaeol. 2020, 32, 71–77. [Google Scholar] [CrossRef]
- Pozzi, F.; Basso, E.; Alderson, S.; Levinson, J.; Neiman, M.; Alcalá, S. Aiding the Cleaning of Four 19th-Century Tsimshian House Posts: Investigation of Museum-Applied Surface Coatings and Original Polychromy. Herit. Sci. 2021, 9, 42. [Google Scholar] [CrossRef]
- Pellis, G.; Bertasa, M.; Ricci, C.; Scarcella, A.; Croveri, P.; Poli, T.; Scalarone, D. A Multi-Analytical Approach for Precise Identification of Alkyd Spray Paints and for a Better Understanding of Their Ageing Behaviour in Graffiti and Urban Artworks. J. Anal. Appl. Pyrolysis 2022, 165, 105576. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Perra, E.; Zendri, E. Accelerated Ageing Procedures to Assess the Stability of an Unconventional Acrylic-Wax Polymeric Emulsion for Contemporary Art. Polymers 2020, 12, 1925. [Google Scholar] [CrossRef]
- Risoluti, R.; Materazzi, S.; Tau, F.; Russo, A.; Romolo, F.S. Towards Innovation in Paper Dating: A MicroNIR Analytical Platform and Chemometrics. Analyst 2018, 143, 4394–4399. [Google Scholar] [CrossRef]
- Sebestyén, Z.; Badea, E.; Carsote, C.; Czégény, Z.; Szabó, T.; Babinszki, B.; Bozi, J.; Jakab, E. Characterization of Historical Leather Bookbindings by Various Thermal Methods (TG/MS, Py-GC/MS, and Micro-DSC) and FTIR-ATR Spectroscopy. J. Anal. Appl. Pyrolysis 2022, 162, 105428. [Google Scholar] [CrossRef]
- Risdonne, V.; Hubbard, C.; Puisto, J.; Theodorakopoulos, C. A Multi-Analytical Study of Historical Coated Plaster Surfaces: The Examination of a Nineteenth-Century V&A Cast of a Tombstone. Herit. Sci. 2021, 9, 70. [Google Scholar] [CrossRef]
- Pozzi, F.; Basso, E.; Centeno, S.A.; Smieska, L.M.; Shibayama, N.; Berns, R.; Fontanella, M.; Stringari, L. Altered Identity: Fleeting Colors and Obscured Surfaces in Van Gogh’s Landscapes in Paris, Arles, and Saint-Rémy. Herit. Sci. 2021, 9, 15. [Google Scholar] [CrossRef]
- Manfredda, N.; Buscaglia, P.; Gallo, P.; Borla, M.; Aicardi, S.; Poggi, G.; Baglioni, P.; Nervo, M.; Scalarone, D.; Borghi, A.; et al. An Ancient Egyptian Multilayered Polychrome Wooden Sculpture Belonging to the Museo Egizio of Torino: Characterization of Painting Materials and Design of Cleaning Processes by Means of Highly Retentive Hydrogels. Coatings 2021, 11, 1335. [Google Scholar] [CrossRef]
- Zhao, J.-L.; Yu, Z.-R.; Su, B.-M. Analysis of Egg Whites from Burial Murals by Pyrolysis-Gas Chromatography/Mass Spectrometry. Chin. J. Appl. Chem. 2023, 40, 562–570. [Google Scholar] [CrossRef]
- Zhao, F.; Xing, H.; Wang, J.; Jia, Z.; Chao, X.; Wang, J.; Liu, J.; Li, Y. Analytical Investigation of Jiatang Scroll Paintings in the Seventh Year of the Guangxu Era. Coatings 2022, 12, 410. [Google Scholar] [CrossRef]
- Rizzo, D.; Casciaro, R. Analytical Investigation of the Original Painted Canvas of Santa Irene, by Giuseppe Verrio (Church of Sant’Irene, Lecce, Italy)*. Archaeometry 2022, 64, 245–255. [Google Scholar] [CrossRef]
- Montané, C.; Velino, C.; André, E.; Aufray, M.; Gayet, F.; Robbiola, L.; Brouca-Cabarrecq, C.; Sciau, P.; Brunet, M. Historical Primers and Paints Used for Aeronautical Protection and Colouring during WWII: A Multi-Techniques Approach on Archaeological Parts. J. Cult. Herit. 2023, 62, 54–64. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; de Oliveira, F.L.; Jos, Á.; Cameán, A.M.; Aparicio-Ruiz, R.; Vasconcelos, V.; Campos, A.; González-Vila, F.J.; González-Pérez, J.A. Alterations in Mediterranean Mussel (Mytilus Galloprovincialis) Composition Exposed to Cyanotoxins as Revealed by Analytical Pyrolysis. J. Anal. Appl. Pyrolysis 2020, 152, 104970. [Google Scholar] [CrossRef]
- Gautam, R.; Vinu, R.; Vaithyanathan, P. Analytical Fast Pyrolysis of Nitrogen-Rich Mosquito Species via Pyrolysis-FTIR and Pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2020, 146, 104766. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Löffler, P.; Eichhöfer, S.; David, J.; Muñoz, K.; Schaumann, G.E. Are Agricultural Plastic Covers a Source of Plastic Debris in Soil? A First Screening Study. SOIL 2022, 8, 31–47. [Google Scholar] [CrossRef]
- De Andrade, M.A.M.; Monteiro, A.S.C.; Gontijo, E.S.J.; Bueno, C.C.; Macedo, J.C.A.; Rangel, E.C.; Melo, D.S.; Montero, J.I.Z.; Rosa, A.H. Combined Analytical Py-GC-MS, SEM, FTIR and 13C NMR for Investigating the Removal of Trace Metals from Aqueous Solutions by Biochar. J. Braz. Chem. Soc. 2020, 31, 1518–1530. [Google Scholar] [CrossRef]
- Chae, E.; Choi, S.-S. Comparison of Polymeric Components and Tire Wear Particle Contents in Particulate Matter Collected at Bus Stop and College Campus. Heliyon 2023, 9, e16558. [Google Scholar] [CrossRef]
- Chae, E.; Choi, S.-S. Concentrations of Particulate Matter (PM2.5) and Contributions of Tire Wear Particle to PM2.5 in an Indoor Parking Garage: Comparison with the Outside and the Differences According to the Sampling Sites. Heliyon 2024, 10, e23513. [Google Scholar] [CrossRef] [PubMed]
- Zymankowska-Kumon, S.; Kaczmarska, K.; Grabowska, B.; Bobrowski, A.; Cukrowicz, S. Influence of the Atmosphere on the Type of Evolved Gases from Phenolic Binders. Arch. Foundry Eng. 2020, 20, 31–36. [Google Scholar] [CrossRef]
- Mattonai, M.; Watanabe, A.; Ribechini, E. Characterization of Volatile and Non-Volatile Fractions of Spices Using Evolved Gas Analysis and Multi-Shot Analytical Pyrolysis. Microchem. J. 2020, 159, 105321. [Google Scholar] [CrossRef]
- Li, K.; Bolatibieke, D.; Yang, S.-G.; Wang, B.; Nan, D.-H.; Lu, Q. Ex Situ Catalytic Fast Pyrolysis of Soy Sauce Residue with HZSM-5 for Co-Production of Aromatic Hydrocarbons and Supercapacitor Materials. RSC Adv. 2020, 10, 23331–23340. [Google Scholar] [CrossRef]
- Prieto, A.I.; Guzmán-Guillén, R.; Jos, Á.; Cameán, A.M.; de la Rosa, J.M.; González-Pérez, J.A. Detection of Cylindrospermopsin and Its Decomposition Products in Raw and Cooked Fish (Oreochromis Niloticus) by Analytical Pyrolysis (Py-GC/MS). Chemosphere 2020, 244, 125469. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Materazi, S. Assessing the Quality of Milk Using a Multicomponent Analytical Platform MicroNIR/Chemometric. Front. Chem. 2020, 8, 614718. [Google Scholar] [CrossRef]
- Ahmad, M.B.; Embaye, T.M.; Deng, S.; Bukhsh, K.; Ruan, R.; Zhou, A.; Hu, Z.; Deng, N.; Wu, D.; Tan, H.; et al. Investigation on Co-Combustion Behavior of Domestic Waste and Sewage Sludge Using TG-FTIR-Py-GC/MS: Thermal Behavior and Gaseous Pollutants Emission. J. Energy Inst. 2025, 118, 101933. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Sun, M.; Liu, B.; Chen, W.; Dang, C.; Zhong, H.; Jiang, J.; Qin, S.; Han, Z.; et al. Evaluating the Bioenergy Potential of Kitchen Wastes Fermentation Residues through Pyrolysis Kinetics, Thermodynamics and Py-GC/MS Analysis Technique. J. Therm. Anal. Calorim. 2023, 148, 995–1010. [Google Scholar] [CrossRef]
- Silveira Junior, E.G.; da Silva, N.R.F.; Perez, V.H.; David, G.F.; Olivares, F.L.; Fernandes, S.A.; Justo, O.R.; Simionatto, E. Fast Pyrolysis of Peanut Husk Agroindustrial Waste: Intensification of Anhydro Sugar (Levoglucosan) Production. Waste Biomass Valorization 2021, 12, 5573–5585. [Google Scholar] [CrossRef]
- Hamid, A.; Alam, A.; Ali, L.; Shittu, T.; Labata, F.G.T.; Altarawneh, M. Improving the Yield of Levoglucosan Platform Chemical from the Pyrolysis of Date Pits Waste Biomass through Pre-Treatments. Sustain. Chem. Pharm. 2024, 42, 101758. [Google Scholar] [CrossRef]
- Tahir, M.H.; Irfan, R.M.; Cheng, X.; Ahmad, M.S.; Jamil, M.; Shah, T.-U.-H.; Karim, A.; Ashraf, R.; Haroon, M. Mango Peel as Source of Bioenergy, Bio-Based Chemicals via Pyrolysis, Thermodynamics and Evolved Gas Analyses. J. Anal. Appl. Pyrolysis 2021, 155, 105066. [Google Scholar] [CrossRef]
- Hermelin, A.; Fabien, L.; Fischer, J.; Saric, N.; Massonnet, G.; Burnier, C. Analysis of Condom Evidence in Forensic Science: Background Survey of the Human Vaginal Matrix Using DRIFTS and Pyrolysis-GC/MS. Forensic Sci. Int. 2021, 321, 110724. [Google Scholar] [CrossRef] [PubMed]
- Burnier, C.; Massonnet, G.; Coulson, S.; DeTata, D.; Pitts, K. Condom Evidence: Characterisation, Discrimination and Classification of Pyrolysis-GC-MS Profiles. Forensic Sci. Int. 2021, 324, 110793. [Google Scholar] [CrossRef] [PubMed]
- Burnier, C.; Kelly, M.; DeTata, D.; Pitts, K. Investigation of Condom Evidence in Cases of Sexual Assault: Case Studies. Forensic Sci. Int. Rep. 2021, 4, 100221. [Google Scholar] [CrossRef]
- Burnier, C.; Maurer, J. Microfurnace or Filament Pyrolyzer: An Example of Pyrolysis-GC/MS for Condom Lubricant Analysis. Forensic Chem. 2024, 40, 100593. [Google Scholar] [CrossRef]
- Chen, Q.-Q.; Zhao, P.-C.; Song, H.; Zhao, L. Detection of Trace Evidence of Lubricants in Condoms by Py/GCMS Method. J. Instrum. Anal. 2024, 43, 995–1002. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Seo, J.M. Analysis of Paint Traces to Determine the Ship Responsible for a Collision. Sci. Rep. 2021, 11, 134. [Google Scholar] [CrossRef]
- Materazzi, S.; Gullifa, G.; Fabiano, M.A.; Frati, P.; Santurro, A.; Scopetti, M.; Fineschi, V.; Risoluti, R. New Frontiers in Thermal Analysis: A TG/Chemometrics Approach for Postmortem Interval Estimation in Vitreous Humor. J. Therm. Anal. Calorim. 2017, 130, 549–557. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, R.; Zhang, D.; Gao, Y.; Xiong, M.; Chen, W. Co-Hydrothermal Carbonization of Cotton Textile Waste and Polyvinyl Chloride Waste for the Production of Solid Fuel: Interaction Mechanisms and Combustion Behaviors. J. Clean. Prod. 2021, 316, 128306. [Google Scholar] [CrossRef]
- Liang, M.; Pan, H.; Zhu, Y.; Zhu, H.; Su, M.; Xie, Y.; Zheng, Y.; Jiang, X.; Li, R.; Zhang, J. Co-Pyrolysis Behavior of Polylactic Acid and Biomass from Heated Tobacco Products. Biomass Convers. Biorefin. 2024, 14, 26035–26050. [Google Scholar] [CrossRef]
- Wu, X.; Bourbigot, S.; Li, K.; Zou, Y. Co-Pyrolysis Characteristics and Flammability of Polylactic Acid and Acrylonitrile-Butadiene-Styrene Plastic Blend Using TG, Temperature-Dependent FTIR, Py-GC/MS and Cone Calorimeter Analyses. Fire Saf. J. 2022, 128, 103543. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Z.; Chen, G.; Zhang, M.; Sun, T.; Wang, Q.; Du, Z.; Chen, Y.; Wu, M.; Li, Z.; et al. Co-Pyrolysis Characteristics of Forestry and Agricultural Residues and Waste Plastics: Thermal Decomposition and Products Distribution. Process Saf. Environ. Prot. 2023, 177, 380–390. [Google Scholar] [CrossRef]
- Guo, N.; Wang, Z.; Chen, G.; Zhang, M.; Zhu, H.; Wang, Q.; Guo, S.; Su, F.; You, Z.; Yang, S.; et al. Co-Pyrolysis Kinetic Characteristics of Wheat Straw and Hydrogen Rich Plastics Based on TG-FTIR and Py-GC/MS. Energy 2024, 312, 133683. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Xiao, M.; Feng, H.; Lin, R.; Wang, X. Insight into the Pyrolysis Behavior of Corn Straw through TG-FTIR, Py-GC/MS Experiments and ReaxFF MD Simulations. Fuel 2024, 372, 132036. [Google Scholar] [CrossRef]
- Nandakumar, T.; Pal, S.K.; Vinu, R.; Ramar, P.M.; Pant, K.K.; Kumar, S.; Balaraman, E. Graphene-Encapsulated Transition Metal@N/C Catalysts for Catalytic Copyrolysis of Biomass and Waste Plastics: Production of Linear α-Olefins and Aromatics. ACS Sustain. Chem. Eng. 2024, 12, 5283–5299. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Chen, G.; Zhang, M.; Sun, T.; Burra, K.G.; Guo, S.; Chen, Y.; Yang, S.; Li, Z.; et al. Co-Pyrolysis Characteristics of Waste Tire and Maize Stalk Using TGA, FTIR and Py-GC/MS Analysis. Fuel 2023, 337, 127206. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Chen, G.; Zhang, M.; Sun, T.; Wang, Q.; Zhu, H.; Yang, S.; Chen, Y.; Wu, M.; et al. Co-Pyrolysis of Waste Tire with Agricultural and Forestry Residues: Pyrolysis Behavior, Products Distribution and Synergistic Effects. J. Energy Inst. 2024, 114, 101634. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, S.; Li, C.; Shan, R.; Yuan, H.; Chen, Y. Co-Pyrolysis Mechanism of Waste Vehicle Seats Derived Artificial Leather and Foam. J. Clean. Prod. 2024, 434, 140436. [Google Scholar] [CrossRef]
- Dong, R.; Tang, Z.; Song, H.; Chen, Y.; Wang, X.; Yang, H.; Chen, H. Co-Pyrolysis of Vineyards Biomass Waste and Plastic Waste: Thermal Behavior, Pyrolytic Characteristic, Kinetics, and Thermodynamics Analysis. J. Anal. Appl. Pyrolysis 2024, 179, 106506. [Google Scholar] [CrossRef]
- Chen, W.; Ye, M.; Li, M.; Xi, B.; Hou, J.; Qi, X.; Zhang, J.; Wei, Y.; Meng, F. Characteristics, Kinetics and Product Distribution on Pyrolysis Process for Waste Wind Turbine Blades. J. Anal. Appl. Pyrolysis 2023, 169, 105859. [Google Scholar] [CrossRef]
- Parker-Jurd, F.N.F.; Abbott, G.D.; Guthery, B.; Parker-Jurd, G.M.C.; Thompson, R.C. Features of the Highway Road Network That Generate or Retain Tyre Wear Particles. Environ. Sci. Pollut. Res. 2024, 31, 26675–26685. [Google Scholar] [CrossRef]
- Zheng, D.; Cheng, J.; Wang, X.; Yu, G.; Xu, R.; Dai, C.; Liu, N.; Wang, N.; Chen, B. Influences and Mechanisms of Pyrolytic Conditions on Recycling BTX Products from Passenger Car Waste Tires. Waste Manag. 2023, 169, 196–207. [Google Scholar] [CrossRef]
- Chávez-Delgado, M.; Colina, J.R.; Segura, C.; Álvarez, C.; Osorio-Vargas, P.; Arteaga-Pérez, L.E.; Norambuena-Contreras, J. Asphalt Pyro-Rejuvenators Based on Waste Tyres: An Approach to Improve the Rheological and Self-Healing Properties of Aged Binders. J. Clean. Prod. 2024, 452, 142179. [Google Scholar] [CrossRef]
- Azócar, B.S.; Vargas, P.O.; Campos, C.; Medina, F.; Arteaga-Pérez, L.E. Dataset from Analytical Pyrolysis Assays for Converting Waste Tires into Valuable Chemicals in the Presence of Noble-Metal Catalysts. Data Brief 2022, 40, 107745. [Google Scholar] [CrossRef]
- Li, J.; Zheng, D.; Yao, Z.; Wang, S.; Xu, R.; Deng, S.; Chen, B.; Wang, J. Formation Mechanism of Monocyclic Aromatic Hydrocarbons during Pyrolysis of Styrene Butadiene Rubber in Waste Passenger Car Tires. ACS Omega 2022, 7, 42890–42900. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, Z.; Liu, J.; Chen, Z.; Xie, W.; Evrendilek, F.; Buyukada, M. Dynamic Pyrolysis Behaviors, Products, and Mechanisms of Waste Rubber and Polyurethane Bicycle Tires. J. Hazard. Mater. 2021, 402, 123516. [Google Scholar] [CrossRef]
- Mariyam, S.; Alherbawi, M.; Rashid, N.; Al-Ansari, T.; McKay, G. Bio-Oil Production from Multi-Waste Biomass Co-Pyrolysis Using Analytical Py–GC/MS. Energies 2022, 15, 7409. [Google Scholar] [CrossRef]
- Krishna, J.V.J.; Prashanth, P.F.; Vinu, R. Distributed Activation Energy Modeling and Py-GC/MS Studies on Pyrolysis of Different Printed Circuit Boards for Resource Recovery. ACS Omega 2022, 7, 31713–31725. [Google Scholar] [CrossRef]
- Li, B.; Shen, B.; Tao, R.; Hu, C.; Wu, Y.; Yuan, H.; Gu, J.; Chen, Y. Effect of Copper Content on the Pyrolysis Process of Organic Components in Waste Printed Circuit Boards: Based on Experimental and Quantum Chemical DFT Simulations. Chin. J. Chem. Eng. 2024, 73, 202–211. [Google Scholar] [CrossRef]
- Liu, J.; Jia, D.; Xu, W.; Chen, Z.; Evrendilek, F.; Cao, H.; Zhong, S.; Yang, Z.; He, Y.; Qi, J. Catalytic Pyrolysis of FeAlOx and Medical Plastic Waste: Kinetic, Slag Conversion, and Gas Emission Patterns. J. Environ. Chem. Eng. 2024, 12, 112605. [Google Scholar] [CrossRef]
- Qu, X.; Li, Y.; Zhang, X.; Li, R. Comprehensive Analysis of Pyrolysis in Medical Rubber Gloves: Pyrolysis Characteristics, Kinetics, Thermodynamics, Volatile Products, and Pathways. Waste Dispos. Sustain. Energy 2024, 6, 297–308. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Ding, Z.; Fu, J.; Evrendilek, F.; Xie, W.; He, Y. Dynamic Pyrolytic Reaction Mechanisms, Pathways, and Products of Medical Masks and Infusion Tubes. Sci. Total Environ. 2022, 842, 156710. [Google Scholar] [CrossRef]
- Ranalli, G.; Andreotti, A.; Colombini, M.P.; Corti, C.; Paris, D.; Rampazzi, L.; Saviano, G.; Vecchio, R.; Caprari, C. Investigation on Tattoo Ink (Hexadecachlorinate Copper Phthalocyanine) Removal: Novel Chemical and Biological Approach. Molecules 2024, 29, 5543. [Google Scholar] [CrossRef]
- Wu, C.-C.; Li, H.; Yin, Z.-W.; Zhang, H.-T.; Gao, M.-J.; Zhu, L.; Zhan, X.-B. Isolation, Purification, and Characterization of Novel Melanin from the Submerged Fermentation of Rhizobium Radiobacter. Process Biochem. 2022, 121, 263–275. [Google Scholar] [CrossRef]
- Gordobil, O.; Olaizola, P.; Banales, J.M.; Labidi, J. Lignins from Agroindustrial By-Products as Natural Ingredients for Cosmetics: Chemical Structure and in Vitro Sunscreen and Cytotoxic Activities. Molecules 2020, 25, 1131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, X.; Zhan, Y.; Bian, H.; Wu, S.; Dai, H.; Liang, F.; Meng, X.; Huang, C.; Fang, G.; et al. A Tailored Deep Eutectic Solvent for High-Yield Conversion of Poplar Residues to Bio-Based Building Blocks at Mild Conditions. Chem. Eng. J. 2024, 487, 150407. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Wu, P.; Yagoub, A.E.-G.A.; Chen, L.; Abdullateef Taiye, M.; Zhou, C. Pretreatment of Sugarcane Bagasse with Deep Eutectic Solvents Affect the Structure and Morphology of Lignin. Ind. Crops Prod. 2021, 173, 114108. [Google Scholar] [CrossRef]
- Sreelekshmi, K.R.; Thomas, D.; Nimesh, S.; Vijayalakshmi, K.P.; Prabhakaran, K. An Insight into the Thermal Decomposition Mechanism of 1-Butyl-3-Methyl-Imidazolium-5-Aminotetrazolate Guided by Py-GC–MS and DFT. J. Mol. Liq. 2023, 392, 123413. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Q.; Meng, C.; Shen, G.; Fu, J. Deep Eutectic Solvent Degumming of Hemp Fiber: Key Factors Influencing Fiber Property and Its Mechanism. Ind. Crops Prod. 2023, 203, 117125. [Google Scholar] [CrossRef]
- Tan, J.-N.; Li, N.; Wang, X.; Yan, J.; Wentao, Z.; Dou, Y. Influence of Natural Deep Eutectic Solvents on the Release of Volatile Compounds from Heated Tobacco. Ind. Crops Prod. 2021, 174, 114171. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, J.; Dai, Y.; Jiang, J.; Liao, S.; Zhou, G.; Wang, S. Mechanism Study of Tobacco Pyrolysis Based on the Analysis of Characteristic Products and In-Situ Identification of Functional Groups Evolution on Pyrolytic Char. J. Anal. Appl. Pyrolysis 2022, 167, 105681. [Google Scholar] [CrossRef]
- Ali, W.; Zilke, O.; Danielsiek, D.; Salma, A.; Assfour, B.; Shabani, V.; Caglar, S.; Phan, H.M.; Kamps, L.; Wallmeier, R.; et al. Flame-Retardant Finishing of Cotton Fabrics Using DOPO Functionalized Alkoxy- and Amido Alkoxysilane. Cellulose 2023, 30, 2627–2652. [Google Scholar] [CrossRef]
- Kim, J.S.; Song, J.E.; Lim, D.; Ahn, H.; Jeong, W. Flame-Retardant Mechanism and Mechanical Properties of Wet-Spun Poly(Acrylonitrile-Co-Vinylidene Chloride) Fibers with Antimony Trioxide and Zinc Hydroxystannate. Polymers 2020, 12, 2442. [Google Scholar] [CrossRef]
- McPartlin, M.W.; Italiano, B.R.; Tiano, T.M.; Pilkenton, S.J.; Lawton, T.J. An Approach to Identifying Fibers and Evolved Compounds from Flame Resistant Fabrics. J. Anal. Appl. Pyrolysis 2021, 159, 105327. [Google Scholar] [CrossRef]
- Micheluz, A.; Angelin, E.M.; Sawitzki, J.; Pamplona, M. Plastics in Robots: A Degradation Study of a Humanoid Skin Mask Made of Soft Urethane Elastomer. Herit. Sci. 2022, 10, 4. [Google Scholar] [CrossRef]
- Gasparini, G.; Semaoui, S.; Augugliaro, J.; Boschung, A.; Berthier, D.; Seyfried, M.; Begnaud, F. Quantification of Residual Perfume by Py-GC-MS in Fragrance Encapsulate Polymeric Materials Intended for Biodegradation Tests. Molecules 2020, 25, 718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullifa, G.; Papa, E.; Putzolu, G.; Rizzo, G.; Ruocco, M.; Albertini, C.; Risoluti, R.; Materazzi, S. MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA). Chemosensors 2025, 13, 258. https://doi.org/10.3390/chemosensors13070258
Gullifa G, Papa E, Putzolu G, Rizzo G, Ruocco M, Albertini C, Risoluti R, Materazzi S. MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA). Chemosensors. 2025; 13(7):258. https://doi.org/10.3390/chemosensors13070258
Chicago/Turabian StyleGullifa, Giuseppina, Elena Papa, Giordano Putzolu, Gaia Rizzo, Marialuisa Ruocco, Chiara Albertini, Roberta Risoluti, and Stefano Materazzi. 2025. "MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA)" Chemosensors 13, no. 7: 258. https://doi.org/10.3390/chemosensors13070258
APA StyleGullifa, G., Papa, E., Putzolu, G., Rizzo, G., Ruocco, M., Albertini, C., Risoluti, R., & Materazzi, S. (2025). MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA). Chemosensors, 13(7), 258. https://doi.org/10.3390/chemosensors13070258