Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = thermal quenching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2315 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 (registering DOI) - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 162
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

15 pages, 6582 KiB  
Article
Microstructure and Mechanical Properties of the TC4 Alloy Obtained by Equal-Channel Angular Pressing in Combination with Reversible Hydrogen Alloying
by Irina P. Semenova, Luiza R. Rezyapova, Alexander V. Polyakov, Yuecheng Dong, Zhonggang Sun and Igor V. Alexandrov
Metals 2025, 15(8), 839; https://doi.org/10.3390/met15080839 - 27 Jul 2025
Viewed by 215
Abstract
This paper studies the effect of reversible hydrogen alloying of the TC4 alloy on the microstructure, phase composition, and mechanical properties before and after equal-channel angular pressing. It is shown that the introduction of 0.3% hydrogen followed by quenching from a temperature of [...] Read more.
This paper studies the effect of reversible hydrogen alloying of the TC4 alloy on the microstructure, phase composition, and mechanical properties before and after equal-channel angular pressing. It is shown that the introduction of 0.3% hydrogen followed by quenching from a temperature of 850 °C leads to the formation of a thin-plate α″-martensite, which made it possible to implement 6 passes (ε ~ 4.2) of pressing at 600 °C. As a result of the deformation of the TC4-H alloy and subsequent thermal vacuum treatment to remove hydrogen, an ultrafine-grained structure with an average size of the α-phase of 0.15 μm was formed, which led to strengthening of the alloy to 1490 MPa with a relative elongation of about 5% at room temperature. The reasons for a more significant refinement of the grain/subgrain structure and an increase in the tensile strength of the hydrogenated alloy after equal-channel angular pressing in comparison with hydrogen-free TC4 alloy are discussed. Full article
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 120
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

14 pages, 3435 KiB  
Article
Thermal Risk Evaluation of the Fluorobenzotriazolone Nitration Process
by Yingxia Sheng, Qianjin Xiao, Hui Hu, Tianya Zhang and Guofeng Guan
Molecules 2025, 30(14), 2939; https://doi.org/10.3390/molecules30142939 - 11 Jul 2025
Viewed by 239
Abstract
This paper introduces the nitration process of obtaining the synthetic intermediate 1-(2-chloro-4-fluoro-5-nitrobenzene)-4-difluoromethyl-4,5-dihydro-3-methyl-1,2,4-triazol-5(1H)-one of pyraclostrobin using raw materials fluorobenzotriazolone, fuming nitric acid, fuming sulfuric acid, and toluene. The exothermic characteristics of the nitration, quenching, extraction, and alkali washing in the nitration reaction [...] Read more.
This paper introduces the nitration process of obtaining the synthetic intermediate 1-(2-chloro-4-fluoro-5-nitrobenzene)-4-difluoromethyl-4,5-dihydro-3-methyl-1,2,4-triazol-5(1H)-one of pyraclostrobin using raw materials fluorobenzotriazolone, fuming nitric acid, fuming sulfuric acid, and toluene. The exothermic characteristics of the nitration, quenching, extraction, and alkali washing in the nitration reaction were studied, and the thermal decomposition risk of the raw materials and the secondary decomposition risk of the products in the nitration process were evaluated. The results showed that the thermal decomposition risk of the four raw materials was level 1. The acceptable level of runaway reaction in the nitration process was evaluated to be level 2, the acceptable level of runaway reaction in the quenching was level 3, the acceptable level of runaway reaction in the extraction and the alkali washing was level 1, the process hazard level of the nitration reaction and the quenching was evaluated to be level 5, and the process hazard level of the extraction and the alkali washing was level 1. Based on the comprehensive assessment results, targeted risk mitigation and control strategies are proposed to ensure process safety. Full article
Show Figures

Figure 1

27 pages, 10163 KiB  
Article
Through-Scale Numerical Investigation of Microstructure Evolution During the Cooling of Large-Diameter Rings
by Mariusz Wermiński, Mateusz Sitko and Lukasz Madej
Materials 2025, 18(14), 3237; https://doi.org/10.3390/ma18143237 - 9 Jul 2025
Viewed by 275
Abstract
The prediction of microstructure evolution during thermal processing plays a crucial role in tailoring the mechanical properties of metallic components. Therefore, this work presents a comprehensive, multiscale modelling approach to simulating phase transformations in large-diameter steel rings during cooling. A finite-element-based thermal model [...] Read more.
The prediction of microstructure evolution during thermal processing plays a crucial role in tailoring the mechanical properties of metallic components. Therefore, this work presents a comprehensive, multiscale modelling approach to simulating phase transformations in large-diameter steel rings during cooling. A finite-element-based thermal model was first used to simulate transient temperature distributions in a large-diameter ring under different cooling conditions, including air and water quenching. These thermal histories were subsequently employed in two complementary phase transformation models of different levels of complexity. The Avrami model provides a first-order approximation of the evolution of phase volume fractions, while a complex full-field cellular automata approach explicitly simulates the nucleation and growth of ferrite grains at the microstructural level, incorporating local kinetics and microstructural heterogeneities. The results highlight the sensitivity of final grain morphology to local cooling rates within the ring and initial austenite grain sizes. Simulations demonstrated the formation of heterogeneous microstructures, particularly pronounced in the ring’s surface region, due to sharp thermal gradients. This approach offers valuable insights for optimising heat treatment conditions to obtain high-quality large-diameter ring products. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

26 pages, 2441 KiB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 627
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Kinetics of Phase Transitions in Amorphous Carbamazepine: From Sub-Tg Structural Relaxation to High-Temperature Decomposition
by Roman Svoboda and Adéla Pospíšilová
Int. J. Mol. Sci. 2025, 26(13), 6136; https://doi.org/10.3390/ijms26136136 - 26 Jun 2025
Viewed by 326
Abstract
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = [...] Read more.
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták–Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol−1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1–2% mass loss at temperatures 190–200 °C). Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 14981 KiB  
Article
Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process
by Jose Martínez-García, Venancio Martínez-García and Andreas Killinger
Coatings 2025, 15(6), 723; https://doi.org/10.3390/coatings15060723 - 17 Jun 2025
Viewed by 609
Abstract
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, [...] Read more.
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, substrate pre-heating temperature, and coating thickness, in an Al2O3 coating process on an aluminium substrate. The relationship of these parameters to the generation of quenching stress, thermal stress and residual stress was analysed at three different sub-modelling scales, from the macroscopic dimension of the substrate to the microscopic dimension of the splats. The thermo-mechanical phenomena occurring during the deposition process at the microscopic level were discussed in the proposed cases. Understanding these phenomena helps to optimise the parameters of the coating process by identifying the underlying mechanisms responsible for the generation of residual stresses. The simulated residual stresses of the 200 μm Al2O3 outer coated aluminium cylinder were experimental validated using the incremental high-speed micro-hole drilling and milling method. Full article
(This article belongs to the Special Issue Advances in Surface Coatings for Wear and Corrosion Protection)
Show Figures

Figure 1

23 pages, 3893 KiB  
Article
Subtypes I and II of Ulva prolifera O.F. Müller: Dominant Green Tide Species in the Southern Yellow Sea and Their Responses to Natural Light and Temperature Conditions
by Shuang Zhao, Jinlin Liu, Zhangyi Xia, Jingyi Sun, Jianheng Zhang and Peimin He
Biology 2025, 14(6), 702; https://doi.org/10.3390/biology14060702 - 15 Jun 2025
Viewed by 499
Abstract
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped [...] Read more.
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped morphology but exhibit distinct cellular dimensions. Subtype I gametes demonstrated significantly larger cell sizes, with long and short axes measuring 6.55 μm and 4.62 μm, respectively, compared to Subtype II’s dimensions of 6.46 μm (long axis) and 3.03 μm (short axis). Developmental analysis revealed striking morphological divergence at the 6-day germling stage: Subtype I attained an average length of 1301.14 μm, more than doubling Subtype II’s 562.25 μm. Superior growth kinetics were observed in Subtype I, exhibiting enhanced specific growth rates (SGRs) across multiple parameters—main stem length (8.58% vs. 3.55%), primary branch elongation (19.17% vs. 12.59%), main stem width expansion (17.29% vs. 5.00%), and biomass accumulation (41.90% vs. 40.96% fresh weight). Chlorophyll quantification confirmed significantly higher pigment content in Subtype I. Pre-co-culture photosynthetic profiling demonstrated Subtype I’s superior quantum efficiency (α = 0.077 vs. 0.045) with marked differences in regulated energy dissipation (YNPQ) and non-photochemical quenching (NPQ). Post-co-culture physiological adaptation was evident in Subtype II, showing significant elevation of non-regulated energy dissipation quantum yield (YNO) and eventual surpassing of maximum electron transport rate (ETRmax) compared to Subtype I. These findings establish that U. prolifera employs robust photoprotective and thermal adaptation strategies under natural photothermal conditions. Crucially, YNO-based analysis revealed Subtype II’s enhanced high-light protection mechanisms and superior adaptability to intense irradiance environments. This research elucidates ecotype-specific environmental adaptation mechanisms in U. prolifera, providing critical insights for optimizing green tide mitigation strategies and advancing ecological understanding of algal bloom dynamics. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

19 pages, 2386 KiB  
Article
Melatonin Improves Salt Tolerance in Tomato Seedlings by Enhancing Photosystem II Functionality and Calvin Cycle Activity
by Xianjun Chen, Bi Chen, Yao Jiang, Jianwei Zhang, Mingjie Liu, Qin Yang and Huiying Liu
Plants 2025, 14(12), 1785; https://doi.org/10.3390/plants14121785 - 11 Jun 2025
Viewed by 523
Abstract
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results [...] Read more.
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results showed that salt stress significantly reduced chlorophyll content and impaired photosystem II (PSII) functionality, as evidenced by the increased minimum fluorescence (Fo) and decreased maximum quantum efficiency of PSII (Fv/Fm) and effective PSII quantum yield (ΦPSII). MT application mitigated these negative effects, as reflected by higher Fv/Fm, increased chlorophyll content, and lower non-photochemical quenching (NPQ). In addition, MT-treated plants exhibited improved PSII electron transport and more efficient use of absorbed light energy, as shown by elevated ΦPSII and qP values. These changes suggest improved PSII functional stability and reduced excess thermal energy dissipation. Furthermore, MT significantly enhanced both the activity and expression of key enzymes involved in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Rubisco activase (RCA), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphatase (FBPase), fructose-bisphosphate aldolase (FBA), transketolase (TK), and sedoheptulose-1,7-bisphosphatase (SBPase), thereby promoting carbon fixation and ribulose-1,5-bisphosphate (RuBP) regeneration under salt stress. Conversely, inhibition of endogenous MT synthesis by p-CPA exacerbated salt stress damage, further confirming MT’s crucial role in salt tolerance. These findings demonstrate that exogenous MT enhances salt tolerance in tomato seedlings by simultaneously improving photosynthetic electron transport efficiency and upregulating the activity and gene expression of key Calvin cycle enzymes, thereby promoting the coordination between light reactions and carbon fixation processes. This study provides valuable insights into the comprehensive regulatory role of MT in maintaining photosynthetic performance under saline conditions. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

40 pages, 4806 KiB  
Review
On the Origin of Thermally Enhanced Upconversion Luminescence in Lanthanide-Doped Nanosized Fluoride Phosphors
by Shirun Yan
Materials 2025, 18(12), 2700; https://doi.org/10.3390/ma18122700 - 8 Jun 2025
Viewed by 675
Abstract
Thermally enhanced upconversion luminescence (UCL), also known as negative thermal quenching of UCL, denotes a continuous increase in the UCL emission intensity of a particular phosphor with a rising temperature. In recent years, the thermal enhancement of UCL has attracted extensive research attention, [...] Read more.
Thermally enhanced upconversion luminescence (UCL), also known as negative thermal quenching of UCL, denotes a continuous increase in the UCL emission intensity of a particular phosphor with a rising temperature. In recent years, the thermal enhancement of UCL has attracted extensive research attention, with numerous reports detailing this effect in phosphors characterized by varying particle sizes, architectures, and compositions. Several hypotheses have been formulated to explain the underlying mechanisms driving this thermal enhancement. This paper rigorously examines thermally enhanced UCL in fluoride nanoparticles by addressing two key questions: (1) Is the thermal enhancement of UCL an intrinsic feature of these nanoparticles? (2) Can the proposed mechanisms explaining this enhancement be unequivocally supported by the existing literature? Upon analyzing a compilation of experimental observations alongside the concurrent phenomena occurred during spectral measurements, it is postulated that thermally enhanced UCL intensity is likely a consequence of multiple extrinsic factors operating simultaneously at elevated temperatures, rather than being an intrinsic property of nanoparticles. These factors include moisture desorption, laser-induced local heating, and lattice thermal expansion. The size-dependent properties of nanoparticles, such as surface-to-volume ratio, thermal expansion coefficient, and quantum yield, are the fundamental reasons for the size-dependent thermal enhancement factor of UCL. Temperature-dependent emission spectral intensity is not a dependable indicator for assessing the thermal quenching properties of phosphors. This is because it is influenced not only by the phosphor’s quantum yield, but also by various extrinsic factors at high temperatures. The nonlinear nature of UCL further magnifies the impact of these extrinsic factors. Full article
(This article belongs to the Special Issue Advances in Optical and Photonic Materials)
Show Figures

Graphical abstract

29 pages, 4275 KiB  
Article
CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept
by Gonçalo Pacheco, José Chaves, Miguel Mendes and Pedro Coelho
Energies 2025, 18(11), 2919; https://doi.org/10.3390/en18112919 - 2 Jun 2025
Viewed by 978
Abstract
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This [...] Read more.
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This study numerically investigates the design and implementation of staged combustion of a mixture of NH3/H2 by means of CFD simulations. The investigation employed the single-phase flow RANS governing equations and the eddy dissipation concept (EDC) combustion model, with the incorporation of a detailed kinetic mechanism. The combustion chamber operates under the RQL (rich–quench–lean) combustion regime. The first stage operates under rich conditions, firing mixtures of ammonia in air, enriched by hydrogen (H2) to enhance combustion properties in a swirl and bluff-body stabilized burner. The secondary stage injects additional air and hydrogen to mitigate unburnt ammonia and NOx emissions. Simulations of the first stage were performed for a thermal input ranging from 4 kW to 8 kW and flames with an equivalence ratio of 1.2. In the second stage, additional hydrogen is injected with a thermal input of either 1 kW or 2 KW, and air is added to adjust the global equivalence ratio to 0.6. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Graphical abstract

17 pages, 4438 KiB  
Article
Coordinated Regulation of Mechanical Behavior and Residual Stress of 9Cr-3W-3Co Steel Based on Jominy Test
by Hongru Lyu, Lin Zhu, Qingxian Ma, Jie Huo, Jiamian Liu and Zhuolin Wang
Materials 2025, 18(11), 2508; https://doi.org/10.3390/ma18112508 - 26 May 2025
Viewed by 396
Abstract
Heat-resistant steel 9Cr-3W-3Co is one of the most important materials of advanced ultra-supercritical units. Investigating the quenching performance of 9Cr-3W-3Co material and optimizing its post-quenching microstructural mechanical properties and residual stress distribution are crucial for ensuring the service performance of large forgings. In [...] Read more.
Heat-resistant steel 9Cr-3W-3Co is one of the most important materials of advanced ultra-supercritical units. Investigating the quenching performance of 9Cr-3W-3Co material and optimizing its post-quenching microstructural mechanical properties and residual stress distribution are crucial for ensuring the service performance of large forgings. In this paper, the relevant research was carried out based on the combination of numerical simulation and the Jominy end-quenching test. The microstructure evolution and mechanical properties formation mechanism under different austenitizing temperatures were studied first. Furthermore, considering the residual stress distribution, the heat treatment parameters were optimized. The results showed that the martensite, grain refinement, and carbide distribution of the material were the key factors affecting the hardness after the quenching process. When the austenitizing temperature was 950 °C, a hardness of more than 35 HRC can be obtained within a 50 mm depth after quenching. Meanwhile, on the basis of balancing thermal stress and phase transformation stress, the maximum residual stress decreased by 11.8% compared with that obtained at a 1000 °C austenitizing temperature, dropping to 608 MPa. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

20 pages, 10057 KiB  
Article
An Investigation of Heat Treatment Residual Stress of Type I, II, III for 8Cr4Mo4V Steel Bearing Ring Using FEA-CPFEM-GPA Method
by Tao Xia, Puchang Cui, Tianpeng Song, Xue Liu, Yong Liu and Jingchuan Zhu
Metals 2025, 15(5), 548; https://doi.org/10.3390/met15050548 - 15 May 2025
Cited by 1 | Viewed by 483
Abstract
The heat treatment residual stress of 8Cr4Mo4V steel bearings seriously affects the contact fatigue life. The micro stress concentration at the carbide interface leads to the initiation of micro cracks. Therefore, in this paper, the systematic analysis of heat treatment residual stress of [...] Read more.
The heat treatment residual stress of 8Cr4Mo4V steel bearings seriously affects the contact fatigue life. The micro stress concentration at the carbide interface leads to the initiation of micro cracks. Therefore, in this paper, the systematic analysis of heat treatment residual stress of 8Cr4Mo4V steel is conducted. FEA was used to analyze the residual stress of type I after heat treatment process. Based on numerical simulation and EBSD results, CPFEM was carried out to study the distribution of type II residual stress. Using high-resolution characterization results, GPA was performed to study type III residual stress caused by crystal defects. The FEA results indicate that thermal strain and phase transformation strain dominate the macroscopic stress change before and after martensitic transformation. During the first tempering process, the phase transformation leads to the release of quenching residual stress. The large stress concentration at the carbide interface is revealed by CPFEM. High-resolution characterization of coherent interface between carbide and matrix reveals that the micro residual strain at this interface is small. Through a systematic analysis of the residual stress of 8Cr4Mo4V steel, a basis is provided for modifying the macroscopic and microscopic residual stress of heat treatment to improve the bearing performance. Full article
Show Figures

Figure 1

Back to TopTop