Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process
Abstract
:1. Introduction
2. Numerical Model
2.1. Multi-Scale One-Way Coupled Thermo-Mechanical Model Description
2.2. Thermal Model
2.3. Material Properties
2.4. Experimental Measurement of Residual Stress in Thermal Spray Coating Process
3. Simulation Results
3.1. Substrate Geometry
3.2. Effect of the Coating Thickness
3.3. Effect of Substrate Pre-Heating Temperature
4. Experimental Measurement of Residual Stresses by Incremental High-Speed Hole-Drilling Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pawlowski, L. The Science and Engineering of Thermal Spray Coatings, 2nd ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2008; ISBN 978-0-471-49049-4. [Google Scholar]
- Espallargas, N. Future Development of Thermal Spray Coatings, 1st ed.; Woodhead Publishing: Cambridge, UK, 2015; ISBN 978-0-85709-769-9. [Google Scholar]
- Li, C.J.; Ohmori, A. Relationships between the microstructure and properties of thermally sprayed deposits. J. Therm. Spray Technol. 2002, 11, 365–374. [Google Scholar] [CrossRef]
- Ferguen, N.; Leclerc, W.; Lamini, E.-S. Numerical investigation of thermal stresses induced interface delamination in plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. 2023, 461, 129449. [Google Scholar] [CrossRef]
- Davis, J.R. Handbook of Thermal Spray Technology, 1st ed.; ASM International: Novelty, OH, USA, 2004; ISBN 0-87170-795-0. [Google Scholar]
- Bach, F.; Laarmann, A.; Wenz, T. Modern Surface Technology, 1st ed.; Wiley-VCH Verlag GmbH & Co., KgaA: Weinheim, Germany, 2006; ISBN 978-3-52731-532-1. [Google Scholar]
- Abubakar, A.A.; Arif, A.F.M.; Al-Athel, K.S.; Akhtar, S.S.; Mostaghimi, J. Modeling Residual Stress Development in Thermal Spray Coatings: Current Status and Way Forward. J. Therm. Spray. Tech. 2017, 26, 1115–1145. [Google Scholar] [CrossRef]
- Gan, Z.; Ng, H.W.; Devasenapathi, A. Deposition-Induced Residual Stresses In Plasma-Sprayed Coatings. Surf. Coat. Technol. 2004, 187, 307–319. [Google Scholar] [CrossRef]
- Matejicek, J.; Sampath, S. Intrinsic residual stresses in single splats produced by thermal spray processes. Acta Mater. 2001, 49, 1993–1999. [Google Scholar] [CrossRef]
- Fauchais, P.; Vardelle, A.; Vardelle, M.; Fukumoto, M. Knowledge concerning splat formation: An invited review. J. Therm. Spray Technol. 2004, 13, 337–360. [Google Scholar] [CrossRef]
- Kuroda, S.; Clyne, T.W. The Quenching Stress In Thermally Sprayed Coatings. Thin Solid Film. 1991, 200, 49–66. [Google Scholar] [CrossRef]
- Clyne, T.W.; Gill, S.C. Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work. JTST 1996, 5, 401–418. [Google Scholar] [CrossRef]
- Wenzelburger, M.; Riegert-Escribano, M.J.; Gadow, R. Methods of Residual Stress Analysis in Layer Composites and Their Application. Mech. Prop. Perform. Eng. Ceram. Compos. VI Ceram. Eng. Sci. Proc. 2009, 26, 371–379. [Google Scholar]
- Mehta, A.; Vasudev, H.; Thakur, L. Applications of numerical modelling techniques in thermal spray coatings: A comprehensive review. Int. J. Interact. Des. Manuf. 2024, 18, 3525–3545. [Google Scholar] [CrossRef]
- Elhoriny, M.; Wenzelburger, M.; Killinger, A.; Gadow, R. Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings. J. Therm. Spray Technol. 2017, 26, 735–744. [Google Scholar] [CrossRef]
- Floristán, M.; Montesinos, J.A.; García-Marín, J.A.; Killinger, A.; Gadow, R. Robot Trajectory Planning For High Quality Thermal Spray Coating Processes On Complex Shaped Components. In Proceedings of the ITSC 2012, Houston, TX, USA, 21–24 May 2012; ASM International: Almere, The Netherlands, 2012; pp. 448–453. [Google Scholar] [CrossRef]
- Liu, J.; Bolot, R.; Costil, S. Residual Stresses and Final Deformation of an Alumina Coating: Modeling and Measurement. Surf. Coat. Technol. 2015, 268, 241–246. [Google Scholar] [CrossRef]
- Ng, H.W.; Gan, Z. A Finite Element Analysis Technique For Predicting as-Sprayed Residual Stresses Generated by the Plasma Spray Coating Process. Finite Elem. Anal. Des. 2005, 41, 1235–1254. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, J.; Xie, H. Numerical and Experimental Investigation of Residual Stress in Thermal Barrier Coatings During APS Process. J. Therm. Spray Technol. 2014, 23, 653–665. [Google Scholar] [CrossRef]
- Cai, Z.; Jiang, J.; Wang, W.; Liu, Y.; Cao, Z. CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs. Ceram. Int. 2019, 45, 14366–14375. [Google Scholar] [CrossRef]
- Abubakar, A.A.; Arif, A.F.M.; Akhtar, S.S.; Arif, A.F.M.; Mostaghimi, J. Splats Formation, Interaction and Residual Stress Evolution in Thermal Spray Coating Using a Hybrid Computational Model. J. Therm. Spray Technol. 2019, 28, 359–377. [Google Scholar] [CrossRef]
- Gadelmoula, A.; Al-Athel, K.S.; Akhtar, S.S.; Arif, A.F.M. A Stochastically Generated Geometrical Finite Element Model for Predicting the Residual Stresses of Thermally Sprayed Coatings Under Different Process Parameters. J. Therm. Spray Technol. 2020, 29, 1256–1267. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; Han, X.; Chen, X.; Zhao, X. Numerical simulation and parameter sensitivity analysis of multi-particle deposition behavior in HVAF spraying. Surf. Coat. Technol. 2022, 441, 128569. [Google Scholar] [CrossRef]
- Martínez-García, J.; Martínez-García, V.; Killinger, A. Modelling and Experimental Validation of the Flame Temperature Profile in Atmospheric Plasma Coating Processes on the Substrate. Coatings 2024, 14, 1248. [Google Scholar] [CrossRef]
- Martínez-García, J.; Martínez-García, V.; Killinger, A. Multi-Scale Thermo-Mechanical Model Simulation of Residual Stress in Atmospheric Plasma Spray Process. Coatings 2024, 14, 1547. [Google Scholar] [CrossRef]
- Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des. 2012, 35, 572–588. [Google Scholar] [CrossRef]
- Berreth, K.; Buchmann, M.; Gadow, R.; Tabellion, J. Evaluation of Residual Stresses in Thermal Sprayed Coatings. In Proceedings of the International Thermal Spray Conference, Düsseldorf, Germany, 17–19 March 1999. [Google Scholar] [CrossRef]
- Buchmann, M.; Gadow, R.; Tabellion, J. Experimental and Numerical Residual Stress Analysis of Layer Coated Composites. Mater. Sci. Eng. A 2000, 288, 154–159. [Google Scholar] [CrossRef]
- Gadow, R.; Riegert-Escribano, M.J.; Buchmann, M. Residual stress analysis in thermally sprayed layer composites, using the hole milling and drilling method. J. Therm. Spray Technol. 2005, 14, 100–108. [Google Scholar] [CrossRef]
- Grant, P.; Lord, J.; Whitehead, P.; Fry, A.T. The Application of Fine Increment Hole Drilling for Measuring Machining-Induced Residual Stresses. Appl. Mech. Mater. 2005, 3, 105–110. [Google Scholar] [CrossRef]
- Cormier, N.G.; Smallwood, B.S.; Sinclair, G.B.; Meda, G. Aggressive Submodelling of Stress Concentrations. Int. J. Numer. Methods Eng. 1999, 46, 889–909. [Google Scholar] [CrossRef]
- ASNYS. Advanced Analysis Guide—Chapter 9: Submodeling, Release 12.1; ASNYS Inc.: Canonsburg, PA, USA, 2009. [Google Scholar]
- Soundararajan, B.; Sofia, D.; Barletta, D.; Poletto, M. Review On Modeling Techniques For Powder Bed Fusion Processes Based On Physical Principles. Addit. Manuf. 2021, 47, 102336. [Google Scholar] [CrossRef]
- ANSYS. Advanced Analysis Technique Guide; ANSYS Inc.: Canonsburg, PA, USA, 2009. [Google Scholar]
- Mulero, M.A.; Zapata, J.; Vilar, R.; Martínez, V.; Gadow, R. Automated Image Inspection System To Quantify Thermal Spray Splat Morphology. Surf. Coat. Technol. 2015, 278, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Sun, X.G.; He, J.Q.; Pan, Z.Y.; Wang, C.H. Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique. Comput. Mater. Sci. 2012, 53, 117–127. [Google Scholar] [CrossRef]
- Kandil, F.A.; Lord, J.D.; Fry, A.T.; Grant, P.V. NPL Report MATC(A)O4: A Review of Residual Stress Measurement Methods-A Guide to Technique Selection; National Physical Laboratory: Teddington, UK, 2001. [Google Scholar]
- Guo, J.; Fu, H.; Pan, B.; Kang, R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Sun, D.; You, E.; Zhang, T.; Xu, J.; Wang, X.; Ren, X.; Tao, W. A review of thermal contact conductance research of conforming contact surfaces. Part B Int. Commun. Heat Mass Transf. 2024, 159, 108065. [Google Scholar] [CrossRef]
- Ghara, T.; Paul, S.; Bandyopadhyay, P.P. Influence of Grit Blasting on Residual Stress Depth Profile and Dislocation Density in Different Metallic Substrates. Met. Mater. Trans. A 2021, 52, 65–81. [Google Scholar] [CrossRef]
- Ghelichi, R.; Bagherifard, S.; MacDonald, D.; Fernandez-Pariente, I.; Jodoin, B.; Guagliano, M. Experimental and numerical study of residual stress evolution in cold spray coating. Appl. Surf. Sci. 2014, 288, 26–33. [Google Scholar] [CrossRef]
- Mellali, M.; Grimaud, A.; Leger, A.C. Alumina grit blasting parameters for surface preparation in the plasma spraying operation. J. Therm. Spray Technol. 1997, 6, 217–227. [Google Scholar] [CrossRef]
Parameter | Flat Plate [25] | Inner Coated Cylinder | Outer Coated Cylinder |
---|---|---|---|
Substrate dimensions area (La × Lb), mm3 | 101.6 × 25.4 | 101.6 × 25.4 | 101.6 × 25.4 |
Cylinder inside radius, mm | - | 16.17 | 12.17 |
Cylinder outside radius, mm | - | 20.17 | 16.17 |
Thickness, mm | 4 | 4 | 4 |
Number of elements in the first layer of the substrate | 192 × 48 | 192 × 48 | 192 × 48 |
Number of node layers | 5 | 5 | 5 |
Element dimensions of the first layer substrate (dx × dy × dz), µm3 | 529.2 × 529.2 × 365 | 529.2 × 529.2 × 365 | 529.2 × 529.2 × 365 |
Parameter | Flat Plate [25] | Cylinder |
---|---|---|
Torch distance to the plate, mm | 120 | 120 |
Torch speed (vtorch), mm/s | 500 | - |
Vertical torch velocity (vL), mm/s | - | 13 |
Cylinder angular velocity (ω), rps | - | 4.92 |
Hydrogen, slpm | 10 | 10 |
Argon, slpm | 44 | 44 |
Current, A | 500 | 500 |
Voltage, V | 75 | 75 |
Power, kW | 37.5 | 37.5 |
Powder carrier gas mass flow rate, slpm | 5 | 5 |
Powder feed rate, g/min | 4.2 | 4.2 |
Number elements of the line offset (ΔLZ) | 5 | 5 |
Linear trajectory length (Lx), mm | 200 | 101.6 |
Total number of spray linear/ circumferential lines (TL) | 15 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-García, J.; Martínez-García, V.; Killinger, A. Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process. Coatings 2025, 15, 723. https://doi.org/10.3390/coatings15060723
Martínez-García J, Martínez-García V, Killinger A. Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process. Coatings. 2025; 15(6):723. https://doi.org/10.3390/coatings15060723
Chicago/Turabian StyleMartínez-García, Jose, Venancio Martínez-García, and Andreas Killinger. 2025. "Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process" Coatings 15, no. 6: 723. https://doi.org/10.3390/coatings15060723
APA StyleMartínez-García, J., Martínez-García, V., & Killinger, A. (2025). Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process. Coatings, 15(6), 723. https://doi.org/10.3390/coatings15060723