CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept
Abstract
:1. Introduction
2. Methodology
2.1. Burner Geometry
2.2. Operating Conditions
3. Numerical Methods
3.1. Governing Equations for Reactive Fluid Flow
3.2. Turbulent Model: Realizable k–ϵ
3.3. Chemical Kinetics Mechanism
3.4. Combustion Model
3.5. Radiation Model
3.6. Mesh and Computational Domain
4. Results
4.1. First Stage Simulation
4.2. Species Concentration Contours
4.3. Second Stage Simulation
4.3.1. Cases 1 and 2: Effect of Thermal Input
4.3.2. Case 6: Effect of Secondary Air
4.3.3. Case 4: Effect of Secondary Fuel
4.4. Exhaust Gas Emissions
4.5. Greenhouse Gas Emissions
4.6. Pratical Implications
5. Conclusions
- The emissions from the RQL combustor show the potential to fire mixtures of H2/NH3 to produce power while keeping CO2-equivalent emissions to minimum levels. Case 6 yielded a GWP CO2equivalent/kWh of only 1.1, highlighting the potential of ammonia combustion to reduce greenhouse gas emissions in combustion applications.
- The second stage NOx emissions exceeded the legislation levels (250 mg/Nm3) for all the simulations. This shows the necessity of catalytic treatment to keep emissions at acceptable levels. Case 6 predicted a concentration of 350 mg/Nm3 of NOx, which is not yet able to comply with legislation despite being the lowest NOx emissions among the simulated operating conditions.
- The addition of H2 as a secondary fuel (cases 1, 2, 5, and 6) enabled the reduction of N2O emissions to single digit values. The second stage of the combustion chamber was able to operate without the necessity of a secondary fuel, although at the expense of an increase in N2O emissions. This configuration resulted in the lowest NOx emissions among all scenarios. However, it also exhibited the highest predicted N2O emissions, indicating a trade-off between NOx mitigation and N2O formation. This trade-off highlights the challenge of simultaneously minimizing both pollutants in ammonia combustion.
- A pathway should be focused on using fuel mixtures with higher NH3 contents and, preferably, design a combustion chamber that can operate with pure ammonia to minimize the logistic constraints of dual fuel operation. A possible solution for the inability to stably burn and minimize ammonia slip is to perform a local dissociation of ammonia into H2/NH3 mixtures to enhance the fuel combustion properties.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGWP | Absolute global warming potential |
CFD | Computational fluid dynamics |
DLE | Dry low emissions |
DOM | Discrete ordinates method |
EDC | Eddy dissipation concept |
EU | European Union |
ETS | Emissions trading scheme |
FSK | Full-spectrum k-distribution |
GHE | Greenhouse effect |
GHG | Greenhouse gas |
GTP | Global temperature change potential |
GWP | Global warming potential |
IRZ | Inner recirculation zone |
SCR | Selective converter reduction |
WSGG | Weighted sum of gray gases |
Roman Symbols | |
A0 | Model constant |
Cp | Specific heat capacity at constant pressure [J/(kg·K)] |
Cϵ1 | Model constant |
Cϵ2 | Model constant |
Cμ | Realizable k–ϵ model coefficient |
fb | Body forces [N/m3] |
Fμ | Damping function |
Fk,j | Diffusion flux [kg/(m2.s)] |
k | Turbulent kinetic energy [m2/s2] |
K | Thermal conductivity [W/(m·K)] |
p | Pressure [Pa] |
Pk | Production term of turbulent kinetic energy [W/m3] |
Sij | Mean strain rate tensor |
ST | Energy source term [W/m3] |
T | Temperature [K] |
T0 | Specific time scale [s] |
Te | Large eddy time scale [s] |
u | Velocity vector [m/s] |
Yi | Mass fraction of species |
Y*i | Species mass fraction |
Greek Symbols | |
ϵ | Dissipation rate of turbulent kinetic energy [m2/s3] |
μ | Dynamic viscosity [kg/(m·s)] |
μt | Turbulent viscosity [kg/(m·s)] |
ν | Kinematic viscosity [m2/s] |
ρ | Density [kg/m3] |
σϵ | Turbulent Prandtl number |
σk | Turbulent Prandtl number |
τ | Turbulent time scale [s] |
ϕ | Equivalence ratio |
ωi | Reaction rate [Kg/(m3·s)] |
Ωij | Mean rate of rotation tensor |
Appendix A
Case | Total Power (kW) | 1st Stage Power Input 80%NH3/20%H2 | 1st Stage Inlet Mass Flow kg/s NH3xi = 0.147 H2xi = 0.0429 N2xi = 0.653 O2xi = 0.198 | 2nd Stage Power Input 100% H2 | Secondary Fuel Mass Flow kg/s | Secondary Air Mass Flow kg/s | Global Equivalence Ratio | Secondary Air Configuration (See Figure 4) |
---|---|---|---|---|---|---|---|---|
1 | 5 | 4 | 1.99 × 10−4 | 1 | 7.60 × 10−7 | 1.33 × 10−4 | 0.6 | A |
2 | 10 | 8 | 3.97 × 10−4 | 2 | 1.52 × 10−6 | 2.65 × 10−4 | 0.6 | A |
3 | 4 | 4 | 1.99 × 10−4 | 0 | 0 | 1.33 × 10−4 | 0.5 | A |
4 | 8 | 8 | 3.97 × 10−4 | 0 | 0 | 2.65 × 10−4 | 0.5 | A |
5 | 5 | 4 | 1.99 × 10−4 | 1 | 7.60 × 10−7 | 1.33 × 10−4 | 0.6 | B |
6 | 10 | 8 | 3.97 × 10−4 | 2 | 1.52 × 10−6 | 2.65 × 10−4 | 0.6 | B |
7 | 4 | 4 | 1.99 × 10−4 | 0 | 0 | 1.33 × 10−4 | 0.5 | B |
8 | 8 | 8 | 3.97 × 10−4 | 0 | 0 | 2.65 × 10−4 | 0.5 | B |
References
- United Nations. Paris Agreement. In United Nations Framework Convention on Climate Change; United Nations: Paris, France, 2015. [Google Scholar]
- Saygin, D.; Blanco, H.; Boshell, F.; Cordonnier, J.; Rouwenhorst, K.; Lathwal, P.; Gielen, D. Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand. Sustainability 2023, 15, 1623. [Google Scholar] [CrossRef]
- Wang, B.; Li, T.; Gong, F.; Othman, M.H.D.; Xiao, R. Ammonia as a Green Energy Carrier: Electrochemical Synthesis and Direct Ammonia Fuel Cell—A Comprehensive Review. Fuel Process. Technol. 2022, 235, 107380. [Google Scholar] [CrossRef]
- IEA. Ammonia Technology Roadmap Towards More Sustainable Nitrogen Fertiliser Production; IEA: Paris, France, 2021. [Google Scholar]
- Cardoso, J.P. Ammonia as a Decarbonization Tool for Low Carbon Fuel Applications and Stationary Power Generation. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2024. [Google Scholar]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.D.K.A.; Okafor, E.C. Science and Technology of Ammonia Combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Alnajideen, M.; Shi, H.; Northrop, W.; Emberson, D.; Kane, S.; Czyzewski, P.; Alnaeli, M.; Mashruk, S.; Rouwenhorst, K.; Yu, C.; et al. Ammonia Combustion and Emissions in Practical Applications: A Review. Carbon Neutrality 2024, 3, 13. [Google Scholar] [CrossRef]
- Pacheco, G.; Pereira, J.; Mendes, M.; Coelho, P. Investigation of a Fuel-Flexible Diffusion Swirl Burner Fired with NH3 and Natural Gas Mixtures. Energies 2024, 17, 4206. [Google Scholar] [CrossRef]
- Mission Possible Partnership. Making Net-Zero Ammonia Possible. 2022. Available online: https://www.energy-transitions.org/publications/making-net-zero-ammonia-possible/ (accessed on 12 February 2025).
- Mission possible Partnership. MPP Global Project Tracker. January 2025. Available online: https://tracker.missionpossiblepartnership.org/mpp-global-projects-map/ (accessed on 19 January 2025).
- Afif, A.; Radenahmad, N.; Cheok, Q.; Shams, S.; Kim, J.H.; Azad, A.K. Ammonia-Fed Fuel Cells: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 60, 822–835. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, J.; Wu, C.; Fu, J.; Liu, J.; Duan, X. The Application Prospect and Challenge of the Alternative Methanol Fuel in the Internal Combustion Engine. Sci. Total Environ. 2024, 913, 169708. [Google Scholar] [CrossRef]
- Lan, R.; Tao, S. Ammonia as a Suitable Fuel for Fuel Cells. Front. Energy Res. 2014, 2, 35. [Google Scholar] [CrossRef]
- Giuntini, L.; Frascino, L.; Ariemma, G.B.; Sorrentino, G.; Galletti, C.; Ragucci, R. Modeling of Ammonia MILD Combustion in Systems with Internal Recirculation. Combust. Sci. Technol. 2023, 195, 3513–3528. [Google Scholar] [CrossRef]
- Rocha, R.C.; Costa, M.; Bai, X.S. Combustion and Emission Characteristics of Ammonia under Conditions Relevant to Modern Gas Turbines. Combust. Sci. Technol. 2021, 193, 2514–2533. [Google Scholar] [CrossRef]
- Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames. Combust Flame 2018, 187, 185–198. [Google Scholar] [CrossRef]
- Kurata, O.; Iki, N.; Matsunuma, T.; Inoue, T.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A. Performances and Emission Characteristics of NH3-Air and NH3-CH4-Air Combustion Gas-Turbine Power Generations. Proc. Combust. Inst. 2017, 36, 3351–3359. [Google Scholar] [CrossRef]
- Romano, C.; Cerutti, M.; Babazzi, G.; Miris, L.; Lamioni, R.; Galletti, C.; Mazzotta, L.; Borello, D. Ammonia Blends for Gas-Turbines: Preliminary Test and CFD-CRN Modelling. Proc. Combust. Inst. 2024, 40, 105494. [Google Scholar] [CrossRef]
- Pacheco, G.P.; Rocha, R.C.; Franco, M.C.; Mendes, M.A.A.; Fernandes, E.C.; Coelho, P.J.; Bai, X.S. Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner. Energy Fuels 2021, 35, 7201–7216. [Google Scholar] [CrossRef]
- Li, R.; Konnov, A.A.; He, G.; Qin, F.; Zhang, D. Chemical Mechanism Development and Reduction for Combustion of NH3/H2/CH4 Mixtures. Fuel 2019, 257, 116059. [Google Scholar] [CrossRef]
- Stagni, A.; Arunthanayothin, S.; Dehue, M.; Herbinet, O.; Battin-Leclerc, F.; Bréquigny, P.; Mounaïm-Rousselle, C.; Faravelli, T. Low- and Intermediate-Temperature Ammonia/Hydrogen Oxidation in a Flow Reactor: Experiments and a Wide-Range Kinetic Modeling. Chem. Eng. J. 2023, 471, 144577. [Google Scholar] [CrossRef]
- Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Measurement and Modelling of the Laminar Burning Velocity of Methane-Ammonia-Air Flames at High Pressures Using a Reduced Reaction Mechanism. Combust Flame 2019, 204, 162–175. [Google Scholar] [CrossRef]
- Ren, J.; Li, W.; Zou, C. Development of a Reduced Combustion Model for Ammonia/Hydrogen Combustion. Fuel 2023, 354, 129389. [Google Scholar] [CrossRef]
- Fatehi, M.; Renzi, M. Modelling and Development of Ammonia-Air Non-Premixed Low NOX Combustor in a Micro Gas Turbine: A CFD Analysis. Int. J. Hydrogen Energy 2024, 88, 1–10. [Google Scholar] [CrossRef]
- Mazzotta, L.; Lamioni, R.; D’Alessio, F.; Meloni, R.; Morris, S.; Goktepe, B.; Cerutti, M.; Romano, C.; Creta, F.; Galletti, C.; et al. Modeling Ammonia-Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner. J. Eng. Gas Turbine Power 2024, 146, 091022. [Google Scholar] [CrossRef]
- Xiao, H.; Valera-Medina, A.; Bowen, P.J. Modeling Combustion of Ammonia/Hydrogen Fuel Blends under Gas Turbine Conditions. Energy Fuels 2017, 31, 8631–8642. [Google Scholar] [CrossRef]
- Okafor, E.C.; Kurata, O.; Yamashita, H.; Iki, N.; Inoue, T.; Jo, H.; Shimura, M.; Tsujimura, T.; Hayakawa, A.; Kobayashi, H. Achieving High Flame Stability with Low NO And Zero N2O and NH3 Emissions during Liquid Ammonia Spray Combustion with Gas Turbine Combustors. Proc. Combust. Inst. 2024, 40, 105340. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new K-epsilon eddy viscosity model for high reynolds numer turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Spalart, P.R.; Rumsey, C.L. Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculation. AIAA J. 2007, 45, 10. [Google Scholar] [CrossRef]
- Baulch, D.L.; Bowman, C.T.; Cobos, C.J.; Cox, R.A.; Just, T.; Kerr, J.A.; Pilling, M.J.; Stocker, D.; Troe, J.; Tsang, W.; et al. Evaluated Kinetic Data for Combustion Modeling: Supplement II. J. Phys. Chem. Ref. Data 2005, 34, 757–1397. [Google Scholar] [CrossRef]
- Siemens Industries Digital Software Realizable K-Epsilon Model. In SIEMENS STAR-CCM+ Documentation; Siemens: Munich, Germany, 2020.
- Li, Y.; Sarathy, S.M. Probing hydrogen–nitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. Int. J. Hydrogen Energy 2020, 45, 23624–23637. [Google Scholar] [CrossRef]
- Klippenstein, S.J.; Harding, L.B.; Ruscic, B.; Sivaramakrishnan, R.; Srinivasan, N.K.; Su, M.C.; Michael, J.V. Thermal Decomposition of NH2OH and Subsequent Reactions: Ab Initiotransition State Theory and Reflected Shock Tube Experiments. J. Phys. Chem. A 2009, 113, 10241–10259. [Google Scholar] [CrossRef]
- Abian, M.; Alzueta, M.U.; Glarborg, P. Formation of NO from N2/O2 Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO. Internatonal J. Chem. Kinet. 2015, 47, 518–532. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent Combustion Modeling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Siemens Industries Digital Software. Reacting Species Transport. In SIEMENS STAR-CCM+ Documentation; Siemens: Munich, Germany, 2020. [Google Scholar]
- Klimanek, A.; Adamczyk, W.; Sładek, S.; Fan, Y.; Bothien, M.R.; Gruber, A.; Szlęk, A. Prediction of Ammonia Ignition/Quenching and Emissions of NOx, NH3 and H2 in a Non-Premixed Swirl Combustor Using the EDC Model. Case Stud. Therm. Eng. 2025, 65, 105670. [Google Scholar] [CrossRef]
- Kuang, Y.; Han, D.; Xu, Z.; Wang, Y.; Wang, C. Numerical Study on Combustion Characteristics of Ammonia Mixture under Different Combustion Modes. Int. J. Hydrogen Energy 2024, 54, 1403–1409. [Google Scholar] [CrossRef]
- Siemens Industries Digital Software Participating Media Radiation (DOM). In SIEMENS STAR-CCM+ Documentation; Siemens: Munich, Germany, 2020.
- Modest, M.F. Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer-Correlated-k vs. Scaling Approximation. J. Quant. Spectrosc. Radiat. Transf. 2003, 76, 69–83. [Google Scholar] [CrossRef]
- Mazumder, S.; Roy, S.P. Modeling Thermal Radiation in Combustion Environments: Progress and Challenges. Energies 2023, 16, 4250. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Liu, G.; Liu, F.; Consalvi, J.-L. Assessment of Various Full-Spectrum Correlated K-Distribution Methods in Radiative Heat Transfer in Oxy-Fuel Sooting Flames. Int. J. Therm. Sci. 2023, 184, 107919. [Google Scholar] [CrossRef]
- Wang, C.; Modest, M.F.; Ren, T.; Cai, J.; He, B. Comparison and Refinement of the Various Full-Spectrum k-Distribution and Spectral Line Weighted-Sum-of-Gray-Gases Models for Nonhomogeneous Media. J. Quant. Spectrosc. Radiat. Transf. 2021, 271, 107695. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Ren, T.; Zhao, C. A Machine Learning Based Full-Spectrum Correlated k-Distribution Model for Nonhomogeneous Gas-Soot Mixtures. J. Quant. Spectrosc. Radiat. Transf. 2021, 268, 107628. [Google Scholar] [CrossRef]
- Khateeb, A.A.; Guiberti, T.F.; Zhu, X.; Younes, M.; Jamal, A.; Roberts, W.L. Stability Limits and NO Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames. Int. J. Hydrogen Energy 2020, 45, 22008–22018. [Google Scholar] [CrossRef]
- Mashruk, S.; Shi, H.; Mazzotta, L.; Ustun, C.E.; Aravind, B.; Meloni, R.; Alnasif, A.; Boulet, E.; Jankowski, R.; Yu, C.; et al. Perspectives on NOX Emissions and Impacts from Ammonia Combustion Processes. Energy Fuels 2024, 18, 19253–19292. [Google Scholar] [CrossRef]
- Official Journal of the European Union. DIRECTIVE 2010/75/EU; European Union: Brussels, Belgium, 2010. [Google Scholar]
- Okafor, E.C.; Somarathne, K.D.K.A.; Hayakawa, A.; Kudo, T.; Kurata, O.; Iki, N.; Kobayashi, H. Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine. Proc. Combust. Inst. 2019, 37, 4597–4606. [Google Scholar] [CrossRef]
- Mashruk, S.; Okafor, E.C.; Kovaleva, M.; Alnasif, A.; Pugh, D.; Hayakawa, A.; Valera-Medina, A. Evolution of N2O Production at Lean Combustion Condition in NH3/H2/Air Premixed Swirling Flames. Combust Flame 2022, 244, 112299. [Google Scholar] [CrossRef]
- An, Z.; Zhang, W.; Zhang, M.; Xing, J.; Kai, R.; Lin, W.; Wang, R.; Wang, J.; Huang, Z.; Kurose, R. Experimental and Numerical Investigation on Combustion Characteristics of Cracked Ammonia Flames. Energy Fuels 2024, 38, 7412–7430. [Google Scholar] [CrossRef]
- Ammonia Energy Association. Selective Catalytic Reduction for Marine Ammonia Engines. January 2024. Available online: https://ammoniaenergy.org/articles/selective-catalytic-reduction-for-marine-ammonia-engines/ (accessed on 12 February 2025).
- suji, I.; Ikoma, T.; Okamoto, H.; Aoi, N. Exhaust Gas Treatment Catalysts for Ammonia-Fueled Engines. Ammonia Energy Conference. 2022. Available online: https://ammoniaenergy.org/presentations/exhaust-gas-treatment-catalysts-for-ammonia-fueled-engines/ (accessed on 12 February 2025).
- Lasek, J.A.; Lajnert, R. On the Issues of NOx as Greenhouse Gases: An Ongoing Discussion…. Appl. Sci. 2022, 12, 10429. [Google Scholar] [CrossRef]
- Fuglestvedt, J.S.; Shine, K.P.; Berntsen, T.; Cook, J.; Lee, D.S.; Stenke, A.; Skeie, R.B.; Velders, G.J.M.; Waitz, I.A. Transport Impacts on Atmosphere and Climate: Metrics. Atmos. Environ. 2010, 44, 4648–4677. [Google Scholar] [CrossRef]
- Lammel, G.; Graßl, H. Greenhouse Effect of NOx Review Articles. Environ. Sci. Pollut. Res. 1995, 2, 40–45. [Google Scholar] [CrossRef]
- Skowron, A.; Lee, D.S.; De León, R.R. Variation of Radiative Forcings and Global Warming Potentials from Regional Aviation NOx Emissions. Atmos. Environ. 2015, 104, 69–78. [Google Scholar] [CrossRef]
- RTE France. Réseau de Transport d’Électricité ECO2mix—CO2 Emissions per KWh of Electricity Generated in France. January 2025. Available online: https://www.rte-france.com/en/eco2mix/co2-emissions (accessed on 12 February 2025).
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich Austria, E.; McKinnon, A.U.; Perczyk, D.; Roy, J.; Schaeffer, R.; Hänsel, G.; de Jager, D.; et al. Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Kim, N.; Lee, M.; Park, J.; Park, J.; Lee, T. A Comparative Study of NOx Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia. Energies 2022, 15, 9617. [Google Scholar] [CrossRef]
- Mei, B.; Zhang, J.; Shi, X.; Xi, Z.; Li, Y. Enhancement of Ammonia Combustion with Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures up to 10 Atm. Combust Flame 2021, 231, 111472. [Google Scholar] [CrossRef]
- Romano, C.; Bellotti, D.; Pucci, E.; Fadlun, E.; Roma, M.; Ghezzi, S.; Manferino, G.; Anfosso, C.; Monacchini, C. Ammonia Cracking As Auxiliary System for Gas Turbine: Preliminary Studies. In Proceedings of the ASME 2024 Power Conference, Washington, DC, USA, 15–18 September 2024. [Google Scholar] [CrossRef]
Thermal Input (kW) | Primary Equivalence Ratio | Fuel Mixture |
---|---|---|
4 | 1.2 | 80% NH3/20% H2 |
6 | 1.2 | 80% NH3/20% H2 |
8 | 1.2 | 80% NH3/20% H2 |
Case | Total Power (kW) | 1st Stage Power Input 80%NH3/20%H2 | 2nd Stage Power Input 100% H2 | Global Equivalence Ratio | Secondary Air Configuration (see Figure 4) |
---|---|---|---|---|---|
1 | 5 | 4 | 1 | 0.6 | A |
2 | 10 | 8 | 2 | 0.6 | A |
3 | 4 | 4 | 0 | 0.5 | A |
4 | 8 | 8 | 0 | 0.5 | A |
5 | 5 | 4 | 1 | 0.6 | B |
6 | 10 | 8 | 2 | 0.6 | B |
7 | 4 | 4 | 0 | 0.5 | B |
8 | 8 | 8 | 0 | 0.5 | B |
1st stage | Momentum | Temperature |
---|---|---|
Wall | Laws of the wall | 1100 K |
Inlet | Mass flow inlet; Turbulence intensity = 0.1; Viscosity ratio = 10 | 300 K |
Outlet | Pressure outlet | Extrapolated |
2nd Stage | Momentum | Energy |
---|---|---|
Wall | Laws of the wall | 1100 K |
Inlet section | Radial profile | Radial profile |
Secondary Fuel inlet | Mass flow inlet, Turbulence intensity = 0.1; Viscosity ratio = 10 | 300 K |
Species | Radial profile | Radial profile |
Secondary air inlet | Mass flow inlet, Turbulence intensity = 0.1; Viscosity ratio = 10 | 300 K |
Outlet | Pressure outlet | Extrapolated |
Species Concentration | 4 kW | 6 kW | 8 kW |
---|---|---|---|
NOx ppm | 1.3 | 4.7 | 7.8 |
H2% | 4.7 | 4.8 | 4.9 |
NH3 ppm | 8059 | 6989 | 6320 |
N2O ppm | ~0 | ~0 | ~0 |
Species | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 |
---|---|---|---|---|---|---|---|---|
NOx ppm | 680 | 504 | 599 | 581 | 687 | 491 | 478 | 556 |
H2 ppm | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
NH3 ppm | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
N2O ppm | 7.73 | 2.5 | 30 | 9 | 6 | 1 | 38 | 13 |
H2O% | 21.8 | 21.57 | 18.2 | 17.9 | 21.8 | 21.7 | 18.2 | 18.1 |
O2% | 6.7 | 6.9 | 8.9 | 9.0 | 6.7 | 6.8 | 8.9 | 8.9 |
Temperature (K) | 1306 | 1372 | 1086 | 1144 | 1263 | 1330 | 106 | 110 |
NOx mg/Nm3 | NH3 mg/Nm3 | N2O mg/Nm3 | |
---|---|---|---|
Case 2 | 362 | ~ 0 | 2.6 |
Case 6 | 351 | ~ 0 | 1.5 |
Case 4 | 471 | ~ 0 | 10.5 |
Case 1 | 379 | ~ 0 | 6.3 |
NOx | NH3 | N2O | CO2 | |
---|---|---|---|---|
GWP20 years | 33 * | ~0 | 273 | 1 |
GWP100 years | 10 * | ~0 | 298 | 1 |
NOx mg/kWh | NH3 mg/kWh | N2O mg/kWh | g CO2eq 20 years /kWh | g CO2eq 100 years/kWh | |
---|---|---|---|---|---|
Case 2 | 100.3 | 0.0 | 0.7 | 4.9 | 1.2 |
Case 6 | 99.0 | 0.0 | 0.4 | 4.8 | 1.1 |
Case 4 | 143.7 | 0.0 | 3.2 | 7.7 | 2.3 |
Case 1 | 137.8 | 0.0 | 2.3 | 7.1 | 2.0 |
Energy Source | CO2 Emissions (gCO2/kWh) | Reference |
---|---|---|
Coal | ~986 | RTE FRANCE [57] |
Oil-based Generation | ~777 | RTE FRANCE [57] |
Natural Gas (combined cycle) | ~429 | RTE FRANCE [57] |
Biomass | ~230 | IPCC [58] |
Nuclear | ~12 | IPCC [58] |
Hydropower | ~24 | IPCC [58] |
Wind Power | ~11 | IPCC [58] |
Solar PV | ~41 | IPCC [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, G.; Chaves, J.; Mendes, M.; Coelho, P. CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept. Energies 2025, 18, 2919. https://doi.org/10.3390/en18112919
Pacheco G, Chaves J, Mendes M, Coelho P. CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept. Energies. 2025; 18(11):2919. https://doi.org/10.3390/en18112919
Chicago/Turabian StylePacheco, Gonçalo, José Chaves, Miguel Mendes, and Pedro Coelho. 2025. "CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept" Energies 18, no. 11: 2919. https://doi.org/10.3390/en18112919
APA StylePacheco, G., Chaves, J., Mendes, M., & Coelho, P. (2025). CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept. Energies, 18(11), 2919. https://doi.org/10.3390/en18112919