Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (606)

Search Parameters:
Keywords = thermal intervention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1088 KB  
Review
Excimer Laser Coronary Atherectomy: Current Evidence, Clinical Applications, and Future Directions
by Mohsen Mohandes, Alberto Pernigotti, Mauricio Torres, Cristina Moreno Ambroj, Francisco Fernández, Roberto Bejarano-Arosemena, Pablo Moreno, Anna Vidal-Romero, Jordi Guarinos and Jose Luis Ferreiro
J. Clin. Med. 2026, 15(2), 766; https://doi.org/10.3390/jcm15020766 (registering DOI) - 17 Jan 2026
Abstract
Excimer Laser Coronary Atherectomy (ELCA) has re-emerged as a valuable adjunctive modality in percutaneous coronary intervention (PCI), particularly in the context of increasingly complex coronary anatomy and rising procedural expectations. By delivering pulsed ultraviolet energy at 308 nm through flexible fiber-optic catheters, ELCA [...] Read more.
Excimer Laser Coronary Atherectomy (ELCA) has re-emerged as a valuable adjunctive modality in percutaneous coronary intervention (PCI), particularly in the context of increasingly complex coronary anatomy and rising procedural expectations. By delivering pulsed ultraviolet energy at 308 nm through flexible fiber-optic catheters, ELCA enables precise photochemical, photothermal, and photomechanical ablation of atherosclerotic, fibrotic, calcified, and thrombotic tissue while minimizing thermal injury to surrounding structures. Recent technical refinements, simplified catheter designs, and improved safety profiles have enhanced its feasibility and utility across a range of challenging lesion subsets. This review summarizes the fundamental principles underlying excimer laser–tissue interaction, discusses available equipment and key procedural considerations, and examines the expanding clinical evidence supporting ELCA in contemporary practice. Data from observational studies and multicenter registries suggest that ELCA may enhance device crossability, restore coronary flow, and reduce distal embolization in thrombus-rich lesions, particularly during primary PCI. In device-uncrossable lesions, ELCA facilitates plaque modification and improves procedural success, including in chronic total occlusions. Furthermore, ELCA—especially when performed with simultaneous contrast injection—has demonstrated efficacy in treating stent underexpansion refractory to high-pressure balloon dilation, improving minimal stent area and enabling optimal post-dilatation. As lesion complexity continues to increase, ELCA is gaining recognition as an important tool within the interventional armamentarium. While generally safe in experienced hands, ELCA carries a risk of procedural complications that must be carefully considered. Ongoing investigations are expected to further define its optimal use and reinforce its relevance in modern interventional cardiology. Full article
23 pages, 1069 KB  
Article
Sectoral Dynamics of Sustainable Energy Transition in EU27 Countries (1990–2023): A Multi-Method Approach
by Hasan Tutar, Dalia Štreimikienė and Grigorios L. Kyriakopoulos
Energies 2026, 19(2), 457; https://doi.org/10.3390/en19020457 (registering DOI) - 16 Jan 2026
Abstract
This study critically examines the sectoral dynamics of renewable energy (RE) adoption across the EU-27 from 1990 to 2023, addressing the persistent gap between electricity generation and end-use sectors. Utilizing Eurostat energy balance data, the research employs a robust multi-methodological framework. We apply [...] Read more.
This study critically examines the sectoral dynamics of renewable energy (RE) adoption across the EU-27 from 1990 to 2023, addressing the persistent gap between electricity generation and end-use sectors. Utilizing Eurostat energy balance data, the research employs a robust multi-methodological framework. We apply the Logarithmic Mean Divisia Index (LMDI) decomposition to isolate driving factors, and the Self-Organizing Maps (SOM) of Kohonen to cluster countries with similar transition structures. Furthermore, the Method of Moments Quantile Regression (MMQR) is used to estimate heterogeneous drivers across the distribution of RE shares. The empirical findings reveal a sharp dichotomy: while the share of renewables in the electricity generation mix (RES-E-Renewable Energy Share in Electricity) reached approximately 53.8% in leading member states, the aggregated share in the transport sector (RES-T) remains significantly lower at 9.1%. This distinction highlights that while power generation is decarbonizing rapidly, end-use electrification lags behind. The MMQR analysis indicates that economic growth drives renewable adoption more effectively in countries with already high renewable shares (upper quantiles) due to established market mechanisms and grid flexibility. Conversely, in lower-quantile countries, regulatory stability and direct infrastructure investment prove more critical than market-based incentives, highlighting the need for differentiated policy instruments. While EU policy milestones (RED I–III-) align with progress in power generation, they have failed to accelerate transitions in lagging sectors. This study concludes that achieving climate neutrality requires moving beyond aggregate targets to implement distinct, sector-specific interventions that address the unique structural barriers in transport and thermal applications. Full article
24 pages, 1377 KB  
Review
Can Bacterial Manipulation Deliver Reef-Scale Thermal Enhancement of Corals?
by Madeleine J. H. van Oppen, Talisa Doering and Luanny Martins Fernandes
Microorganisms 2026, 14(1), 202; https://doi.org/10.3390/microorganisms14010202 - 15 Jan 2026
Viewed by 30
Abstract
A rapid decline of coral reefs is taking place around the world, with climate warming being the biggest driver behind this deterioration. Efforts to increase coral climate resilience via bioengineering methods have thus become urgent, and there is hope that such interventions can [...] Read more.
A rapid decline of coral reefs is taking place around the world, with climate warming being the biggest driver behind this deterioration. Efforts to increase coral climate resilience via bioengineering methods have thus become urgent, and there is hope that such interventions can help corals and coral reefs survive until a time when no further climate warming occurs and perhaps a future of climate cooling is imaginable. The manipulation of coral-associated bacterial communities is among the less advanced interventions currently being explored. Nevertheless, early findings provide confidence that some level of thermal enhancement can be achieved via the inoculation of corals with beneficial bacteria. The small number of studies available, however, is limited in terms of the traits used to select candidate bacteria and their ability to ascribe host enhancement to specific bacterial taxa and functions. Further, findings to date are unable to decipher whether candidate bacteria integrate stably within the coral microbiome. These shortcomings prevent assessment of the efficacy of bacterial manipulation to enhance the long-term thermal resilience of corals on the reef. Here we summarise the state-of-play of the field and provide recommendations to fast-track this approach via fine-tuning experimental designs and methods. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

11 pages, 868 KB  
Article
Physiological Effects of Far-Infrared-Emitting Garments on Sleep, Thermoregulation, and Autonomic Function Assessed Using Wearable Sensors
by Masaki Nishida, Taku Nishii, Shutaro Suyama and Sumi Youn
Sensors 2026, 26(2), 550; https://doi.org/10.3390/s26020550 - 14 Jan 2026
Viewed by 115
Abstract
Far-infrared (FIR)-emitting textiles are increasingly used in sleepwear; however, their influence on sleep physiology has not been comprehensively evaluated with multi-modal wearable sensing. This randomized, double-blind, placebo-controlled crossover study examined whether FIR-emitting garments modulate nocturnal thermoregulation, autonomic activity, and sleep architecture. Fifteen healthy [...] Read more.
Far-infrared (FIR)-emitting textiles are increasingly used in sleepwear; however, their influence on sleep physiology has not been comprehensively evaluated with multi-modal wearable sensing. This randomized, double-blind, placebo-controlled crossover study examined whether FIR-emitting garments modulate nocturnal thermoregulation, autonomic activity, and sleep architecture. Fifteen healthy young men completed two overnight laboratory sleep sessions wearing either FIR-emitting garments or visually matched polyester controls. Tympanic membrane temperature (TMT), sweating rate, skin temperature, and humidity were continuously monitored using wearable sensors, and sleep stages and heart rate variability (HRV) were assessed using validated portable systems. Compared with control garments, FIR garments produced consistently lower TMT across the night (p = 0.004) and reduced mid-sleep sweating (condition × time interaction: p = 0.026). The proportion of rapid eye movement (REM) sleep was higher in the FIR condition (22.2% ± 6.5% vs. 18.6% ± 6.5%, p = 0.027), despite no changes in total sleep time or sleep efficiency. A transient increase in low-frequency power during early sleep (p = 0.027) suggested baroreflex-related thermal adjustments without sympathetic activation. These findings indicate that FIR-emitting garments facilitate mild nocturnal heat dissipation and support REM expression, demonstrating their potential as a passive intervention to improve sleep-related thermal environments. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

26 pages, 1406 KB  
Article
The Welfare Impact of Heat Stress in South American Beef Cattle and the Cost-Effectiveness of Shade Provision
by Cynthia Schuck-Paim, Wladimir Jimenez Alonso, Anielly de Paula Freitas, Camila Pereira de Oliveira, Vinicius de França Carvalho Fonseca and Tâmara Duarte Borges
Animals 2026, 16(2), 231; https://doi.org/10.3390/ani16020231 - 13 Jan 2026
Viewed by 127
Abstract
Heat stress represents a pervasive welfare challenge for beef cattle and other species in tropical and subtropical regions. While its physiological and production impacts are well-documented, quantitative measures of the welfare impact of heat stress remain absent. This study provides the first quantification [...] Read more.
Heat stress represents a pervasive welfare challenge for beef cattle and other species in tropical and subtropical regions. While its physiological and production impacts are well-documented, quantitative measures of the welfare impact of heat stress remain absent. This study provides the first quantification of the welfare impact of heat stress in beef cattle (mostly Nelore), estimated as cumulative time in thermal discomfort of four intensities (Annoying, Hurtful, Disabling, Excruciating) using the Welfare Footprint Framework. We analyzed climate data from 636 locations over five years across major beef production areas in Brazil, Argentina, Colombia, Paraguay, and Uruguay. Daily heat stress episodes and chronic heat stress exposure were assessed, respectively, using Comprehensive Climate Index (CCI) levels and the Annual Thermal Load metric, which sums daily excesses above a threshold of thermal comfort (CCI = 30 °C) throughout the year, classifying locations into five risk categories. Welfare impacts were estimated for thirteen heat stress scenarios modeled by considering each CCI level within each thermal risk category. Beef cattle in moderate-risk regions were estimated to experience primarily mild thermal discomfort for an average of 5 h daily. This duration increased to an average of 7 h daily in high-risk areas, of which 4.5 h in moderate to intense thermal discomfort (Hurtful or higher). Very high-risk regions reached 10 h of daily thermal discomfort, while extreme-risk regions showed beef cattle facing heat stress for over 11 h on 307 days annually, including over 3 h per day under severe thermoregulatory effort. Overall, 65% of animals were in regions of high thermal risk or above, experiencing between 280 and 2800 h annually in moderate to intense thermal discomfort—a magnitude that places heat stress among the most significant welfare challenges in animal production. Shade provision reduced time in severe discomfort of Disabling intensity by 85% (from 578 to 83 h annually), with economic returns of US$12–16 per animal and payback periods of approximately 16 months. By quantifying welfare impacts as cumulative time in thermal discomfort, shade provision emerges as one of the most effective welfare interventions available for beef cattle, and likely other grazing ruminants, in tropical and subtropical regions. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

26 pages, 7728 KB  
Article
Hypolimnetic Aeration Versus Predatory Fish Stocking to Address Water Quality Parameters: A Case Study from Four Czech Reservoirs
by Petr Blabolil, Zuzana Sajdlová, Michaela Holubová, Dušan Kosour, Roman Němec, Lukáš Jurek and Tomáš Jůza
Water 2026, 18(2), 170; https://doi.org/10.3390/w18020170 - 8 Jan 2026
Viewed by 183
Abstract
Limnological parameters were monitored in four highland reservoirs in the Czech Republic from 2022 to 2024 to evaluate the effects of management practices on water quality. Although the reservoirs share similar morphometry and all serve as drinking water sources, they differ in trophic [...] Read more.
Limnological parameters were monitored in four highland reservoirs in the Czech Republic from 2022 to 2024 to evaluate the effects of management practices on water quality. Although the reservoirs share similar morphometry and all serve as drinking water sources, they differ in trophic status and management: Hubenov (HU, eutrophic) is stocked with piscivores, Nová Říše (NŘ, mesotrophic) undergoes hypolimnetic aeration, and Landštejn (LA, meso-oligotrophic) and Mostiště (MO, eutrophic) receive no targeted management interventions. Limnological data were collected monthly from April to October along vertical profiles in dam parts of the reservoirs. Comparisons were performed using graphical presentation and linear mixed-effects models. Analyses of abiotic (thermal, oxygen, and pH stratification, transparency, total phosphorus (TP) and nitrogen (TN) concentrations) and biotic (algae chlorophyll-a, cyanobacterial pigments, zooplankton density and composition) variables revealed that HU and MO exhibited the lowest transparency (on average 1.9 m in both in contrast to 2.2 m and 2.8 m in NŘ and LA, respectively) and highest seasonal algae chlorophyll-a concentrations (11.4 µg/L in HU and 15.1 µg/L in MO in contrast to 6.4 µg/L in NŘ and 5.5 µg/L in LA), indicating negligible improvement from biomanipulation. In contrast, NŘ demonstrated nutrient and chlorophyll-a levels comparable to LA (TP: 0.010 mg/L and 0.009 mg/L, TN: 1.591 mg/L and 0.419 mg/L, in NŘ and LA, respectively), despite higher nutrient input, and achieved the second highest transparency. Zooplankton densities were similar across reservoirs, supporting the hypothesis of bottom-up control or insufficient piscivore impact. These findings highlight the importance of reducing nutrient inputs to preserve water quality. Hypolimnetic aeration, which enhances sediment nutrient retention, appears more effective at mitigating eutrophication and controlling algal proliferation than fish stocking, a commonly applied biomanipulation approach. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

11 pages, 2699 KB  
Review
Ureteral and Vascular Events During Robotic Post-Chemotherapy Retroperitoneal Lymph Node Dissection: Technical Insights and Management Considerations
by Manuel Saavedra Centeno, Eduardo Albers Acosta, Clara Velasco Balanza, Lira Pelari Mici, Carlos Márquez Güemez, Marta Pérez Pérez, Ana Sánchez Ramírez and Luis Alberto San José Manso
Complications 2026, 3(1), 1; https://doi.org/10.3390/complications3010001 - 8 Jan 2026
Viewed by 102
Abstract
Robotic retroperitoneal lymph node dissection (R-RPLND) represents an evolution in the surgical management of testicular germ cell tumors, offering reduced morbidity compared with open approaches. However, this procedure remains technically challenging, particularly after chemotherapy, due to dense fibrosis and distortion of the retroperitoneal [...] Read more.
Robotic retroperitoneal lymph node dissection (R-RPLND) represents an evolution in the surgical management of testicular germ cell tumors, offering reduced morbidity compared with open approaches. However, this procedure remains technically challenging, particularly after chemotherapy, due to dense fibrosis and distortion of the retroperitoneal anatomy. We report a case of an unrecognized intraoperative thermal injury causing a partial transection of the proximal ureter presenting postoperatively as a urinary fistula following R-RPLND for residual mass resection, along with a focused review of the contemporary literature on procedure-related complications. A review of large series highlights severe complications (Clavien–Dindo ≥ III) occurring in 6–12% of cases, with ureteral injuries occurring in up to 6%, often identified after surgery. This case underscores the importance of meticulous dissection, awareness of altered anatomy, and prompt intervention when unexpected events arise during R-RPLND. Full article
Show Figures

Figure 1

12 pages, 4196 KB  
Article
Aging-Dependent Repair Performance and Interfacial Durability of New–Aged Waterproof Membrane Systems
by Chao Zhang, Xian Li, Xiaopeng Li, Longjiang Yang, Guojun Sun and Xingpeng Ma
Polymers 2026, 18(2), 163; https://doi.org/10.3390/polym18020163 - 7 Jan 2026
Viewed by 172
Abstract
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent [...] Read more.
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent repair performance of three representative waterproof membrane systems was systematically investigated using peel strength testing, low-temperature flexibility assessment, and interfacial morphology analysis under thermal–oxidative aging for 2, 5, 14, and 28 days. The results demonstrate that the homogeneous repair system based on ultra-thin reinforced self-adhesive polymer-modified bituminous membranes exhibits superior overall performance, maintaining the highest peel strength with only minor degradation even after 28 days of accelerated aging. In contrast, the polymeric butyl self-adhesive membrane subjected to homogeneous repair exhibited rapid adhesion degradation after 14 days, whereas the heterogeneous repair system showed improved stability during intermediate aging stages. Low-temperature flexibility testing further revealed that root-resistant bituminous membranes exhibited a slower aging rate, with a cracking temperature increase of 7 °C after 28 days, compared to a 10 °C increase observed for ultra-thin self-adhesive membranes. These quantitative findings provide clear guidance for the selection of appropriate repair membrane systems under varying aging conditions in waterproofing engineering, particularly for maintenance and rehabilitation applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 1076 KB  
Review
From Thermal Springs to Saline Solutions: A Scoping Review of Salt-Based Oral Healthcare Interventions
by Elisabetta Ferrara, Manela Scaramuzzino, Biagio Rapone, Giovanna Murmura and Bruna Sinjari
Dent. J. 2026, 14(1), 32; https://doi.org/10.3390/dj14010032 - 5 Jan 2026
Viewed by 202
Abstract
Background: Therapeutic applications of saline solutions in oral healthcare range from mineral waters to standardized sodium chloride preparations. Despite widespread traditional use, their scientific foundation remains inadequately characterized. This scoping review aimed to systematically map the available evidence for salt-based oral health [...] Read more.
Background: Therapeutic applications of saline solutions in oral healthcare range from mineral waters to standardized sodium chloride preparations. Despite widespread traditional use, their scientific foundation remains inadequately characterized. This scoping review aimed to systematically map the available evidence for salt-based oral health interventions, characterize study populations and outcomes, and identify research gaps to guide future investigations. Methods: Following JBI methodology and PRISMA-ScR guidelines, four electronic databases (PubMed, Scopus, Web of Science, and Cochrane Library) were systematically searched for publications from 2000 to 2025. Studies were classified along a spectrum from geological mineral waters to artificial preparations. Narrative synthesis was employed with systematic gap identification. Results: Seventeen studies met inclusion criteria, with a median sample size of 41 participants and a median follow-up of 4 weeks. Evidence distribution revealed concentration on hypersaline Dead Sea derivatives (n = 7, 41%) and European thermal waters (n = 5, 29%), with limited representation of marine-derived (n = 1, 6%) and simple saline solutions (n = 3, 18%). Reported outcomes included periodontal parameters, xerostomia symptoms, viral load, mucositis severity, and dentin hypersensitivity, with variable methodological quality across studies. Heterogeneity in interventions, comparators, and outcome measures precluded direct comparisons. Conclusions: The current evidence base for salt-based oral interventions remains limited and methodologically heterogeneous. While preliminary findings suggest potential applications across multiple clinical domains, small sample sizes, short follow-up periods, and inconsistent outcome measures preclude definitive recommendations. Standardized protocols and adequately powered trials are needed before evidence-based clinical integration. Full article
(This article belongs to the Topic Oral Health Management and Disease Treatment)
Show Figures

Graphical abstract

19 pages, 3367 KB  
Article
Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames
by Maohua Xiong, Jihoon Kweon and Soobong Kim
Sustainability 2026, 18(1), 525; https://doi.org/10.3390/su18010525 - 5 Jan 2026
Viewed by 210
Abstract
Windows contribute 40–50% of envelope heat loss despite occupying only 1/8–1/6 of the surface area. Conventional frame retrofits rely on geometry optimization or cavity insulation yet remain limited by cost and invasiveness. This study introduces electrochemical polishing to reduce cavity surface emissivity of [...] Read more.
Windows contribute 40–50% of envelope heat loss despite occupying only 1/8–1/6 of the surface area. Conventional frame retrofits rely on geometry optimization or cavity insulation yet remain limited by cost and invasiveness. This study introduces electrochemical polishing to reduce cavity surface emissivity of multi-cavity broken-bridge aluminum window frames to suppress radiative heat transfer, offering a non-invasive, low-cost retrofit strategy for existing building windows. Using a typical 75-series casement window, finite element analysis (MQMC) reveals that reducing cavity surface emissivity from 0.9 to 0.05 lowers frame U-values by 12.39–30.38% and whole-window U-values by 2.72–9.69%, with full-cavity treatment outperforming insulating-cavity-only by an average of 0.29 W/(m2·K). EnergyPlus simulations across multiple climate zones show 0.74–2.26% annual heating and cooling energy savings (with max reduction of 8.99 MJ/m2·yr) in severe cold and cold regions (e.g., Harbin, Beijing), but 1.25–3.04% penalties in mild and hot-summer zones due to impeded nighttime heat rejection. At an incremental cost of 62.5 CNY/window (6.6–7.4% increase), the static payback period is 4.1 years in Harbin. The approach mitigates thermal bridging more effectively than foam-filled frames in whole-window performance. This scalable, minimal-intervention technology aligns with low-carbon retrofit imperatives for existing aging windows, particularly in heating-dominated climates. Full article
Show Figures

Figure 1

46 pages, 1508 KB  
Review
Mapping Global Research Trends on Aflatoxin M1 in Dairy Products: An Integrative Review of Prevalence, Toxicology, and Control Approaches
by Marybel Abi Rizk, Lea Nehme, Selma P. Snini, Hussein F. Hassan, Florence Mathieu and Youssef El Rayess
Foods 2026, 15(1), 166; https://doi.org/10.3390/foods15010166 - 3 Jan 2026
Viewed by 364
Abstract
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health [...] Read more.
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health concern, especially in regions prone to fungal contamination of animal feed. This review integrates bibliometric mapping (2015–2025) with toxicological and mitigation perspectives to provide a comprehensive understanding of AFM1. The bibliometric analysis reveals a sharp global rise in research output over the last decade, with Iran, China, and Brazil emerging as leading contributors and Food Control identified as the most prolific journal. Five research clusters were distinguished: feed contamination pathways, analytical detection, toxicological risk, regulatory frameworks, and mitigation strategies. Toxicological evidence highlights AFM1’s mutagenic and hepatocarcinogenic effects, intensified by co-exposure to other mycotoxins or hepatitis B infection. Although regulatory limits range from 0.025 µg/kg in infant formula (EU) to 0.5 µg/kg in milk (FDA), non-compliance remains prevalent in developing regions. Current mitigation approaches—adsorbents (bentonite, zeolite), oxidation (ozone, hydrogen peroxide), and biological detoxification via lactic acid bacteria and yeasts—show promise but require optimization for industrial application. Persistent challenges include climatic variability, inadequate feed monitoring, and heterogeneous regulations. This review emphasizes the need for harmonized surveillance, improved analytical capacity, and sustainable intervention strategies to ensure dairy safety and protect consumer health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

21 pages, 4758 KB  
Article
Explaining and Reducing Urban Heat Islands Through Machine Learning: Evidence from New York City
by Shengyao Liao and Zhewei Liu
Buildings 2026, 16(1), 186; https://doi.org/10.3390/buildings16010186 - 1 Jan 2026
Viewed by 252
Abstract
Urban heat islands (UHIs) have intensified in rapidly urbanizing regions like New York, exacerbating thermal discomfort, public health risks, and energy consumption. While previous research has highlighted various environmental and socioeconomic contributors, most existing studies lack interpretable, fine-scale models capable of quantifying the [...] Read more.
Urban heat islands (UHIs) have intensified in rapidly urbanizing regions like New York, exacerbating thermal discomfort, public health risks, and energy consumption. While previous research has highlighted various environmental and socioeconomic contributors, most existing studies lack interpretable, fine-scale models capable of quantifying the effects of specific drivers—limiting their utility for targeted planning. To address this challenge, we develop an interpretable machine learning framework using Random Forest and XGBOOST to predict land surface temperature across 1800+ census tracts in the New York metropolitan area, incorporating vegetation indices, water proximity, urban morphology, and socioeconomic factors. Both models performed strongly (mean R2 ≈ 0.90), with vegetation coverage and water proximity emerging as the most influential cooling factors, while built form features played supporting roles. Socioeconomic vulnerability indicators showed weak correlations with temperature, suggesting a relatively equitable thermal landscape. Optimization simulations further revealed that increasing vegetation to a threshold level could lower average surface temperatures by up to 6.38 °C, with additional but smaller gains achievable through adjustments to water access and urban form. These findings provide evidence-based guidance for climate-adaptive urban design and green infrastructure planning. More broadly, the study illustrates the potential of explainable machine learning to support data-driven environmental interventions in complex urban systems. Full article
(This article belongs to the Special Issue Advancing Urban Analytics and Sensing for Sustainable Cities)
Show Figures

Figure 1

23 pages, 5119 KB  
Article
Urban Heat Island Network Identification and Mitigation for Sustainable Urban Development Based on Source–Sink Theory and Local Climate Zone
by Shuran Zhang, Yanhong Chen, Yuanbin Cai and Wenbin Pan
Sustainability 2026, 18(1), 260; https://doi.org/10.3390/su18010260 - 26 Dec 2025
Viewed by 300
Abstract
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this [...] Read more.
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this research combines source–sink theory with the local climate zone classification to examine the spatiotemporal patterns of thermal characteristics in Fuzhou, China, from 2016 to 2023. Using morphological spatial pattern analysis, the minimum cumulative resistance model, and a gravity model, we identified key thermal source and sink landscapes, their connecting corridors, and barrier points. Results indicate that among built-type local climate zones, low-rise buildings exhibited the highest land surface temperature, while LCZ E and LCZ F were the warmest among natural types. Core heat sources were primarily LCZ 4, LCZ 7, and LCZ D, accounting for 19.71%, 13.66%, and 21.72% respectively, whereas LCZ A dominated the heat sinks, contributing to over 86%. We identified 75 heat source corridors, mainly composed of LCZ 7 and LCZ 4, along with 40 barrier points, largely located in LCZ G and LCZ D. Additionally, 70 heat sink corridors were identified, with LCZ A constituting 96.39% of them, alongside 84 barrier points. The location of these key structures implies that intervention efforts—such as implementing green roofs on high-intensity source buildings, enhancing the connectivity of cooling corridors, and performing ecological restoration at pinpointed barrier locations—can be deployed with maximum efficiency to foster sustainable urban thermal environments and support climate-resilient city planning. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 1051 KB  
Review
High-Altitude Hypoxia Injury: Systemic Mechanisms and Intervention Strategies on Immune and Inflammatory Responses
by Jingman Zhang, Shujie Guo, Beiebei Dou, Yang Liu, Xiaonan Wang, Yingze Jiao, Qianwen Li, Yan Li and Han Chen
Antioxidants 2026, 15(1), 36; https://doi.org/10.3390/antiox15010036 - 26 Dec 2025
Viewed by 973
Abstract
High-altitude exposure poses significant health challenges to mountaineers, military personnel, travelers, and indigenous residents. Altitude-related illnesses encompass acute conditions such as acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), and high-altitude cerebral edema (HACE), and chronic manifestations like chronic mountain sickness (CMS). Hypobaric [...] Read more.
High-altitude exposure poses significant health challenges to mountaineers, military personnel, travelers, and indigenous residents. Altitude-related illnesses encompass acute conditions such as acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), and high-altitude cerebral edema (HACE), and chronic manifestations like chronic mountain sickness (CMS). Hypobaric hypoxia induces oxidative stress and inflammatory cascades, causing alterations in multiple organ systems through co-related amplification mechanisms. Therefore, this review aims to systematically discuss the injury mechanisms and comprehensive intervention strategies involved in high-altitude diseases. In summary, these pathologies involve key damage pathways: oxidative stress activates inflammatory pathways through NF-κB and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes; energy depletion impairs calcium homeostasis, leading to cellular calcium overload; mitochondrial dysfunction amplifies injury through mitochondrial permeability transition pore (mPTP) opening and apoptotic factor release. These mechanisms could be converged in organ-specific patterns—blood–brain barrier disruption in HACE, stress failure in HAPE, and right heart dysfunction in chronic exposure. Promising strategies include multi-level therapeutic approaches targeting oxygenation (supplemental oxygen, acetazolamide), specific pathway modulation (antioxidants, calcium channel blockers, HIF-1α regulators), and damage repair (glucocorticoids). Notably, functional foods show significant therapeutic potential: dietary nitrates (beetroot) enhance oxygen delivery, tea polyphenols and anthocyanins (black goji berry) provide antioxidant effects, and traditional herbal bioactives (astragaloside, ginsenosides) offer multi-targeted organ protection. Full article
(This article belongs to the Special Issue Redox Regulation of Immune and Inflammatory Responses)
Show Figures

Figure 1

16 pages, 1873 KB  
Article
Development and Application of Innovative Anti-Leakage Tubing String for Low-Pressure Wax-Containing Wells
by Enwei Wang, Li Li, Lu Chen, Hu Zhang, Jianying Shi, Yonghong Yang, Junying Liao, Xuliang Zhao and Fulin Qiu
Processes 2026, 14(1), 49; https://doi.org/10.3390/pr14010049 - 22 Dec 2025
Viewed by 305
Abstract
During the mid-to-late stages of oilfield development, reservoir energy depletion and declining formation pressure coefficients are prevalent challenges. To address the issues of severe fluid loss and extended post-workover fluid recovery periods during conventional operations such as thermal wax removal and pump inspection [...] Read more.
During the mid-to-late stages of oilfield development, reservoir energy depletion and declining formation pressure coefficients are prevalent challenges. To address the issues of severe fluid loss and extended post-workover fluid recovery periods during conventional operations such as thermal wax removal and pump inspection in low-pressure, waxy wells within a specific block of the Xinjiang Oilfield, a dynamic loss analysis model for workover fluids was developed. Additionally, a wash pressure control valve was engineered to meet the requirements for squeeze killing under abnormal conditions, and an integrated anti-leakage tubing string was designed. This system effectively isolates the workover fluid from the reservoir during interventions, thereby significantly reducing fluid loss and enhancing operational safety. Field applications demonstrate that this technology reduces workover fluid loss by 96% during thermal wax removal and shortens the average post-workover fluid recovery period by 8.7 days after pump inspection. This technology enables rapid restoration of well productivity, lowers operational costs for thermal wax removal and pump inspection, and provides an effective solution for maintaining low-pressure, waxy wells. Full article
Show Figures

Figure 1

Back to TopTop