Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames
Abstract
1. Introduction
2. Methods
2.1. Window’s Thermal Performance Calculation Method
2.1.1. Analysis of Heat Transfer in the Cavity
2.1.2. Simulation Methodology
2.1.3. Description of the Window Frame
2.1.4. Scenario Setting
2.1.5. Boundary Conditions
2.2. Energy Consumption Simulation Method
2.3. Techno-Economic Analysis
3. Results
3.1. Thermal Performance Comparison
3.1.1. Thermal Transmittance of Window Frame
3.1.2. Thermal Transmittance of Whole Window
3.2. Building Energy Saving Effect
3.3. Techno-Economic Comparison
4. Discussion
4.1. Implications for Low-Carbon Window Retrofits
4.2. Anisotropic Heat Transfer in Horizontal Versus Vertical Frames
4.3. Climate-Specific Energy-Saving Potential
4.4. Limitations and Future Study
5. Conclusions
- (1)
- Reducing cavity inner-surface emissivity significantly lowers both frame and whole-window U-values. Compared to the baseline (Case B), full-cavity ultra-low-emissivity treatment (Case D-1) achieves frame U-value reductions of 12.39–30.38% and whole-window reductions of 2.72–9.69%.
- (2)
- Comprehensive treatment of all cavity surfaces maximizes performance, yielding an average frame U-value reduction of 0.29 W/(m2·K) compared to insulating-cavity-only treatment, underscoring the critical role of radiative suppression across all internal boundaries.
- (3)
- Although the low-emissivity frame does not fully match the insulation level of polyurethane foam-filled frames (Case A), the whole-window U-value of Case D-1 is lower due to reduced thermal bridging at the frame–glazing interface, where linear thermal transmittance is minimized.
- (4)
- The technology is highly effective in heating-dominated climates (e.g., Harbin, Beijing), delivering up to 2.26% annual energy savings (8.99 MJ/m2·yr). However, it increases cooling loads in mild or cooling-dominated regions (Guangzhou, Kunming) and offers negligible benefit in balanced climates (Shanghai).
- (5)
- At an incremental cost of 62.5 CNY per window (6.6–7.4% increase over baseline), full-cavity treatment yields a static payback period of 4.1 years in Harbin and 17.9 years in Beijing for a six-window office room. This cost-effectiveness, combined with minimal structural intervention, positions the technology as a promising retrofit solution for existing buildings in northern China.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Scenario | Axis to North (°) | Harbin (MJ/m2·yr) | Beijing (MJ/m2·yr) | Shanghai (MJ/m2·yr) | Guangzhou (MJ/m2·yr) | Kunming (MJ/m2·yr) |
|---|---|---|---|---|---|---|
| A | 0 | 337.97 | 197.7 | 228.97 | 322.73 | 246.64 |
| 90 | 424.46 | 257.68 | 255.89 | 331.42 | 266.4 | |
| 180 | 397.63 | 211.43 | 196.33 | 269.72 | 166.38 | |
| 270 | 410.16 | 231.19 | 229.33 | 300.44 | 194.19 | |
| B | 0 | 341.86 | 196.74 | 227.58 | 320.81 | 242.96 |
| 90 | 428.44 | 258.26 | 255.07 | 329.43 | 262.68 | |
| 180 | 402.4 | 214.22 | 196.2 | 268.23 | 164.15 | |
| 270 | 414.4 | 232.21 | 228.74 | 298.74 | 191.59 | |
| C-1 | 0 | 334.65 | 198.47 | 230.02 | 324.13 | 249.37 |
| 90 | 421.62 | 257.27 | 256.56 | 332.85 | 269.16 | |
| 180 | 394.14 | 209.3 | 196.42 | 270.83 | 168.06 | |
| 270 | 407.14 | 230.52 | 229.78 | 301.74 | 196.19 | |
| C-2 | 0 | 339.57 | 197.28 | 228.39 | 321.93 | 245.06 |
| 90 | 426.1 | 257.87 | 255.55 | 330.63 | 264.81 | |
| 180 | 399.65 | 213.05 | 196.26 | 269.09 | 165.43 | |
| 270 | 411.97 | 231.61 | 229.05 | 299.73 | 193.08 | |
| D-1 | 0 | 333.15 | 198.88 | 230.58 | 324.92 | 250.83 |
| 90 | 420.19 | 257.1 | 256.92 | 333.62 | 270.61 | |
| 180 | 392.23 | 208.6 | 196.49 | 271.44 | 168.95 | |
| 270 | 405.6 | 230.2 | 230.01 | 302.47 | 197.21 | |
| D-2 | 0 | 339.29 | 197.34 | 228.44 | 322.04 | 245.29 |
| 90 | 425.89 | 257.87 | 255.6 | 330.73 | 265.05 | |
| 180 | 399.36 | 212.93 | 196.26 | 269.18 | 165.56 | |
| 270 | 411.67 | 231.56 | 229.1 | 299.84 | 193.23 |
References
- Dwyer, S.; Teske, S. Renewables 2019 Global Status Report; REN21: Paris, France, 2019. [Google Scholar]
- Jagarajan, R.; Asmoni, M.N.A.M.; Mohammed, A.H.; Jaafar, M.N.; Mei, J.L.Y.; Baba, M. Green retrofitting–A review of current status, implementations and challenges. Renew. Sustain. Energy Rev. 2017, 67, 1360–1368. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Hui, Y.; Chuang, Y.; Xingzhong, G.U.O.; Tinggui, Y. Research status of building energy-saving doors and Windows and technology. New Build. Mater. 2012, 39, 84–89. [Google Scholar] [CrossRef]
- Hong, L.; Zhou, N.; Feng, W.; Khanna, N.; Fridley, D.; Zhao, Y.; Sandholt, K. Building stock dynamics and its impacts on materials and energy demand in China. Energy Policy 2016, 94, 47–55. [Google Scholar] [CrossRef]
- Ni, H. Suggestions on Increasing Subsidies for Energy-Saving Window and Door Renovations to Stimulate New Consumer Demands; Hebei Aorun Shunda Window Industry Co., Ltd.: Gaobeidian, China, 2025. [Google Scholar]
- Hu, N.; Jie, Y. Low-Standard Doors and Windows Have Become an Invisible “Black Hole”. The Industry Calls for Raising Industry Standards. Available online: http://www1.xinhuanet.com/fortune/20240222/6032ae84f415448f9c2f74a7a6d6448a/c.html (accessed on 22 February 2024).
- Song, Z.; Li, J.-l.; Li, Y. Energy-Saving Performance of Nano Insulated Coating Glass. Build. Energy Effic. 2014, 42, 38–41. [Google Scholar] [CrossRef]
- Garlisi, C.; Trepci, E.; Li, X.; Al Sakkaf, R.; Al-Ali, K.; Nogueira, R.P.; Zheng, L.; Azar, E.; Palmisano, G. Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Appl. Energy 2020, 264, 114697. [Google Scholar] [CrossRef]
- Liao, Q.; Guan, Y.; Wang, Q. Research of window’s discharge coefficient in the natural ventilation room. Appl. Mech. Mater. 2014, 525, 420–426. [Google Scholar] [CrossRef]
- Lei, Q.; Wang, L.; Xie, H.; Yu, W. Active-passive dual-control smart window with thermochromic synergistic fluidic glass for building energy efficiency. Build. Environ. 2022, 222, 109407. [Google Scholar] [CrossRef]
- Chang, J.Y.; Kuan, Y.D.; Lan, C.C.; Li, H.J.; Hsu, Y.K.; Chen, C.Y.; Shen, E.T.; Lin, K.Y. Discussion of the Energy-Saving Benefits of Heat Insulating Coating for Building Windows. In Proceedings of the International Conference on Electronic, Information and Computer Engineering (ICEICE), Hong Kong, China, 26–27 April 2016. [Google Scholar]
- Zajas, J.; Heiselberg, P. Parametric study and multi objective optimization of window frame geometry. Build. Simul. 2014, 7, 579–593. [Google Scholar] [CrossRef]
- Appelfeld, D.; Hansen, C.S.; Svendsen, S. Development of a slim window frame made of glass fibre reinforced polyester. Energy Build. 2010, 42, 1918–1925. [Google Scholar] [CrossRef]
- Cardinale, N.; Rospi, G.; Cardinale, T. Numerical and experimental thermal analysis for the improvement of various types of windows frames and rolling-shutter boxes. Int. J. Energy Environ. Eng. 2015, 6, 101–110. [Google Scholar] [CrossRef]
- Su, X.P.; Sun, W.D. The energy-saving design and construction study on exterior windows in the building. Adv. Mater. Res. 2014, 1004–1005, 1556–1559. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Hu, Y.-J.; Li, C.; Wang, X. The development trends of existing building energy conservation and emission reduction—A comprehensive review. Energy Rep. 2022, 8, 13170–13188. [Google Scholar] [CrossRef]
- Paulos, J.; Berardi, U. Optimizing the thermal performance of window frames through aerogel-enhancements. Appl. Energy 2020, 266, 114776. [Google Scholar] [CrossRef]
- Lechowska, A.A.; Schnotale, J.A.; Baldinelli, G. Window frame thermal transmittance improvements without frame geometry variations: An experimentally validated CFD analysis. Energy Build. 2017, 145, 188–199. [Google Scholar] [CrossRef]
- EN ISO 10077-2; Thermal Performance of Windows, Doors and Shutters—Calculation of Thermal Transmittance. Part 2: Numerical Method for Frames. NSAI Standard: Dublin, Ireland, 2012.
- Asdrubali, F.; Baldinelli, G.; Bianchi, F. Influence of cavities geometric and emissivity properties on the overall thermal performance of aluminum frames for windows. Energy Build. 2013, 60, 298–309. [Google Scholar] [CrossRef]
- Rosencrantz, T.; Bulow-Hube, H.; Karlsson, B.; Roos, A. Increased solar energy and daylight utilisation using anti-reflective coatings in energy-efficient windows. Sol. Energy Mater. Sol. Cells 2005, 89, 249–260. [Google Scholar] [CrossRef]
- Mitchell, R.; Kohler, C.; Arasteh, D.; Carmody, J.; Huizenga, C.; Curcija, D. THERM 5/WINDOW 5 NFRC Simulation Manual; Technical Report; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003. [Google Scholar]
- Van Den Bergh, S.; Hart, R.; Jelle, B.P.; Gustavsen, A. Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives. Energy Build. 2013, 58, 263–280. [Google Scholar] [CrossRef]
- GB/T30591-2014; Requirements for the Coordination of Dimensions of Building Door and Window Openings. China Standards Press: Beijing, China, 2014.
- GB/T8478-2020; Aluminum Doors and Windows. China Standards Press: Beijing, China, 2020.
- Zhao, J.; Lu, Y.; Yang, L. The influence of insulation materials on the thermal performance of passive aluminum alloy windows. Constr. Sci. Technol. 2019, 9, 26–33. [Google Scholar]
- Touloukian, Y. Thermal radiative properties of non-metallic solids, Thermophysical properties of matter. TPRC Data Ser. 1972, 8, 383. [Google Scholar]
- Wen, C.-D.; Mudawar, I. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. Int. J. Heat Mass Transf. 2005, 48, 1316–1329. [Google Scholar] [CrossRef]
- Brusov, A.; Orr, G.; Azoulay, M.; Golan, G. Electropolishing of single crystal and polycrystalline aluminum to achieve high quality optical and mechanical surfaces. Bulg. Chem. Commun. 2020, 52, 5–11. [Google Scholar] [CrossRef]
- Adelkhani, H.; Nasoodi, S.; Jafari, A. A study of the morphology and optical properties of electropolished aluminum in the Vis-IR region. Int. J. Electrochem. Sci. 2009, 4, 238–246. [Google Scholar] [CrossRef]
- JGJ/T 151-2008; Calculation Specification for Thermal Performance of Windows, Doors and Glass Curtain-Walls. China Architecture & Building Press: Beijing, China, 2008.
- GBT8484-2020; Testing Methods for the Thermal Insulation Performance for Building Exterior Doors and Windows. China Standards Press: Beijing, Chins, 2020.
- Zhou, X.Q.; Zhu, Y.Y.; Peng, H.W.; Zeng, Z.W.; Huang, Y.; Li, L. Energy efficiency optimization for building envelopes on a green campus in Guangzhou. In Proceedings of the 4th Asia Conference of International-Building-Performance-Simulation-Association (ASIM), Hong Kong, China, 3–5 December 2018. [Google Scholar]
- Imbert, P.; Larsen, O.K.; Johra, H. Study of thermochromic glass performance in the Danish climate and visual comfort perspectives. In Proceedings of the International Conference on Climate Resilient Cities—Energy Efficiency and Renewables in the Digital Era (CISBAT), Ecole Polytechnique Fed Lausanne, Solar Energy & Building Phys Lab, Lausanne, Switzerland, 4–6 September 2019. [Google Scholar]
- Liu, M.; Heiselberg, P.K.; Antonov, Y.I.; Mikkelsen, F.S. Parametric analysis on the heat transfer, daylight and thermal comfort for a sustainable roof window with triple glazing and external shutter. Energy Build. 2019, 183, 209–221. [Google Scholar] [CrossRef]
- GB 50189-2015; Design Standard for Energy Efficiency of Public Buildings. Standardization Administration of the People’s Republic of China: Beijing, China, 2015.
- Zhang, Q. Development of the typical meteorological database for Chinese locations. Energy Build. 2006, 38, 1320–1326. [Google Scholar] [CrossRef]
- Mohammad, A.E.K.; Wang, D. Electrochemical mechanical polishing technology: Recent developments and future research and industrial needs. Int. J. Adv. Manuf. Technol. 2016, 86, 1909–1924. [Google Scholar] [CrossRef]
- Wang, J.; Qin, J.; Shao, S. In-Depth Analysis of Aluminum in the Industrial Metals Industry: Constrained Capacity, Favorable Pattern, Embracing the Era of High-Profit Electrolytic Aluminum; Citic China Securities: Beijing, China, 2025. [Google Scholar]
- Stegnar, G. Strategic Prioritization of Residential Buildings for Equitable and Sustainable Renovation. Sustainability 2025, 17, 2203. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Granqvist, C.-G.; Jelle, B.P.; Vanoli, G.P.; Bianco, N.; Kurnitski, J. Cost-Effective Energy Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies; Woodhead publishing: Cambridge, UK, 2017. [Google Scholar]
- ASTM C1371-15; Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers. ASTM International: West Conshohocken, PA, USA, 2015.








| Scenario | Cavity Type | Inner Surface Emissivity | Note |
|---|---|---|---|
| A | Polyurethane foam filling | — | Filling only the insulation cavity |
| B | Ordinary surface | 0.9 | Reference case |
| C-1 | Low-emissivity surface | 0.2 | All cavity interior surfaces are treated |
| D-1 | Ultra-low-emissivity surface | 0.05 | |
| C-2 | Low-emissivity surface | 0.2 | Insulation cavity treatment only |
| D-2 | Ultra-low-emissivity surface | 0.05 |
| Boundary Conditions | Winter Boundary Conditions | Summer Boundary Conditions |
|---|---|---|
| Indoor air temperature Tin | 20 °C | 25 °C |
| Outdoor air temperature Tout | −20 °C | 30 °C |
| Indoor convective heat transfer coefficient hc,in | 3.6 W/(m2·K) | 2.5 W/(m2·K) |
| Outdoor convective heat transfer coefficient hc,out | 16 W/(m2·K) | 16 W/(m2·K) |
| Indoor average radiant temperature Trm,in | 20 °C | 25 °C |
| Outdoor average radiant temperature Trm,out | −20 °C | 30 °C |
| Solar irradiance Is | 0 W/m2 | 500 W/m2 |
| Thermal Climate Zone | Typical Cities | U (W/(m2·K)) |
|---|---|---|
| Severe cold | Harbin | 0.35 |
| Cold | Beijing | 0.45 |
| Hot summer and cold winter | Shanghai | 0.8 |
| Hot summer and warm winter | Guangzhou | 1.5 |
| Temperate | Kunming | 1.5 |
| Typical Cities | Air Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Horizontal Solar Radiation (Wh/m2) |
|---|---|---|---|---|
| Harbin | 4.1 | 66.2 | 3.1 | 145.5 |
| Beijing | 12.6 | 55.4 | 2.4 | 159.9 |
| Shanghai | 16.7 | 76.0 | 3.2 | 145.1 |
| Guangzhou | 22.2 | 76.9 | 1.7 | 129.7 |
| Kunming | 15.5 | 70.1 | 1.4 | 174.7 |
| Scenario | Cavity Type | Frame Number | Thermal Transmittance (W/(m2·K)) | Linear Thermal Transmittance (W/(m·K)) |
|---|---|---|---|---|
| A | Polyurethane foam filling | 1 | 1.48 | 0.18 |
| 2 | 1.48 | 0.18 | ||
| 3 | 1.52 | 0.18 | ||
| C-1 | Low-emissivity surface | 1 | 1.78 | 0.15 |
| 2 | 1.78 | 0.15 | ||
| 3 | 1.60 | 0.15 | ||
| D-1 | Ultra-low-emissivity surface | 1 | 1.65 | 0.14 |
| 2 | 1.67 | 0.14 | ||
| 3 | 1.48 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiong, M.; Kweon, J.; Kim, S. Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames. Sustainability 2026, 18, 525. https://doi.org/10.3390/su18010525
Xiong M, Kweon J, Kim S. Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames. Sustainability. 2026; 18(1):525. https://doi.org/10.3390/su18010525
Chicago/Turabian StyleXiong, Maohua, Jihoon Kweon, and Soobong Kim. 2026. "Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames" Sustainability 18, no. 1: 525. https://doi.org/10.3390/su18010525
APA StyleXiong, M., Kweon, J., & Kim, S. (2026). Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames. Sustainability, 18(1), 525. https://doi.org/10.3390/su18010525

