Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (553)

Search Parameters:
Keywords = the middle atmosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1048 KiB  
Article
Forests and Green Transition Policy Frameworks: How Do Forest Carbon Stocks Respond to Bioenergy and Green Agricultural Technologies?
by Nguyen Hoang Dieu Linh and Liang Lizhi
Forests 2025, 16(8), 1283; https://doi.org/10.3390/f16081283 - 6 Aug 2025
Abstract
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary [...] Read more.
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary objective of this analysis is to investigate the impact of green agricultural technologies and bioenergy on forest carbon stocks. The empirical investigation was conducted using the method of moments quantile regression (MMQR) technique. Results using the MMQR approach indicate that bioenergy is beneficial in augmenting forest carbon stores at all levels. A 1% increase in bioenergy is associated with an increase in forest carbon stocks ranging from 3.100 at the 10th quantile to 1.599 at the 90th quantile. In the context of developing economies, similar findings are observed; however, in developed economies, bioenergy only fosters forest carbon stocks at lower and middle quantiles. In contrast, green agricultural technologies have an adverse effect on forest carbon stocks. Green agricultural technologies have a significant negative impact on forest carbon stocks, particularly between the 10th and 80th quantiles, with their influence declining in magnitude from −2.398 to −0.619. This negative connection is observed in both developed and developing countries at most quantiles, except for higher quantiles in developed economies. Gross domestic product (GDP) has an adverse effect on forest carbon stores only in developing countries, whereas human capital diminishes forest carbon stocks in both developed and developing nations. Governments should provide support for the creators of bioenergy and agroforestry technologies so that forest carbon stocks can be increased. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 335
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 307
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

12 pages, 3056 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 184
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Botanical Studies Based on Textual Evidence in Eastern Asia and Its Implications for the Ancient Climate
by Haiming Liu, Huijia Song, Fei Duan and Liang Shen
Atmosphere 2025, 16(7), 824; https://doi.org/10.3390/atmos16070824 - 7 Jul 2025
Viewed by 215
Abstract
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities [...] Read more.
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities and climatic conditions during this period is essential to unravel the interplay among floristic composition, climate fluctuations, and anthropogenic impacts. However, research in this field remains limited, with greater emphasis placed on plant taxa from hundreds of millions of years ago. Investigations into flora and climate during the last two millennia are sparse, and pre-millennial climatic conditions remain poorly characterized. In this study, a historical text written 1475 years ago was analyzed to compile plant names and morphological features, followed by taxonomic identification. The research identified three gymnosperm species (one in Pinaceae, two in Cupressaceae), 1 Tamaricaceae species (dicotyledon), and 19 dicotyledon species. However, three plant groups could only be identified at the genus level. Using textual analysis and woody plant coexistence methods, the climate of 1475 years ago in western Henan Province, located in the middle-lower Yellow River basin in East Asia, was reconstructed. Results indicate that the mean temperature of the coldest month (MTCM) was approximately 1.3 °C higher than modern values. In comparison, the mean temperature of the warmest month (MTWM) and mean annual temperature (MAT) were lower than present-day levels. This suggests slightly cooler overall conditions with milder seasonal extremes in ancient Luoyang—a finding supported by contemporaneous studies. Furthermore, annual precipitation (AP), precipitation of the warmest quarter (PWQ), and precipitation of the coldest quarter (PCQ) in the Luoyang region 1475 years ago exceeded modern measurements, despite the area’s monsoonal climate. This suggests significantly higher atmospheric moisture content in ancient air masses compared to today. This study provides floristic and climatic baseline data for advancing our understanding of global climate variability at millennial scales. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 14349 KiB  
Article
The Western North Pacific Monsoon Dominates Basin-Scale Interannual Variations in Tropical Cyclone Frequency
by Xin Li, Jian Cao, Boyang Wang and Jiawei Feng
Remote Sens. 2025, 17(13), 2317; https://doi.org/10.3390/rs17132317 - 6 Jul 2025
Viewed by 313
Abstract
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between [...] Read more.
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between WNP TCF and the WNP summer monsoon over the period 1982–2020. We found that the interannual variation in basin-scale TCF is dominated by dynamic factors, particularly lower troposphere vorticity and middle troposphere ascending motion, which are driven by the WNP summer monsoon. Enhanced monsoonal precipitation over the WNP intensifies convective heating, which acts as a diabatic heat source and triggers a Rossby wave response to the west. This response generates anomalous lower troposphere cyclonic circulation and ascending motion in the main TC development region. In turn, the strengthened WNP summer monsoon circulation further amplifies precipitation, establishing positive feedback between atmospheric circulation and convection. This mechanism establishes dynamic conditions favorable for TC genesis, thereby dominating the basin-scale interannual variation in TCF. Full article
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 261
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 435
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

13 pages, 4411 KiB  
Article
Construction of a High-Resolution Temperature Dataset at 40–110 KM over China Utilizing TIMED/SABER and FY-4A Satellite Data
by Qian Ye, Mohan Liu, Dan Du and Xiaoxin Zhang
Atmosphere 2025, 16(7), 758; https://doi.org/10.3390/atmos16070758 - 20 Jun 2025
Viewed by 335
Abstract
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, [...] Read more.
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics (TIMED) and Fengyun 4A (FY-4A) satellites. Accurate temperature profiles play a critical role in understanding the atmospheric dynamics and climate change. However, because of the limitation of traditional detecting methods, the measurements of the upper stratosphere and mesosphere are rare. In this study, a new method is developed to construct a high-resolution temperature dataset over China in the middle atmosphere based on the XGBoost technique. The model’s performance is also validated based on rocket observations and ERA5 reanalysis data. The results indicate that the model effectively captures the characteristics of the vertical and seasonal variations in temperature, which provide a valuable opportunity for further research and improvement of climate models. The model demonstrates the highest accuracy below 80 km with RMSE < 12 K, while its performance decreases above 100 km, where RMSE can exceed 20 K, indicating optimal performance in the upper stratosphere and lower mesosphere regions. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 4604 KiB  
Article
Research on the Detection of Middle Atmosphere Temperature by Pure Rotating Raman–Rayleigh Scattering LiDAR at Daytime and Nighttime
by Bangxin Wang, Cheng Li, Qian Deng, Decheng Wu, Zhenzhu Wang, Hao Yang, Kunming Xing and Yingjian Wang
Photonics 2025, 12(6), 590; https://doi.org/10.3390/photonics12060590 - 9 Jun 2025
Viewed by 569
Abstract
The temperature of the middle atmosphere is of great significance in the coupled study of the upper and lower layers. A pure rotational Raman–Rayleigh scattering LiDAR system was developed for profiling the middle atmospheric temperature at daytime and nighttime continuously by employing an [...] Read more.
The temperature of the middle atmosphere is of great significance in the coupled study of the upper and lower layers. A pure rotational Raman–Rayleigh scattering LiDAR system was developed for profiling the middle atmospheric temperature at daytime and nighttime continuously by employing an ultra-narrow band interferometer. The comparisons between LiDAR detections and radiosonde data show that the LiDAR system has temperature detection capabilities of 80 km and 60 km at night and during the day, respectively. The results demonstrate that our method can reliably detect the atmospheric temperature in the middle atmosphere. The significant non-uniformity in the horizontal distribution of temperature in the middle atmosphere and the vertical gradient of atmospheric temperature could be observed by using the developed LiDAR. Full article
Show Figures

Figure 1

17 pages, 7878 KiB  
Article
Projection of the UV Radiation for Vitamin D Production Changes Between 2015–2024 and 2090–2099 Periods
by Vladimir Zubov, Eugene Rozanov and Tatiana Egorova
Atmosphere 2025, 16(6), 686; https://doi.org/10.3390/atmos16060686 - 6 Jun 2025
Viewed by 517
Abstract
We evaluate changes in the daily doses of surface ultraviolet radiation (UV) necessary for vitamin D production (UVpD) during the 21st century caused by the evolution of the Earth’s climate and the atmospheric ozone layer. Experiments with the Earth system model SOCOLv4 (version [...] Read more.
We evaluate changes in the daily doses of surface ultraviolet radiation (UV) necessary for vitamin D production (UVpD) during the 21st century caused by the evolution of the Earth’s climate and the atmospheric ozone layer. Experiments with the Earth system model SOCOLv4 (version 4 of the Solar-Climate Ozone Links Chemistry-Climate Model) and an atmospheric radiative transfer model indicated a significant (20–80%) decrease in UVpD doses at the Earth’s surface between 2015–2024 and 2090–2099 in middle latitudes in both hemispheres and an increase of 30–40% in some areas of lower latitudes. These changes are driven by strong greenhouse gas growth and ozone-depleting substance reductions. The experiments also provided estimates of the relative contributions of the total ozone column (TOC), cloud parameters, and surface albedo changes to the corresponding variations in UVpD daily doses. Outside the tropics, the primary factor contributing to the decrease in UVpD doses (50% to 80%) is the increase in TOC. Changes in cloud parameters account for 20% to 30% of the decrease, while the decline in surface albedo contributes less than 20%. However, in the polar regions of the Northern Hemisphere, this contribution can reach up to 50%. In the lower latitudes, diminishing TOC and liquid water column of cloud (LWCC) provide the main contributions to the increase in UVpD doses. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

23 pages, 556 KiB  
Article
Remote Sensing in the 15 µm CO2 Band: Key Concepts and Implications for the Heat Balance of Mesosphere and Thermosphere
by Alexander Kutepov, Artem Feofilov, Ladislav Rezac and Konstantinos S. Kalogerakis
Remote Sens. 2025, 17(11), 1896; https://doi.org/10.3390/rs17111896 - 29 May 2025
Viewed by 635
Abstract
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO [...] Read more.
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO2 vibrational levels and the 15 µm radiative flux divergence in the MLT, but not the 15 µm cooling. Moreover, the models of the non-local thermodynamic (non-LTE) excitation of CO2 in the MLT contradict the laboratory studies of this excitation. We present a new model of the non-LTE in CO2 that is both consistent with the observed CO2 15 µm radiation and provides the CO2 cooling of the MLT, which aligns with the laboratory-measured rate coefficient kO of the CO2 vibrational excitation by collisions with O(3P) atoms. Its application shows that the current non-LTE models dramatically overestimate this cooling. Even for the low laboratory-confirmed rate coefficient of the CO2-O(3P) excitation, kO=1.5×1012 s1cm3, excess cooling is equal or higher than the true cooling, reaches a value of 10 K/day, and is maximized in the mesosphere region around 100 km—a region which is very sensitive to any changes in the heat balance. For kO=3.0×1012 s1cm3, which is currently used in the general circulation models of the MLT, excess cooling reaches 25–30 K/day. The results of this study contradict the widely held belief that the 15 µm CO2 emission is the primary cooling mechanism of the middle and upper atmospheres of Earth, Venus, and Mars. A significant reduction in 15 µm cooling will have a major impact on both the modeling of the current MLT and the estimation of its future changes due to increasing CO2. It also strongly influences the interpretation of MLT 15 µm emission observations and provides new insights into the role of this emission in the middle and upper atmospheres of Mars, Venus, and other extraterrestrial planets. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

16 pages, 2985 KiB  
Article
Impact of Solar Activity on Schumann Resonance: Model and Experiment
by Alexander Pavlovich Nickolaenko, Masashi Hayakawa and Oleksandr Koloskov
Atmosphere 2025, 16(6), 648; https://doi.org/10.3390/atmos16060648 - 27 May 2025
Viewed by 1625
Abstract
Using Schumann resonance (SR) records from the Antarctic, we evaluate the impact of the solar activity on the global ionosphere over the period from 2002 to 2024. The updated vertical profile of the middle atmosphere conductivity is applied. The pivoted upper part of [...] Read more.
Using Schumann resonance (SR) records from the Antarctic, we evaluate the impact of the solar activity on the global ionosphere over the period from 2002 to 2024. The updated vertical profile of the middle atmosphere conductivity is applied. The pivoted upper part of profiles above the knee altitude is adjusted to represent different levels of solar activity. The electric (lower) hC and the magnetic (upper) hL characteristic heights, the propagation constant ν(f) of the extremely low frequency (ELF) radio waves, and the basic resonance frequency f1 are computed for the profiles corresponding to the solar maximum, moderate, and minimum activity conditions by using the full-wave solution in the form of the Riccati differential equation. Model data are compared with experimental observations at the Ukrainian Antarctic Station of “Akademik Vernadsky” (geographic coordinates: 65.25° S and 64.25° W). The following results are discussed: (i) Solar activity modifies the upper characteristic height hL of the ionosphere by ±1 km over the 11-year cycle; (ii) Equations were obtained linking the current level of solar activity with the basic SR frequency, with the magnetic characteristic height, and with the ELF propagation constant; (iii) Based on SR monitoring within two complete solar cycles, a practical rule is proposed: an increase in the index of solar activity I10.7 by ~150 units raises the first SR frequency by ~0.1 Hz and elevates the magnetic characteristic height by ~2.5 km. Full article
Show Figures

Figure 1

19 pages, 4006 KiB  
Article
An Assessment of TROPESS CrIS and TROPOMI CO Retrievals and Their Synergies for the 2020 Western U.S. Wildfires
by Oscar A. Neyra-Nazarrett, Kazuyuki Miyazaki, Kevin W. Bowman and Pablo E. Saide
Remote Sens. 2025, 17(11), 1854; https://doi.org/10.3390/rs17111854 - 26 May 2025
Viewed by 525
Abstract
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key [...] Read more.
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key satellite instruments: the Cross-track Infrared Sounder (CrIS) and the Tropospheric Monitoring Instrument (TROPOMI). We evaluate them during this event and assess their synergies. These two retrievals are matched temporally, as the host satellites are in tandem orbit and spatially by aggregating TROPOMI to the CrIS resolution. Both instruments show that the Western U.S. displayed significantly higher daily average CO columns compared to the Central and Eastern U.S. during the wildfires. TROPOMI showed up to a factor of two larger daily averages than CrIS during the most intense fire period, likely due to differences in the vertical sensitivity of the two instruments and representative of near-surface CO abundance near the fires. On the other hand, there was excellent agreement between the instruments in downwind free tropospheric plumes (scatter plot slopes of 0.96–0.99), consistent with their vertical sensitivities and indicative of mostly lofted smoke. Temporally, TROPOMI CO column peaks were delayed relative to the Fire Radiative Power (FRP), and CrIS peaks were delayed with respect to TROPOMI, particularly during the intense initial weeks of September, suggesting boundary layer buildup and ventilation. Satellite retrievals were evaluated using ground-based CO column estimates from the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON), showing Normalized Mean Errors (NMEs) for CrIS and TROPOMI below 32% and 24%, respectively, when compared to all stations studied. While Normalized Mean Bias (NMB) was typically low (absolute value below 15%), there were larger negative biases at Pasadena, likely associated with sharp spatial gradients due to topography and proximity to a large city, which is consistent with previous research. In situ CO profiles from AirCore showed an elevated smoke plume for 15 September 2020, highlighted consistency between TROPOMI and CrIS CO columns for lofted plumes. This study demonstrates that both CrIS and TROPOMI provide complementary information on CO distribution. CrIS’s sensitivity in the middle and lower free troposphere, coupled with TROPOMI’s effectiveness at capturing total columns, offers a more comprehensive view of CO distribution during the wildfires than either retrieval alone. By combining data from both satellites as a ratio, more detailed information about the vertical location of the plumes can potentially be extracted. This approach can enhance air quality models, improve vertical estimation accuracy, and establish a new method for assessing lower tropospheric CO concentrations during significant wildfire events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 8643 KiB  
Article
Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area
by An Liu, Shuo Qin, Kai Wei, Qilin Xiao, Quansheng Cai, Huilan Huang, Xiongwei Zeng and Peijun Li
Sustainability 2025, 17(11), 4875; https://doi.org/10.3390/su17114875 - 26 May 2025
Viewed by 377
Abstract
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for [...] Read more.
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for preservation conditions of shale gas remains unclear, posing challenges for shale gas exploration and development. In this study, through systematic analysis of fluid inclusions in fractrue-filling vein of the entire core section of this well, combined with carbon and oxygen isotope tests of veins and host rocks, a paleo-fluid profile was established to explore the formation environment of Cambrian paleo-fluids and their implications for the preservation conditions of the Shuijingtuo Formation (SJT Fm.) shale gas. The results suggest that fractures in the SJT Fm. shale at the base of Cambrian Series 2 mainly formed during the deep burial hydrocarbon generation stage, trapping a large number of liquid hydrocarbon inclusions. Subsequently, numerous high-density methane inclusions and a few of gas-liquid two-phase inclusions were trapped. The SO42−, Ca2+ and Mg2+ content of fluid inclusion groups in the veins decreased from the Qinjiamiao Formation (QJM Fm.) at the bottom of Cambrian Series 3 upward and downward respectively, and the rNa+/rCl ratio was the lowest in the SJT Fm. and increased overall upward. The δ13C values of calcite veins in Tianheban Formation (THB Fm.)-Shipai Formation (SP Fm.) of the middle Cambrian Series 2 and the Loushanguan Formation (LSG Fm.) of the Cambrian Series 3 were lighter compared to the host rocks. Results indicate the later tectonic activities in this area were relatively weak, and the shale interval remained in a state of high gas saturation for a long time. The QJM Fm. was the main source of high-salinity brine, and the SJT Fm. had strong self-sealing properties and was relatively less affected by external fluids. However, the pressure evolution of high-density methane inclusions in the SJT Fm. indicated that the pressure coefficient of the shale section significantly decreased during the Indosinian uplift and erosion stage. The veins in the THB-SP and LSG Fms. were closely related to the oxidation of hydrocarbon gases by TSR (thermochemical sulfate reduction) and the infiltration of atmospheric water, respectively. Therefore, the paleo-fluid in the fractures of Well Yidi2 have integrally recorded the whole geological process including the evolution from oil to gas, the backflow of high-salinity formation water, the upward escape of shale gas, and the process of shale gas reservoirs evolving from overpressure to normal pressure. Considering that Well Yidi2 area is located in a relatively stable tectonic setting, widely distributed fracture veins probably enhance the self-sealing ability, inhibiting the rapid escape of SJT Fm. shale gas. And the rapid deposition of Cretaceous also delayed the loss of shale gas to some extent. The combination of these two factors creates favorable preservation conditions of shale gas, establishing the SJT Fm. as the primary exploration target in this area. Full article
(This article belongs to the Special Issue Sustainable Exploitation and Utilization of Hydrocarbon Resources)
Show Figures

Figure 1

Back to TopTop