Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Homogenization Temperature, Salinity and Component Test
3.2. Laser Raman Analysis
3.3. Carbon and Oxygen Isotopic Analysis
3.4. Sulfur Isotope Analysis
3.5. Basin Modeling
4. Results
4.1. Fractures and Veins Petrography
4.2. Fluid Inclusions Petrography
4.2.1. Hydrocarbon Inclusions
4.2.2. Methane Inclusions
4.2.3. Two-Phase Inclusions
4.2.4. Gas-Liquid Inclusions with Subcrystals
4.2.5. Aqueous Inclusions
4.3. Homogenization Temperature, Salinity of Inclusions
4.4. Laser Raman Analysis
4.5. Gas-Liquid Composition of Inclusion Assemblage
4.6. Stable-Isotope of Fracture Veins
4.7. Basin Modeling
5. Discussion
5.1. Features and Origins of Paleo-Fluids
5.1.1. Indication of Fluid Inclusions Composition for Paleo-Fluid Origin
5.1.2. Indications of Isotopic Signatures for Paleo-Fluid Origins
5.2. Shale Sealing Capacity and Analysis of Shale Gas Escape Pathways
5.3. Evolution of Paleo-Fluid Activity and Shale Gas Preservation Conditions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L. Shale Gas in China: Characteristics, Challenges and Prospects. Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Ju, Y.W.; Wang, G.C.; Bu, H.L.; Li, Q.G.; Yan, Z.F. China Organic-Rich Shale Geologic Features and Special Shale Gas Production Issues. J. Rock Mech. Geotech. Eng. 2014, 6, 196–207. [Google Scholar] [CrossRef]
- Wu, Z.R.; Ralf, L.; Qin, S.; Huang, Y.H.; He, S.; Zhai, G.Y.; Huang, Z.Q.; Wang, K.M. Multi-Scale Pore Structure of Terrestrial, Transitional, and Marine Shales from China: Insights into Porosity Evolution with Increasing Thermal Maturity. J. Mar. Sci. Eng. 2025, 13, 609. [Google Scholar] [CrossRef]
- Guo, T.L.; Zhang, H.R. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Pet. Explor. Dev. 2014, 41, 28–36. [Google Scholar] [CrossRef]
- Qiao, J.Q.; Luo, Q.Y.; Guo, S.X.; Tang, X.L.; Ludmila, K.; Ralf, L. Organic petrology and geochemistry of the late Neogene Shizigou Formation in the Qaidam Basin, China: Characteristics of a prospective microbial gas source rock. Int. J. Coal Geol. 2024, 296, 104658. [Google Scholar] [CrossRef]
- Yan, J.F.; Men, Y.P.; Sun, Y.Y.; Yu, Q.; Liu, W.; Zhang, H.Q.; Liu, J.; Kang, J.W.; Zhang, S.N.; Bai, H.H.; et al. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle-Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Mar. Pet. Geol. 2016, 70, 1–13. [Google Scholar] [CrossRef]
- Qiao, J.Q.; Luo, Q.Y.; Zhang, K.H.; Zhang, G.L.; Duan, J.C.; Wang, D.D.; Yu, H.Z.; Wang, S.Z.; Qu, Y.S.; Ludmila, K. Geochemistry and organic petrography of the Middle Permian Lucaogou alkaline lacustrine oil shale in the southern Junggar Basin, China: Implications for formation conditions and organic matter accumulation. Int. J. Coal Geol. 2023, 268, 104198. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.C.; Ren, J.; Liu, Z.Y.; Huang, H.; Tang, X. Stable Isotope Geochemistry of the Nitrogen-Rich Gas from Lower Cambrian Shale in the Yangtze Gorges Area, South China. Mar. Pet. Geol. 2016, 77, 693–702. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.Y.; Lu, Y.C. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. Am. Assoc. Pet. Geol. Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Feng, W.P.; Wang, F.Y.; Guan, J.; Zhou, J.X.; Wei, F.B.; Dong, W.J.; Xu, Y.F. Geologic Structure Controls on Initial Productions of Lower Silurian Longmaxi Shale in South China. Mar. Pet. Geol. 2018, 91, 163–178. [Google Scholar] [CrossRef]
- Hu, D.F.; Zhang, H.R.; Ni, K.; Yu, G.C. Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Nat. Gas Ind. 2014, 7, 905–915. [Google Scholar]
- Zhang, K.; Song, Y.; Jiang, S.J.; Jiang, Z.; Jia, C. Shale Gas Accumulation Mechanism in a Syncline Setting Based on Multiple Geological Factors: An Example of Southern Sichuan and the Xiuwu Basin in the Yangtze Region. Fuel 2019, 241, 468–476. [Google Scholar] [CrossRef]
- Hensen, C.; Wallmann, K. Methane Formation at Costa Rica Continental Margin—Constraints for Gas Hydrate Inventories and Cross-Décollement Fluid Flow. Earth Planet. Sci. Lett. 2005, 236, 41–60. [Google Scholar] [CrossRef]
- Parnell, J. Geofluids: Origin Migration and Evolution of Fluids in Sedimentary Basins; Geological Society Special Publication: London, UK, 1994; p. 78. [Google Scholar]
- Cooley, M.A.; Price, R.A.; Kyser, T.K.; Dixon, J.M. Stable-Isotope Geochemistry of Syntectonic Veins in Paleozoic Carbonate Rocks in the Livingstone Range Anticlinorium and Their Significance to the Thermal and Fluid Evolution of the Southern Canadian Foreland Thrust and Fold. Am. Assoc. Pet. Geol. Bull. 2011, 95, 1851–1882. [Google Scholar] [CrossRef]
- Katarzyna, J.S.; Lukasz, K.; Leszek, M. Fluid Circulation and Formation of Minerals and Bitumens in the Sedimentary Rocks of the Outer Carpathians- Based on Studies on the Quartz-Calcite-Organic Matter Association. Mar. Pet. Geol. 2012, 33, 138–158. [Google Scholar]
- Liu, A.; Ou, W.J.; Huang, H.L.; Wei, K.; Li, H.; Chen, X.H. Significance of Paleo-Fluid in the Ordovician–Silurian Detachment Zone to the Preservation of Shale Gas in Western Hunan–Hubei Area. Nat. Gas Ind. 2018, 38, 34–43. [Google Scholar] [CrossRef]
- Li, H.L.; You, D.H.; Han, J.; Qian, Y.X.; Sha, X.G.; Xi, B.B. The origin of fluid in calcite veins and its implications for hydrocarbon accumulation in the Shunnan-Gucheng area of the Tarim Basin, China. J. Nat. Gas Geosci. 2020, 5, 341–353. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, L.Y.; Wang, Z.X. Accumulation Characteristics and Preservation Conditions of Niutitang Formation of Lower Cambrian Series Shale Gas in West Hubei: A Case Study of Well XD1. Earth Sci. 2019, 44, 3616–3627. [Google Scholar]
- Tian, H.; Zeng, L.B.; Ma, S.J.; Li, H.; Mao, Z.; Peng, Y.M.; Xu, X.; Feng, D.J. Effects of different types of fractures on shale gas preservation in Lower Cambrian shale of northern Sichuan Basin: Evidence from macro-fracture characteristics and microchemical analysis. J. Pet. Sci. Eng. 2022, 218, 110973. [Google Scholar] [CrossRef]
- Fan, Q.Q.; Liu, D.D.; Du, W.; Li, Y.M.; Liang, F.; Zhao, F.P.; Feng, X.; Chen, Y.; Zhang, Z.Y.; Zhang, Y.X.; et al. In situ U-Pb dating of carbonate veins in Cambrian shales constrains fluid flow and hydrocarbon evolution at the southeastern margin of the Upper Yangtze platform, southwestern China. GSA Bull. 2024, 136, 2875–2890. [Google Scholar] [CrossRef]
- Chen, X.H.; Wang, C.S.; Liu, A.; Luo, S.Y.; Li, H.; Wei, K. The Discovery of Shale Gas in the Cambrian Shuijingtuo Formation of Yichang Area, Hubei Province. Geol. China 2017, 44, 188–189. [Google Scholar]
- Yan, D.P.; Zhou, M.F.; Song, H.L.; Wang, X.W.; John, M. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System Within the Yangtze Block (South China). Tectonophysics 2003, 361, 239–254. [Google Scholar] [CrossRef]
- Fu, Y.X.; Zhang, P.; Li, Z.X.; Yang, Z.W.; Liu, X.M.; Wang, S.H. The Tectonic Characteristics and Their Significance for Hydrocarbon Exploration in Mid-Yangtze Area. Geotecton. Metallog. 2007, 31, 308–314. [Google Scholar]
- Chen, X.H.; Luo, S.H.; Tian, J.Q.; Wang, Z.H.; Li, P.H.; Chen, L.; Schulz, H.; Shahzad, A.; Jan, I.U. Assessing the gas potential of the lower Paleozoic shale system in the Yichang area, Middle Yangtze region. Energy Fuels 2021, 35, 5889–5907. [Google Scholar] [CrossRef]
- Liu, A.; Chen, X.H.; Li, P.J.; Zhou, P.; Li, H.; Cai, Q.S.; Luo, S.Y. A Comparative Study of Shale Gas Preservation Conditions on Both Sides of Tianyangping Fault in Yichang Area. Geol. Sci. Technol. Inf. 2020, 39, 10–19. [Google Scholar]
- Zeng, X.W.; Wang, C.S.; Liu, A.; Wei, K. On the Sedimentary Facies of Middle Cambrian Tianheban Formation in Yichang, Hubei Province and Its Hydrocarbon Significance. Geol. Miner. Resour. S. China 2016, 32, 142–148. [Google Scholar]
- Chen, X.H.; Wei, K.; Zhang, B.M.; Li, P.J.; Li, H.; Liu, A.; Luo, S.Y. Main Geological Factors Controlling Shale Gas Reservoir in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its Enrichment Patterns. Geol. China 2018, 45, 207–226. [Google Scholar]
- Lu, W.J.; Chou, I.M.; Burruss, R.C.; Song, Y.C. A Unified Equation for Calculating Methane Vapor Pressures in the CH4–H2O System with Measured Raman Shifts. Geochim. Cosmochim. Acta 2007, 71, 3969–3978. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, S.; Lu, W. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. J. Geochem. Explor. 2016, 171, 20–28. [Google Scholar] [CrossRef]
- Gao, J.; He, S.; Zhao, J.X.; Yi, J.Z. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China: Insight from Fluid Inclusions in Fracture Cements. Mar. Pet. Geol. 2017, 83, 124–139. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.K.; He, S. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Mar. Pet. Geol. 2019, 102, 844–859. [Google Scholar] [CrossRef]
- Veizer, J.; Davin, A.; Karem, A. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Guo, T.L.; Li, G.X.; Zeng, Q.L. From the Borehole Temperature Log and Thermal Conductivity Measurements of Core Samples from Well Dangshen 3 in the Dangyang Synclinorium, Jianghan Basin and Its Exploration Implications. Chin. J. Geol. 2005, 40, 570–578. [Google Scholar]
- Li, T.Y.; He, S.; He, Z.L. Reconstruction of Tectonic Uplift and Thermal History Since Mesozoic in the Dangyang Synclinorium of the Central Yangtze Area. Acta Pet. Sin. 2012, 33, 213–224. [Google Scholar]
- Shi, H.C.; Shi, X.B. Exhumation Process of Middle-Upper Yangtze Since Cretaceous and Its Tectonic Significance: Low-Temperature Thermochronology Constraints. Chin. J. Geophys. 2014, 57, 2608–2619. [Google Scholar]
- Shen, C.B.; Mei, L.F.; Peng, L.; Chen, Y.Z.; Yang, Z.; Hong, G.F. LA-ICPMS U-Pb Zircon Age Constraints on the Provenance of Cretaceous Sediments in the Yichang Area of the Jianghan Basin, Central China. Cretac. Res. 2012, 34, 172–183. [Google Scholar] [CrossRef]
- Jacob, H.; Jacob, H. Classification, structure, genesis and practical importance of natural solid bitumen. Int. J. Coal Geol. 1985, 11, 65–79. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.Q.; He, S.; He, Z.L.; Li, S.J.; Wo, Y.J. Exploration Discovery of Shale Gas and Its Indicative Significance to Mineralization of MVT Lead-Zinc Deposit in Yichang Area, Western Hubei. Earth Sci. 2021, 46, 2230–2245. [Google Scholar]
- Liu, D.H.; Xiao, X.M.; Tian, H.; Min, Y.S.; Zhou, Q.; Cheng, P.; Shen, J.G. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chin. Sci. Bull. 2013, 58, 1285–1298. [Google Scholar] [CrossRef]
- Garven, G. The Role of Regional Fluid Flow in the Genesis of the Pine Point Deposit, Western Canada Sedimentary Basin. Econ. Geol. 1985, 80, 307–324. [Google Scholar] [CrossRef]
- Lou, Z.H.; Zhu, R.; Jin, A.M.; Sun, M.M. Evolution of Hydrodynamic Field, Oil-Gas Migration and Accumulation in Songliao Basin, China. Chin. J. Oceanol. Limnol. 2004, 22, 105–123. [Google Scholar]
- Tóth, J. Gravity-Induced Cross-Formational Flow of Formation Fluids, Red Earth Region, Alberta, Canada: Analysis, Patterns, and Evolution. Water Resour. Res. 1978, 14, 805–843. [Google Scholar] [CrossRef]
- Jin, Z.J.; Zhou, Y.; Yun, J.B.; Sun, D.S.; Long, S.X. Distribution of Gypsum-Salt Cap Rocks and Near-Term Hydrocarbon Exploration Targets in the Marine Sequences of China. Oil Gas Geol. 2010, 31, 715–724. [Google Scholar]
- Li, M.; Lou, Z.H.; Jin, A.M.; Zhu, R.; Shang, C.J.; Ye, Y.; Zhu, Z.H. Origin, Flow of Formation Water and Hydrocarbon Accumulation in the Zhenwu Area of the North Jiangsu Basin, China. Acta Geol. Sin. Engl. Ed. 2013, 87, 819–829. [Google Scholar]
- Zeng, J.H.; Wu, Q.; Yang, H.J.; Qian, S.Y.; Kong, X.; Ma, Z.L. Chemical Characteristics of Formation Water in Tazhong Area of the Tarim Basin and Their Petroleum Geological Significance. Oil Gas Geol. 2008, 29, 223–229. [Google Scholar]
- Li, Q.; Wang Hb Cai, F.; Luo, D.; Kong, F.X.; Li, A.; Liu, X.T. Influence of methane seep activities and sea-level changes on elemental and isotopic compositions and abundance of carbonates in sediments of the Okinawa Trough since the last glacial period. J. Asian Earth Sci. 2024, 260, 105942. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zheng, Y.F. Diagenesis of carbonate sediments. Acta Petrol. Sin. 2011, 27, 501–519. [Google Scholar]
- Lewan, M.D. Experiments on the Role of Water in Petroleum Formation. Geochim. Cosmochim. Acta 1997, 61, 3691–3723. [Google Scholar] [CrossRef]
- Fang, C.H.; Huang, Z.L.; Wang, Q.Z.; You, L.J.; Kang, Y.L.; Wang, Y.F. Simulation of Ultra-Low Water Saturation in Shale Gas Reservoirs and Its Significance. Geochimica 2015, 44, 267–274. [Google Scholar]
- Lei, J.J.; Li, R.W.; Tobschall, H.J.; Fang, J.H. Characteristics of Morphological Sulfur and Its Genetic Significance in Early Cambrian Black Rock Series on the Southern Margin of Yangtze. Sci. China Earth Sci. 2000, 30, 592–601. [Google Scholar]
- Wilson, L.O. Changes in Sulfur Content and Isotopic Ratios of Sulfur During Petroleum Maturation—Study of Big Horn Basin Paleozoic Oils. Am. Assoc. Pet. Geol. Bull. 1974, 58, 2295–2318. [Google Scholar]
- Worden, R.H.; Smalley, P.C. H2S-Producing Reactions in Deep Carbonate Gas Reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol. 1996, 133, 157–171. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. Am. Assoc. Pet. Geol. Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Ambrose, R.J.; Hartman, R.C.; Diaz-Campos, M.; Akkutlu, I.Y.; Sondergeld, C.H. Shale Gas-In-Place Calculations Part I: New Pore-Scale Considerations. SPEJ 2012, 17, 219–229. [Google Scholar] [CrossRef]
- Nie, H.K.; Wang, H.; He, Z.L.; Wang, R.Y.; Zhang, P.X. Formation Mechanism, Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery. Acta Pet. Sin. 2019, 40, 131–144. [Google Scholar]
- Mei, L.F.; Liu, Z.Q.; Tang, J.G.; Shen, C.B.; Fan, Y.F. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Sci. J. China Univ. Geosci. 2010, 35, 161–174. [Google Scholar]
No. | Raman Shift (cm−1) | Tn | Density (g/cm3) | Th (°C) | Cp (Mpa) | Cd (m) | Pc |
---|---|---|---|---|---|---|---|
A8 | 2911.74–2911.82 | 6 | 0.257–0.262 | 171–172 | 90.91–103.2 | 6280 | 1.48–1.68 |
A12 | 2911.30 | 1 | 0.293 | 220 | 142.46 | 7190 | 2.02 |
A15 | 2912.31–2912.88 | 3 | 0.202–0.230 | 141–143 | 52.59–65.28 | 4950 | 1.08–1.35 |
A15 | 2911.23–2911.48 | 2 | 0.279–0.299 | 212 | 124.12–146 | 7100 | 1.78–2.10 |
No. | Depth (m) | CH4 μL/g | F− μg/g | Cl μg/g− | NO3− μg/g | SO42− μg/g | Na+ μg/g | K+ μg/g | Mg2+ μg/g | Ca2+ μg/g | rNa+/ rCl− |
---|---|---|---|---|---|---|---|---|---|---|---|
A89 | 179.8 | 0.836 | 0.516 | 16.7 | 2.1 | 10.9 | 10.2 | 1.8 | 3.85 | 70.2 | 0.94 |
A88 | 194.3 | 0.412 | 0.266 | 12.6 | 0.613 | 3.09 | 7.53 | 0.717 | 1.31 | 28 | 0.92 |
A86 | 231.2 | 0.686 | 0.26 | 1.27 | 0.464 | 2.74 | 0.984 | 0.416 | 1.53 | 15.1 | 1.19 |
A82 | 248.6 | 0.538 | 0.055 | 3.97 | 0.33 | 0.922 | 4.6 | 0.518 | 0.731 | 22.8 | 1.79 |
A79 | 260.7 | 2.24 | 0.102 | 19 | 0.422 | 2.52 | 10.2 | 1.06 | 0.88 | 21 | 0.83 |
A76 | 348 | 1.43 | 0.105 | 12.6 | 0.6 | 2.26 | 7.34 | 0.868 | 1.03 | 15.7 | 0.90 |
A74 | 392.7 | 0.427 | 0.178 | 1.37 | 0.432 | 2.17 | 1.27 | 0.369 | 0.86 | 24 | 1.43 |
A67 | 484 | 0.275 | 0.169 | 0.8 | 0.448 | 1.77 | 0.499 | 0.401 | 1.59 | 18.4 | 0.96 |
A59 | 842 | 0.418 | 0.162 | 1.96 | 0.474 | 240 | 1.04 | 0.533 | 2.27 | 95.4 | 0.82 |
A57 | 860.6 | 0.256 | 0.227 | 6.79 | 0.49 | 207 | 3.04 | 1.1 | 2.26 | 83.9 | 0.69 |
A45 | 1331.5 | 5.3 | 0.562 | 2.19 | 0.884 | 8.14 | 1.33 | 0.457 | 0.982 | 24.1 | 0.94 |
A40 | 1339.3 | 0.768 | 0.9 | 4.39 | 0.45 | 18.6 | 2.62 | 0.637 | 1.45 | 29.7 | 0.92 |
A35 | 1364 | 0.684 | 0.423 | 5.75 | 0.576 | 6.98 | 4.25 | 0.68 | 0.949 | 25.5 | 1.14 |
A34 | 1366.7 | 0.686 | 0.444 | 4.18 | 0.41 | 9.7 | 2.61 | 0.571 | 1.21 | 25.9 | 0.96 |
A26 | 1643 | 11 | 0.558 | 12.6 | 1.66 | 11.3 | 6.54 | 1.61 | 3.23 | 80.1 | 0.80 |
A24 | 1650 | 8.36 | 0.335 | 11.8 | 0.441 | 6.25 | 6.8 | 0.527 | 1.28 | 25.7 | 0.89 |
A21 | 1658 | 3.46 | 0.417 | 6.7 | 0.837 | 7 | 3.09 | 0.786 | 2.17 | 45.8 | 0.71 |
A6 | 1724.4 | 2.89 | 0.413 | 3.39 | 0.445 | 4.62 | 1.15 | 0.458 | 1 | 25.7 | 0.52 |
Formation | Host Rocks (Carbonate) | Veins (Calcite) | ||||||
---|---|---|---|---|---|---|---|---|
Sample No. | Depth (m) | δ13CPDB (‰) | δ18OPDB (‰) | Sample No. | Depth (m) | δ13CPDB (‰) | δ18OPDB (‰) | |
Loushanguan Fm. | C1 | 115.8 | −1.51 | −8.05 | A101 | 115.8 | −3.74 | −13.46 |
C2 | 120.1 | −1.81 | −6.36 | A100 | 120.1 | −1.88 | −8.85 | |
C3 | 123.4 | −1.19 | −5.07 | |||||
C4 | 125 | −1.19 | −5.48 | A98 | 125 | −1.98 | −9.68 | |
C5 | 131.6 | −1.03 | −7.27 | A97 | 131.6 | −2.82 | −10.25 | |
C6 | 138.8 | −1.75 | −5.64 | |||||
C7 | 146.1 | −1.46 | −5.31 | |||||
C8 | 147 | −1.40 | −5.40 | A94 | 147 | −1.48 | −10.01 | |
C9 | 147.6 | −1.86 | −6.86 | A93 | 147.6 | −1.35 | −10.19 | |
C10 | 161 | −0.80 | −6.32 | A92 | 161 | −1.44 | −9.55 | |
C11 | 167.4 | −1.11 | −7.05 | |||||
C12 | 173.9 | −1.10 | −7.27 | A90 | 173.9 | −2.91 | −12.95 | |
A89 | 179.8 | −0.86 | −9.37 | |||||
A88 | 194.3 | −1.23 | −9.78 | |||||
C13 | 213 | −1.03 | −5.55 | |||||
C14 | 231.2 | −0.36 | −5.50 | A86 | 231.2 | −2.55 | −10.89 | |
C15 | 232.4 | −0.55 | −5.20 | |||||
A84 | 234 | −1.83 | −9.15 | |||||
C16 | 237 | −0.33 | −5.30 | |||||
A82 | 248.6 | −1.12 | −10.17 | |||||
C17 | 251.6 | −0.29 | −5.54 | A81 | 251.6 | −2.21 | −10.61 | |
C18 | 255.9 | −0.62 | −6.30 | A80 | 255.9 | −0.96 | −9.77 | |
C19 | 255.9 | −0.84 | −6.16 | |||||
A79 | 260.7 | −1.68 | −10.80 | |||||
C20 | 333.5 | −1.46 | −5.18 | |||||
C21 | 334.6 | −1.03 | −5.18 | A76 | 348 | −1.25 | −9.44 | |
C22 | 348 | −1.16 | −5.20 | A75 | 389.3 | −2.94 | −11.14 | |
C23 | 389.3 | −1.38 | −6.52 | |||||
A74-2 | 392.7 | −3.90 | −12.02 | |||||
A74 | 393 | −4.96 | −13.97 | |||||
C24 | 403.4 | −1.45 | −6.25 | A73 | 403.4 | −4.65 | −11.39 | |
C25 | 420.8 | −1.27 | −6.02 | A71 | 431.1 | −4.96 | −13.25 | |
C26 | 431.1 | −1.33 | −6.28 | |||||
C27 | 448.2 | −1.70 | −5.63 | A70 | 448.2 | −4.77 | −14.29 | |
C28 | 454.2 | −1.44 | −6.10 | |||||
C29 | 474.7 | −2.16 | −7.58 | |||||
A67 | 484.2 | −4.13 | −15.14 | |||||
C30 | 505.5 | −1.65 | −6.68 | A66 | 505.5 | −2.75 | −9.75 | |
Qinjiamiao Fm. | C31 | 544.9 | −1.38 | −8.52 | A65 | 544.9 | −1.64 | −11.39 |
C32 | 618.5 | −0.58 | −6.21 | |||||
C33 | 630.5 | 0.29 | −5.92 | A62 | 630.5 | −1.30 | −11.42 | |
C34 | 684 | −1.82 | −6.87 | A61 | 684 | −1.54 | −7.61 | |
C35 | 789.9 | −0.09 | −6.07 | A60 | 789.9 | −0.71 | −8.77 | |
A59 | 842.1 | −0.28 | −7.87 | |||||
A58 | 843.5 | −0.17 | −7.87 | |||||
A57 | 860.6 | 0.08 | −7.95 | |||||
C36 | 915.8 | −0.16 | −5.81 | |||||
C37 | 967 | −0.49 | −7.04 | |||||
C38 | 1057.9 | −0.41 | −5.04 | |||||
C39 | 1084.6 | −0.03 | −5.07 | |||||
Shilongdong Fm. | C40 | 1130.9 | 0.06 | −5.26 | ||||
C41 | 1168 | −0.84 | −8.04 | |||||
C42 | 1174.2 | −0.74 | −6.93 | |||||
C43 | 1175.6 | −0.73 | −7.19 | |||||
C44 | 1190.6 | −0.51 | −7.43 | A48 | 1190.6 | −1.16 | −11.07 | |
Tianheban Fm. | C45 | 1282.2 | 0.63 | −7.39 | ||||
C46 | 1331.5 | 0.78 | −9.04 | A45 | 1331.5 | −0.93 | −15.22 | |
C47 | 1332.6 | 1.91 | −8.30 | A44 | 1332.6 | −1.08 | −10.49 | |
C48 | 1332.9 | 1.32 | −8.75 | |||||
C49 | 1335.1 | 1.29 | −8.73 | |||||
C50 | 1338.5 | 0.76 | −8.96 | |||||
C51 | 1339.3 | 0.66 | −8.74 | A40 | 1339.3 | −0.34 | −9.02 | |
C52 | 1341.4 | 0.39 | −8.76 | A39 | 1341.4 | −0.61 | −9.72 | |
C53 | 1347.4 | 0.16 | −9.43 | A38 | 1347.4 | 0.61 | −10.56 | |
C54 | 1352 | −0.14 | −8.99 | A37 | 1352 | −0.66 | −8.98 | |
Shipai Fm. | A36 | 1363.9 | −1.22 | −9.89 | ||||
C55 | 1364.1 | −0.89 | −10.57 | |||||
A34 | 1367 | −1.16 | −10.33 | |||||
C56 | 1374.7 | −0.38 | −11.44 | |||||
A33 | 1380 | −3.05 | −9.08 | |||||
A32-2 | 1398.5 | −5.91 | −11.16 | |||||
A32 | 1398.5 | −6.23 | −11.43 | |||||
A31 | 1407 | −8.78 | −10.95 | |||||
C57 | 1613 | 2.24 | −9.36 | |||||
C58 | 1622.3 | 2.41 | −9.03 | A28 | 1622.3 | 1.98 | −10.13 | |
Shuijingtuo Fm. | C59 | 1632.4 | 2.93 | −7.02 | A27-2 | 1632.4 | 3.13 | −7.29 |
C60 | 1635.4 | 2.42 | −7.52 | A27 | 1635.4 | 1.83 | −8.57 | |
A26 | 1643 | 1.45 | −8.65 | |||||
C61 | 1649.6 | 1.52 | −8.48 | A25 | 1649.6 | 2.17 | −6.73 | |
C62 | 1650.4 | 1.35 | −8.44 | A24 | 1650.4 | 1.46 | −8.46 | |
C63 | 1651.5 | 1.50 | −7.66 | |||||
C64 | 1653.6 | 2.38 | −6.50 | |||||
A21 | 1658 | 1.27 | −7.02 | |||||
C65 | 1661.6 | 2.20 | −8.23 | A19 | 1661.6 | 2.45 | −7.76 | |
C66 | 1669.5 | 2.55 | −8.37 | |||||
C67 | 1671 | 2.39 | −8.50 | |||||
C68 | 1674 | 2.50 | −8.52 | A16 | 1674 | 2.69 | −7.56 | |
C69 | 1674.5 | 2.60 | −8.65 | |||||
C70 | 1681 | 2.11 | −8.66 | A12 | 1681.0 | 3.77 | −7.65 | |
Yanjiahe Fm. | C71 | 1729.4 | 2.40 | −5.69 | ||||
C72 | 1730.9 | 3.19 | −6.11 | A4 | 1730.9 | 2.25 | −7.20 | |
C73 | 1736.5 | 3.49 | −6.53 | A3 | 1736.5 | 3.15 | −7.29 | |
C74 | 1772.5 | 1.43 | −7.33 | A2 | 1772.5 | 2.07 | −9.70 |
Formation | Sample No. | Depth (m) | δ34S CDT (‰) | Mineral |
---|---|---|---|---|
Qinjiamiao Fm. | S8 | 1076.0 | 33.22 | Gypsum |
S7 | 1077.0 | 33.34 | ||
S6 | 1090.1 | 31.93 | ||
S5 | 1090.2 | 31.78 | ||
S4 | 1091.4 | 32.11 | ||
Shipai Fm. | S3 | 1366.8 | 30.99 | Pyrite |
S2 | 1367.0 | 31.10 | ||
S1 | 1367.1 | 31.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Qin, S.; Wei, K.; Xiao, Q.; Cai, Q.; Huang, H.; Zeng, X.; Li, P. Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area. Sustainability 2025, 17, 4875. https://doi.org/10.3390/su17114875
Liu A, Qin S, Wei K, Xiao Q, Cai Q, Huang H, Zeng X, Li P. Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area. Sustainability. 2025; 17(11):4875. https://doi.org/10.3390/su17114875
Chicago/Turabian StyleLiu, An, Shuo Qin, Kai Wei, Qilin Xiao, Quansheng Cai, Huilan Huang, Xiongwei Zeng, and Peijun Li. 2025. "Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area" Sustainability 17, no. 11: 4875. https://doi.org/10.3390/su17114875
APA StyleLiu, A., Qin, S., Wei, K., Xiao, Q., Cai, Q., Huang, H., Zeng, X., & Li, P. (2025). Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area. Sustainability, 17(11), 4875. https://doi.org/10.3390/su17114875