Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (472)

Search Parameters:
Keywords = tensile strength (UTS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5022 KiB  
Article
The Impact of Elevated Printing Speeds and Filament Color on the Dimensional Precision and Tensile Properties of FDM-Printed PLA Specimens
by Deian Dorel Ardeljan, Doina Frunzaverde, Vasile Cojocaru, Raul Rusalin Turiac, Nicoleta Bacescu, Costel Relu Ciubotariu and Gabriela Marginean
Polymers 2025, 17(15), 2090; https://doi.org/10.3390/polym17152090 - 30 Jul 2025
Viewed by 267
Abstract
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament [...] Read more.
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament variants—natural (unpigmented) and black PLA—were analyzed. ISO 527-2 type 1A specimens were produced and tested for dimensional deviations and ultimate tensile strength (UTS). The results indicate that printing speed has a marked impact on both geometric precision and mechanical performance. The optimal speed of 300 mm/s provided the best compromise between dimensional accuracy and tensile strength for both filaments. At speeds below 300 mm/s, under-extrusion caused weak layer bonding and air gaps, while speeds above 300 mm/s led to over-extrusion and structural defects due to thermal stress and rapid cooling. Black PLA yielded better dimensional accuracy at higher speeds, with cross-sectional deviations between 2.76% and 5.33%, while natural PLA showed larger deviations of up to 8.63%. However, natural PLA exhibited superior tensile strength, reaching up to 46.59 MPa, with black PLA showing up to 13.16% lower UTS values. The findings emphasize the importance of speed tuning and material selection for achieving high-quality, reliable, and efficient FDM prints. Full article
Show Figures

Figure 1

44 pages, 14734 KiB  
Article
Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys
by Xiaomi Chen, Kun Liu, Quan Liu, Jing Kong, Valentino A. M. Cristino, Kin-Ho Lo, Zhengchao Xie, Zhi Wang, Dongfu Song and Chi-Tat Kwok
Materials 2025, 18(14), 3306; https://doi.org/10.3390/ma18143306 - 14 Jul 2025
Viewed by 436
Abstract
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different [...] Read more.
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different Zn contents (0, 3.4, 6.5, and 8.3 wt%) were friction stir welded (FSWed) at a translational speed of 200 mm/min and a rotational speed of 800 rpm. These parameters were chosen based on the observations of visually sound welds, defect-free and fine-grained microstructures, homogeneous secondary phase distribution, and low roughness. Zn can affect the microstructure of Al-Si-Mg-Fe-Zn alloys, including the grain size and the content of secondary phases, leading to different mechanical and corrosion behavior. Adding different Zn contents with Mg forms the various amount of MgZn2, which has a significant strengthening effect on the alloys. Softening observed in the weld zones of the alloys with 0, 3.4, and 6.5 wt% Zn is primarily attributed to the reduction in Kernel Average Misorientation (KAM) and a decrease in the Si phase and MgZn2. Consequently, the mechanical strengths of the FSWed joints are lower as compared to the base material. Conversely, the FSWed alloy with 8.3 wt% Zn exhibited enhanced mechanical properties, with hardness of 116.3 HV0.2, yield strength (YS) of 184.4 MPa, ultimate tensile strength (UTS) of 226.9 MP, percent elongation (EL%) of 1.78%, and a strength coefficient exceeding 100%, indicating that the joint retains the strength of the as-cast one, due to refined grains and more uniformly dispersed secondary phases. The highest corrosion resistance of the FSWed alloy with 6.5%Zn is due to the smallest grain size and KAM, without MgZn2 and the highest percentage of {111} texture (24.8%). Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

16 pages, 8314 KiB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 385
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 456
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

17 pages, 9040 KiB  
Article
Adaptive Torque Control for Process Optimization in Friction Stir Welding of Aluminum 6061-T6 Using a Horizontal 5-Axis CNC Machine
by Austin Clark and Ihab Ragai
J. Manuf. Mater. Process. 2025, 9(7), 232; https://doi.org/10.3390/jmmp9070232 - 7 Jul 2025
Viewed by 539
Abstract
The research presented herein investigates the impact of axial force and feed rate in the Friction Stir Welding (FSW) of aluminum alloy 6061-T6 in a GROB G552 horizontal 5-axis CNC machine with adaptive torque control enabled. The purpose of this study is to [...] Read more.
The research presented herein investigates the impact of axial force and feed rate in the Friction Stir Welding (FSW) of aluminum alloy 6061-T6 in a GROB G552 horizontal 5-axis CNC machine with adaptive torque control enabled. The purpose of this study is to further advance the performance and characteristics of FSW aluminum alloys in 5-axis CNCs, particularly in conjunction with adaptive torque control. The Taguchi and ANOVA methods were utilized to define parameter tables and analyze the resulting data. Optical microscopy and tensile tests were performed on the welded samples to evaluate weld quality. The results from this study provide clear evidence that axial force has a significant effect on tensile strength in FSW AA6061-T6. The maximum UTS found in this study, welded with an axial force of 9.4 kN, retained 69% tensile strength of the base material. Conversely, a decrease in strength and an increase in void formation was found at higher feed rates with this force. Ideal welds, with minimal defects across all feed rates, were performed with an axial force of 8.3 kN. A feed rate of 300 mm/min at this force resulted in a 67% base metal strength. These findings contribute to improving joint strength and application efficiency in FSW AA6061-T6 performed in a horizontal 5-axis CNC machine where adaptive torque control is enabled. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

17 pages, 5649 KiB  
Article
Heat Treatment Analysis and Mechanical Characterization of a Recycled Gravity Die Cast EN 42000 Alloy
by Cristian Cascioli, Riccardo Arcaleni, Alessandro Morri and Lorella Ceschini
Metals 2025, 15(7), 726; https://doi.org/10.3390/met15070726 - 29 Jun 2025
Viewed by 431
Abstract
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical [...] Read more.
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical behavior. This study focuses on a recycled EN 42000 alloy, comprising 95% recycled aluminum, with a focus on the effect of its elevated iron content (0.447 wt%) on aging behavior and mechanical performance. Laboratory-scale specimens were produced through gravity die casting and subjected to T6 heat treatment, consisting of solution, quenching, and artificial aging from 160 °C to 190 °C for up to 8 h. To investigate overaging, analyses were conducted at 160 °C and 170 °C for durations up to 184 h. Tensile tests were conducted on specimens aged under the most promising conditions. Based on innovative quality indices and predictive modeling, aging at 160 °C for 4.5 h was identified as the optimal condition, providing a well-balanced combination of strength and ductility (YS = 258 MPa, UTS = 313 MPa, and e% = 3.9%). Mechanical behavior was also assessed through microstructural and fractographic analyses, highlighting the capability of EN 42000 to achieve properties suitable for high-performance automotive components. Full article
(This article belongs to the Special Issue Sustainability Approaches in the Recycling of Light Alloys)
Show Figures

Graphical abstract

19 pages, 5086 KiB  
Article
Mechanical Property Prediction of Industrial Low-Carbon Hot-Rolled Steels Using Artificial Neural Networks
by Saurabh Tiwari, Hyoju Ahn, Maddika H. Reddy, Nokeun Park and Nagireddy Gari S. Reddy
Materials 2025, 18(13), 2966; https://doi.org/10.3390/ma18132966 - 23 Jun 2025
Viewed by 437
Abstract
This study investigated the application of neural network techniques to predict the mechanical properties of low-carbon hot-rolled steel strips using industrial data. A feedforward neural network (FFNN) model was developed to predict the yield strength (YS), ultimate tensile strength (UTS), and elongation (%EL) [...] Read more.
This study investigated the application of neural network techniques to predict the mechanical properties of low-carbon hot-rolled steel strips using industrial data. A feedforward neural network (FFNN) model was developed to predict the yield strength (YS), ultimate tensile strength (UTS), and elongation (%EL) based on the chemical composition and processing parameters. For the low-carbon hot-rolled steel strip (C: 0.02–0.06%, Mn: 0.17–0.38%), 435 datasets were utilized with 17 input parameters, including 15 composition elements, finish rolling temperature (FRT), and coil target temperature (CTT). The model was trained using 335 datasets and tested using 100 randomly selected datasets. The optimum network architecture consisted of two hidden layers with 34 neurons each, achieving a mean squared error of 0.014 after 200,000 iterations. The model predictions showed excellent agreement with the actual values, with mean percentage errors of 4.44%, 3.54%, and 4.84% for the YS, UTS, and %EL, respectively. The study further examined the influence of FRT and CTT on mechanical properties, demonstrating that FRT has more complex effects on mechanical properties than CTT. The model successfully predicted property variations with different processing parameters, thereby providing a valuable tool for alloy design and process optimization in steel manufacturing. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 5614 KiB  
Article
Influence of Post-Heat Treatment on the Tensile Strength and Microstructure of Metal Inert Gas Dissimilar Welded Joints
by Van-Thuc Nguyen, Thanh Tan Nguyen, Van Huong Hoang, Tran Ngoc Thien, Duong Thi Kim Yen, Tri Ho Minh, Le Minh Tuan, Anh Tu Nguyen, Hoang Trong Nghia, Pham Quan Anh, Phan Quoc Bao and Van Thanh Tien Nguyen
Crystals 2025, 15(7), 586; https://doi.org/10.3390/cryst15070586 - 20 Jun 2025
Viewed by 343
Abstract
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile [...] Read more.
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile strength have been examined. The findings show that the fast cooling of the weld joint and the ferrite-forming element of the filler wire cause the dendrites’ δ-ferrite phase to emerge on both the weld bead and the heat-affected zone (HAZ) of the SUS304 side. The stickout parameter has the largest impact on the ultimate tensile strength (UTS), next to the welding speed, welding voltage, and welding current, due to the strong impact of the heat distribution. The optimal welding parameters are a welding current of 105 A, a welding voltage of 14.5 V, a stickout of 12 mm, and a welding speed of 420 mm/min, producing the UTS value of 445.3 MPa, which is close to the predicted value of 469.2 ± 53.6 MPa. Post-heat treatment with an annealing temperature that is lower than 700 °C could improve the optimized weld joints’ strength by up to 5%. The findings may provide a more realistic understanding of the dissimilar welding technology. Full article
Show Figures

Figure 1

20 pages, 5267 KiB  
Article
Effect of Hot Isostatic Pressure on the Microstructure Evolution of Ti-22Al-25Nb Alloy Formed by Selective Laser Melting
by Jingjun He, Haiou Yang, Linhao Huang, Jingyu Man, Yuhan Wu and Xin Lin
Materials 2025, 18(12), 2806; https://doi.org/10.3390/ma18122806 - 14 Jun 2025
Viewed by 422
Abstract
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 [...] Read more.
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 °C + 300 MPa)/3 h-HIP, the specimen densities have risen to 99.71%, porosity has markedly decreased, and internal flaws have been eradicated. Microstructural analysis reveals a significant presence of GBα2 (GB, Grain Boundary) along grain boundaries, with GBLO + α2 (GBL, Grain Boundary Lath; O, Orthorhombic) laths extending parallel from the grain boundaries into the intragranular region. Additionally, a limited number of cross or snowflake O + α2 lath clusters and acicular O phases are precipitated within the B2 (B, Body-centered cubic) phase in the HIPed state, characterized by isotropic and linear grain boundaries. The GBLα2 and GBLO exhibit two growth modes: sympathetic nucleation and interfacially unstable nucleation. During the solid solution treatment following HIP, as the solid solution temperature rises, the acicular O phase, GBLO, lath O phase, lath α2, and GBα2 sequentially dissolve, increasing the volume fraction of the B2 phase. After HIP, the aging microstructure is primarily characterized by the proliferation of the acicular O phase precipitated from the B2 phase and retaining the lath O phase in a solid solution. The precipitation of GBLO in the original solid solution is suppressed, and the GBLα2 in the original solid solution partially decomposes into rimO, resulting in coarse grain size and significant internal decomposition of α2. Following solution treatment and aging at 920 °C, the proliferation of the acicular O phase enhances ductility, resulting in ideal overall characteristics with a yield strength (YS) of 760.81 MPa, ultimate tensile strength (UTS) of 869.32 MPa, and elongation (EL) of 2.683%. This study demonstrates that the HIP treatment and the modification of solution aging parameters can substantially increase the density and refine the microstructure of Ti-22Al-25Nb alloy, hence enhancing its mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

14 pages, 13554 KiB  
Article
Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy
by Xiaoru Zhuo, Tiancheng Huang, Yuhan Xiong, Pengpeng Zuo, Xinyu Chen and Senlin Jin
Materials 2025, 18(12), 2755; https://doi.org/10.3390/ma18122755 - 12 Jun 2025
Viewed by 403
Abstract
Zn-Ag alloys are deemed extremely promising materials for manufacturing biodegradable medical implants. Nonetheless, their practical applications are still constrained by inferior mechanical properties. To tackle this issue, Zn-0.5Ag alloy was alloyed with Mg (0.2 wt.%) and processed by combined equal-channel angular pressing (ECAP) [...] Read more.
Zn-Ag alloys are deemed extremely promising materials for manufacturing biodegradable medical implants. Nonetheless, their practical applications are still constrained by inferior mechanical properties. To tackle this issue, Zn-0.5Ag alloy was alloyed with Mg (0.2 wt.%) and processed by combined equal-channel angular pressing (ECAP) and rolling, with different rolling reductions (40%, 60%, and 75%). ECAP-processed Zn-0.5Ag-0.2Mg alloy exhibited superior mechanical properties to its as-cast counterpart. Subsequent rolling of 40% further enhances the mechanical performance of ECAP-processed Zn-0.5Ag-0.2Mg alloy, with yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) reaching 255 MPa, 309 MPa, and 52%, respectively, surpassing the application requirements. As the rolling reduction increased to 60% and further to 75%, YS and UTS declined, whereas EL rose continuously. The underlying mechanisms for the variation in strength and ductility were elucidated based on microstructure evolution analysis through optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) characterizations. Full article
Show Figures

Figure 1

17 pages, 4192 KiB  
Article
Significant Enhancement of Strength and Ductility in Bioresorbable Zn–0.1Mg Alloy via ECAP Processing
by Iryna Cuperová, Martin Fujda, Róbert Kočiško, Patrik Petroušek, Zuzana Molčanová, Miloš Matvija, Róbert Džunda, Beáta Ballóková, Dávid Csík, Katarína Gáborová and Karel Saksl
Inorganics 2025, 13(6), 193; https://doi.org/10.3390/inorganics13060193 - 10 Jun 2025
Cited by 1 | Viewed by 551
Abstract
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable [...] Read more.
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable implants. This study investigates the effect of severe plastic deformation on the microstructure and mechanical properties of as-cast Zn–0.1Mg (wt.%) alloy. The as-cast alloy, characterised by a coarse-grained microstructure with intermetallic phases at grain boundaries and low strength and ductility, was subjected to two passes of Equal Channel Angular Pressing (ECAP). The intense plastic deformation transformed the coarse-grained structure into an ultrafine-grained solid solution matrix. This substantial microstructural refinement led to a significant enhancement in mechanical performance. The yield strength (YS) and ultimate tensile strength (UTS) more than doubled, reaching 198 MPa and 215 MPa, respectively. Remarkably, the elongation increased from 2.2% to 187% in tensile testing. These findings confirm the beneficial effect of grain refinement and dynamic recrystallisation on the mechanical behaviour of bioresorbable Zn–0.1Mg alloy and highlight the high potential of ECAP processing for optimising the mechanical properties of Zn-based biodegradable materials. Full article
Show Figures

Figure 1

25 pages, 26766 KiB  
Article
The Role of Friction Stir Processing Travel Speed on the Microstructure Evolution and Mechanical Performance of As-Cast Hypoeutectic Al-5Si Alloy
by Basma El-Eraki, Mahmoud F. Y. Shalaby, Ahmed El-Sissy, Abeer Eisa, Sabbah Ataya and Mohamed M. El-Sayed Seleman
Crystals 2025, 15(6), 546; https://doi.org/10.3390/cryst15060546 - 6 Jun 2025
Viewed by 1370
Abstract
This study’s novelty lies in providing first-time insights into the isolated role of Friction Stir Processing (FSP) travel speed on microstructure evolution and mechanical performance (micro-hardness, tensile properties, impact energy, and wear behavior) specifically in hypoeutectic as-cast Al-5 wt.% Si alloys, addressing a [...] Read more.
This study’s novelty lies in providing first-time insights into the isolated role of Friction Stir Processing (FSP) travel speed on microstructure evolution and mechanical performance (micro-hardness, tensile properties, impact energy, and wear behavior) specifically in hypoeutectic as-cast Al-5 wt.% Si alloys, addressing a critical unaddressed gap in previous works (typically on near-eutectic compositions of Si > 6.5 wt.%). FSP, a solid-state technique, is highly effective for enhancing the properties of cast materials. The FSP was conducted at a fixed rotational speed of 1330 rpm and various travel speeds (26, 33, 42, and 52 mm/min). The FSP improves the mechanical properties of as-cast Al-5Si alloy by refining its grain structure. This leads to higher hardness, ultimate tensile strength (UTS), yield strength (YS), and strain at fracture and toughness compared to the as-cast condition. The specimen processed at 26 mm/min achieved the highest values of YS, UTS, toughness, and wear resistance. The fracture surfaces of the tensile and impact test specimens were examined using scanning electron microscopy (SEM) and discussed. Results indicated that the fracture surfaces revealed a transition from predominantly brittle fracture in the as-cast alloy to ductile fracture at 26 mm/min, changing to a mixed fracture mode at 52 mm/min. These findings underscore the critical importance of optimizing FSP travel speed to significantly tailor and enhance the mechanical performance of as-cast hypoeutectic Al-5Si alloys for industrial applications. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

19 pages, 14266 KiB  
Article
Predictive Capability Evaluation of Micrograph-Driven Deep Learning for Ti6Al4V Alloy Tensile Strength Under Varied Preprocessing Strategies
by Yuqi Xiong and Wei Duan
Metals 2025, 15(6), 586; https://doi.org/10.3390/met15060586 - 24 May 2025
Viewed by 542
Abstract
The purpose of this study is to develop a micrograph-driven model for Ti6Al4V mechanical property prediction through integrated image preprocessing and deep learning, reducing the reliance on manually extracted features and process parameters. This paper systematically evaluates the capability of a CNN model [...] Read more.
The purpose of this study is to develop a micrograph-driven model for Ti6Al4V mechanical property prediction through integrated image preprocessing and deep learning, reducing the reliance on manually extracted features and process parameters. This paper systematically evaluates the capability of a CNN model using preprocessed micrographs to predict Ti6Al4V alloy ultimate tensile strength (UTS), while analyzing how different preprocessing combinations influence model performance. A total of 180 micrographs were selected from published literature to construct the dataset. After applying image standardization (grayscale transformation, resizing, and normalization) and image enhancement, a pre-trained ResNet34 model was employed with transfer learning to conduct strength grade classification (low, medium, high) and UTS regression. The results demonstrated that on highly heterogeneous micrograph datasets, the model exhibited moderate classification capability (maximum accuracy = 65.60% ± 1.22%) but negligible UTS regression capability (highest R2 = 0.163 ± 0.020). Fine-tuning on subsets with consistent forming processes improved regression performance (highest R2 = 0.360 ± 1.47 × 10−5), outperforming traditional predictive models (highest R2 = 0.148). The classification model was insensitive to normalization methods, while min–max normalization with center-cropping showed optimal standardization for regression (R2 = 0.111 ± 0.017). Gamma correction maximized classification accuracy, whereas histogram equalization achieved the highest improvement for regression. Full article
Show Figures

Figure 1

22 pages, 3817 KiB  
Article
Machine Learning Unveils the Impacts of Key Elements and Their Interaction on the Ambient-Temperature Tensile Properties of Cast Titanium Aluminides Employing SHAP Analysis
by Shiqiu Liu and Li Liang
Crystals 2025, 15(5), 468; https://doi.org/10.3390/cryst15050468 - 16 May 2025
Viewed by 588
Abstract
This study facilitates the data-driven design of novel cast TiAl alloys by systematically investigating the critical elements and their interactions affecting room-temperature (RT) tensile properties by the machine learning method based on SHAP analysis. Comparative analysis of three algorithms within the training dataset [...] Read more.
This study facilitates the data-driven design of novel cast TiAl alloys by systematically investigating the critical elements and their interactions affecting room-temperature (RT) tensile properties by the machine learning method based on SHAP analysis. Comparative analysis of three algorithms within the training dataset proved the random forest regression (RFR) as the optimal modeling approach. To evaluate model performance and prevent overfitting, leave-one-out cross-validation (LOOCV) was simultaneously implemented during training. All the three well-trained models demonstrated robust predictive capabilities for ultimate tensile strength (UTS), elongation (EL), and yield strength (YS). Detailed investigation on both the magnitude and directionality of feature importance and interaction disclosed distinct elemental influences: B, C, and Nb predominantly improved UTS and YS, while Cr, Mn, and Al positively affected EL. The highly probable direction of feature interaction between two different elements on the RT tensile properties of cast TiAl alloys was basically revealed. Notably, Al–B interactions enhance UTS at Al < 45.5 at%; Cr–Mn synergistically improves EL when Cr > 1 at%; both Al–B and Al–C interactions boost YS within 44–46 at% Al. Despite a slight distinction in casting technology, this research established a qualitative relationship between the chemical elements and the RT tensile properties of TiAl alloys, providing design recommendations for cast TiAl alloys with excellent RT tensile properties. Full article
Show Figures

Figure 1

15 pages, 5248 KiB  
Article
Effects of Electric Current on the Mechanical Properties of Cu/Nb Multilayer Composites by Accumulative Roll Bonding
by Chenghang Ni, Chaogang Ding, Fanghui Wang, Hushan Li, Qiang Zhu and Debin Shan
Materials 2025, 18(9), 2109; https://doi.org/10.3390/ma18092109 - 4 May 2025
Viewed by 566
Abstract
Cu/Nb multilayer composites with a continuous layered structure were fabricated using accumulative roll bonding (ARB). The effects of Joule heating on the mechanical properties and fracture behavior of these composites under electrically assisted tension (EAT) at different current densities were investigated. It is [...] Read more.
Cu/Nb multilayer composites with a continuous layered structure were fabricated using accumulative roll bonding (ARB). The effects of Joule heating on the mechanical properties and fracture behavior of these composites under electrically assisted tension (EAT) at different current densities were investigated. It is observed that the ultimate tensile strength (UTS) exhibits a progressive decline with the increasing current density. When the current density reaches 120 A/mm2, the UTS decreases by 68.9 MPa, and this decline tends to saturate at high current densities. Furthermore, the elongation (EL) displays significant enhancement at current densities of 40 A/mm2 and 80 A/mm2, particularly reaching a maximum improvement of 42.1% at 80 A/mm2 when compared with room temperature (RT). The fracture mode observed during the EAT process is consistent with that at RT, which remains a ductile fracture. Full article
(This article belongs to the Special Issue Study on Advanced Metal Matrix Composites (3rd Edition))
Show Figures

Figure 1

Back to TopTop