Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure Evolution
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Fang, H.; Tian, H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024, 25, 7015–7057. [Google Scholar] [CrossRef] [PubMed]
- Athmuri, D.N.; Bhattacharyya, J.; Bhatnagar, N.; Shiekh, P.A. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: A biomaterials perspective. J. Mater. Chem. B 2024, 12, 10490–10515. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, N.G.; Poulios, K.; Somers, M.A.J.; Christiansen, T.L. Impact of laser marking on microstructure and fatigue life of medical grade titanium. Mater. Sci. Eng. A 2023, 873, 145020. [Google Scholar] [CrossRef]
- Tur, D.; Tian, Z.; Giannis, K.; Unger, E.; Mittlboeck, M.; Rausch-Fan, X.; Strbac, G.D. A comparative in vitro study on heat generation with static guided and conventional implant bed preparation using stainless steel twist drills and a standardized bovine model. Materials 2025, 18, 1277. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Wu, Y.; Ju, J.; Liu, H.; Jiang, J.; Hu, Z.; Bai, J.; Xue, F. Recent progress of novel biodegradable zinc alloys: From the perspective of strengthening and toughening. J. Mater. Res. Technol. 2022, 17, 244–269. [Google Scholar] [CrossRef]
- Zhang, Z.; He, D.; Zheng, Y.; Wu, Y.; Li, Q.; Gong, H.; Ma, X.; Li, Y. Microstructure and mechanical properties of hot-extruded Mg-2Zn-xGa (x = 1, 3, 5 and 7 wt.%) alloys. Mater. Sci. Eng. A 2022, 859, 144208. [Google Scholar] [CrossRef]
- Kabir, H.; Munir, K.; Wen, C.; Li, Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact. Mater. 2021, 6, 836–879. [Google Scholar] [CrossRef]
- Chen, K.; Ge, W.; Zhao, L.; Kong, L.; Yang, H.; Zhang, X.; Gu, X.; Zhu, C.; Fan, Y. Endowing biodegradable Zinc implants with dual-function of antibacterial ability and osteogenic activity by micro-addition of Mg and Ag (≤0.1 wt.%). Acta Biomater. 2023, 157, 683–700. [Google Scholar] [CrossRef]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef]
- Venezuela, J.; Dargusch, M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019, 87, 1–40. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Drelich, J.W.; Vedani, M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018, 71, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Guillory, R.J., II; Mostaed, E.; Oliver, A.A.; Morath, L.M.; Earley, E.J.; Flom, K.L.; Kolesar, T.M.; Mostaed, A.; Summers, H.D.; Kwesiga, M.P.; et al. Improved biocompatibility of Zn-Ag-based stent materials by microstructure refinement. Acta Biomater. 2022, 145, 416–426. [Google Scholar] [CrossRef]
- Heiss, A.; Thatikonda, V.S.; Richter, A.; Schmitt, L.-Y.; Park, D.; Klotz, U.E.E. Development, Processing and Aging of Novel Zn-Ag-Cu Based Biodegradable Alloys. Materials 2023, 16, 3198. [Google Scholar] [CrossRef] [PubMed]
- Jara-Chavez, G.; Amaro-Villeda, A.; Campillo-Illanes, B.; Ramirez-Argaez, M.; Gonzalez-Rivera, C. Effect of Ag and Cu Content on the Properties of Zn-Ag-Cu-0.05Mg Alloys. Metals 2024, 14, 740. [Google Scholar] [CrossRef]
- Khafizova, E.; Fakhretdinova, E.; Islamgaliev, R.; Polenok, M.; Sitdikov, V.; Yilmazer, H. Effect of Plastic Deformation on the Structure and Mechanical Properties of the Zn-4Ag-1Cu Zinc Alloy. Materials 2023, 16, 4646. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Zhang, D.; Qi, F.; Lin, J.; Dai, Y. The effects of Cu and Mn on the microstructure, mechanical, corrosion properties and biocompatibility of Zn-4Ag alloy. J. Mater. Res. Technol. 2022, 21, 4969–4981. [Google Scholar] [CrossRef]
- Wątroba, M.; Bednarczyk, W.; Kawałko, J.; Mech, K.; Marciszko, M.; Boelter, G.; Banzhaf, M.; Bała, P. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material. Mater. Des. 2019, 183, 108154. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Ardakani, M.S.; Mostaed, A.; Reaney, I.M.; Goldman, J.; Drelich, J.W. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting. Acta Biomater. 2020, 105, 319–335. [Google Scholar] [CrossRef]
- Niu, K.-N.; Zhang, D.-C.; Qi, F.-G.; Lin, J.-G.; Dai, Y.-L. Achieving high strength and antibacterial Zn-4Ag-Mn alloy with homogenous corrosion behavior via high-pressure solid solution. Trans. Nonferrous Met. Soc. China 2024, 34, 2231–2244. [Google Scholar] [CrossRef]
- Ramirez–Ledesma, A.L.; Domínguez–Contreras, L.A.; Juarez–Islas, J.A.; Paternoster, C.; Mantovani, D. Influence of cross—Rolling on the microstructure and mechanical properties of Zn bioabsorbable alloys. Mater. Lett. 2020, 279, 128504. [Google Scholar] [CrossRef]
- Ramirez-Ledesma, A.L.; Roncagliolo-Barrera, P.; Alvarez-Perez, M.A.; Juarez-Islas, J.A.; Paternoster, C.; Copes, F.; Mantovani, D. Introducing novel bioabsorbable Zn-Ag-Mg alloys intended for cardiovascular applications. Mater. Today Commun. 2023, 35, 105544. [Google Scholar] [CrossRef]
- Wątroba, M.; Mech, K.; Bednarczyk, W.; Kawałko, J.; Marciszko-Wiąckowska, M.; Marzec, M.; Shepherd, D.E.T.; Bała, P. Long-term in vitro corrosion behavior of Zn-3Ag and Zn-3Ag-0.5Mg alloys considered for biodegradable implant applications. Mater. Des. 2022, 213, 110289. [Google Scholar] [CrossRef]
- Wang, J.; Xia, H.; Fan, X.; Wu, H.; Liao, Y.; Yuan, F. Biodegradable Zn-2Ag-0.04Mg Alloy for Bone Regeneration In Vivo. Mol. Biotechnol. 2022, 64, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xie, X.; Wang, J.; Ke, G.; Huang, H.; Liao, Y.; Kong, Q. Biological properties of Zn–0.04Mg–2Ag: A new degradable zinc alloy scaffold for repairing large-scale bone defects. J. Mater. Res. Technol. 2021, 13, 1779–1789. [Google Scholar] [CrossRef]
- Zhuo, X.-R.; Huang, T.-C.; Huang, Y.-H.; Dong, X.-B.; Zhao, L.-Y.; Wang, X.-J.; Xu, G.-X.; Qiao, Y.-X.; Jiang, J.-H.; Ma, A.-B.; et al. Strengthening Zn-Ag alloys with Mg addition. J. Iron Steel Res. Int. 2024. [Google Scholar] [CrossRef]
- Tong, X.; Shen, X.; Lin, Z.; Lu, L.; Munir, K.; Zhou, R.; Zhu, L.; Li, Y.; Ma, J.; Wen, C.; et al. In vitro and in vivo studies of a biodegradable Zn-4Ag-0.1Sc alloy with high strength-elongation product, cytocompatibility, osteogenic differentiation, and anti-infection properties for guided bone-regeneration membrane applications. Chem. Eng. J. 2024, 493, 152763. [Google Scholar] [CrossRef]
- Bednarczyk, W.; Wątroba, M.; Kawałko, J.; Bała, P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng. A 2019, 748, 357–366. [Google Scholar] [CrossRef]
- Bednarczyk, W.; Wątroba, M.; Kawałko, J.; Bała, P. Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP. Mater. Sci. Eng. A 2019, 759, 55–58. [Google Scholar] [CrossRef]
- Carluccio, D.; Demir, A.G.; Bermingham, M.J.; Dargusch, M.S. Challenges and Opportunities in the Selective Laser Melting of Biodegradable Metals for Load-Bearing Bone Scaffold Applications. Metall. Mater. Trans. A 2020, 51, 3311–3334. [Google Scholar] [CrossRef]
- Claudia, G.-M.; Ivan, G.; Laia, O.-M.; Emilio, J.-P.; Maria-Pau, G.; Maurizio, V.; Luis, C.J.; Marta, P. Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices. Mater. Des. 2023, 228, 111817. [Google Scholar] [CrossRef]
- Zhuo, X.; Zhao, L.; Liu, H.; Qiao, Y.; Jiang, J.; Ma, A. A high-strength and high-ductility Zn–Ag alloy achieved through trace Mg addition and ECAP. Mater. Sci. Eng. A 2023, 881, 145381. [Google Scholar] [CrossRef]
- Qu, X.; Yang, H.; Jia, B.; Wang, M.; Yue, B.; Zheng, Y.; Dai, K. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact. Mater. 2021, 6, 4607–4624. [Google Scholar] [CrossRef] [PubMed]
- Sikora-Jasinska, M.; Mostaed, E.; Mostaed, A.; Beanland, R.; Mantovani, D.; Vedani, M. Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications. Mater. Sci. Eng. C 2017, 77, 1170–1181. [Google Scholar] [CrossRef]
- Wątroba, M.; Bednarczyk, W.; Kawałko, J.; Lech, S.; Wieczerzak, K.; Langdon, T.G.; Bała, P. A Novel High-Strength Zn-3Ag-0.5Mg Alloy Processed by Hot Extrusion, Cold Rolling, or High-Pressure Torsion. Metall. Mater. Trans. A 2020, 51, 3335–3348. [Google Scholar] [CrossRef]
- Bednarczyk, W.; Kawałko, J.; Rutkowski, B.; Wątroba, M.; Gao, N.; Starink, M.J.; Bała, P.; Langdon, T.G. Abnormal grain growth in a Zn-0.8Ag alloy after processing by high-pressure torsion. Acta Mater. 2021, 207, 108154. [Google Scholar] [CrossRef]
- Chen, C.; Yue, R.; Zhang, J.; Huang, H.; Niu, J.; Yuan, G. Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents. Mater. Sci. Eng. C 2020, 116, 111172. [Google Scholar] [CrossRef]
- Sun, W.T.; Qiao, X.G.; Zheng, M.Y.; Xu, C.; Kamado, S.; Zhao, X.J.; Chen, H.W.; Gao, N.; Starink, M.J. Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Mater. 2018, 151, 260–270. [Google Scholar] [CrossRef]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Kubásek, J.; Vojtěch, D.; Pospíšilová, I.; Michalcová, A.; Maixner, J. Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 2016, 23, 1167–1176. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Xu, Q.; Ma, A.; Jiang, J.; Liu, H.; Yuan, Y.; Qiu, C. Achieving single-pass high-reduction rolling and enhanced mechanical properties of AZ91 alloy by RD-ECAP pre-processing. Mater. Sci. Eng. A 2021, 804, 140717. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, A.; Gou, X.; Jiang, J.; Lu, F.; Song, D.; Zhu, Y. Superior mechanical properties of ZK60 mg alloy processed by equal channel angular pressing and rolling. Mater. Sci. Eng. A 2015, 630, 45–50. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, A.; Jiang, J.; Yuan, Y.; Li, H. Deformation Structure and Mechanical Properties of Pure Titanium Produced by Rotary-Die Equal-Channel Angular Pressing. Metals 2017, 7, 297. [Google Scholar] [CrossRef]
- Thorvaldsen, A. The intercept method—2. Determination of spatial grain size. Acta Mater. 1997, 45, 595–600. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, S.; Guillory, R.; Bowen, P.K.; Yin, Z.; Griebel, A.; Schaffer, J.; Earley, E.J.; Goldman, J.; Drelich, J.W. Novel high-strength, low-alloys Zn-Mg (<0.1 wt% Mg) and their arterial biodegradation. Mater. Sci. Eng. C 2018, 84, 67–79. [Google Scholar] [CrossRef]
- Wang, X.; Meng, B.; Han, J.; Wan, M. Effect of grain size on superplastic deformation behavior of Zn-0.033 Mg alloy. Mater. Sci. Eng. A 2023, 870, 144877. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K. Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy. Acta Mater. 2007, 55, 2747–2756. [Google Scholar] [CrossRef]
- Wu, Y.; Kou, H.; Wu, Z.; Tang, B.; Li, J. Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression. J. Alloys Compd. 2018, 749, 844–852. [Google Scholar] [CrossRef]
- Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Schille, C.; Schweizer, E.; Kimmerle-Mueller, E.; Rupp, F.; Han, X.; Heiss, A.; Richter, A.; Legner, C.; Klotz, U.E.; et al. Evaluation of a Zn-2Ag-1.8Au-0.2V Alloy for Absorbable Biocompatible Materials. Materials 2020, 13, 56. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019. [Google Scholar] [CrossRef]
- Pande, C.S.; Cooper, K.P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 2009, 54, 689–706. [Google Scholar] [CrossRef]
- Bailey, J.; Hirsch, P. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 1960, 5, 485–497. [Google Scholar] [CrossRef]
- Shuai, C.; Zhong, S.; Dong, Z.; He, C.; Shuai, Y.; Yang, W.; Peng, S. Peritectic-eutectic transformation of intermetallic in Zn alloy: Effects of Mn on the microstructure, strength and ductility. Mater. Charact. 2022, 190, 112054. [Google Scholar] [CrossRef]
Point | Zn | Ag | Mg | Phase |
---|---|---|---|---|
A | 98.98 | 0.58 | 0.44 | η-Zn |
B | 80.40 | 0.59 | 19.01 | Mg2Zn11 |
C | 77.15 | 0.96 | 21.89 | Mg2Zn11 |
D | 79.10 | 0.79 | 20.11 | Mg2Zn11 |
E | 81.02 | 0.51 | 18.47 | Mg2Zn11 |
Alloy State | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
As-cast | 111 ± 4 | 122 ± 5 | 4 ± 3 |
ECAP | 151 ± 12 | 197 ± 14 | 32 ± 5 |
ER 40% | 255 ± 4 | 309 ± 8 | 52 ± 6 |
ER 60% | 222 ± 7 | 269 ± 6 | 71 ± 12 |
ER 75% | 212 ± 3 | 257 ± 5 | 80 ± 14 |
Composition | Fabrication Method | YS (MPa) | UTS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Zn-0.5Ag-0.2Mg | ER 40% | 255 | 309 | 52 | This work |
Zn-0.8Ag | HE | 114 | 160 | 18 | [27] |
Zn-0.8Ag | ECAP | 76 | 96 | 143 | [27] |
Zn-1Ag | HE | 136 | 183 | 28 | [17] |
Zn-2Ag | HE | 192 | 237 | 37 | [48] |
Zn-2Ag | ECAP | 100 | 125 | 197 | [30] |
Zn-2.5Ag | HE | 147 | 203 | 35 | [33] |
Zn-4Ag | HE | 228 | 27 | [18] | |
Zn-4Ag | HR | 182 | 222 | 52 | [26] |
Zn-4Ag | CR | 123 | 141 | 157 | [16] |
Zn-5Ag | HE | 210 | 252 | 37 | [33] |
Zn-7Ag | HE | 236 | 287 | 32 | [33] |
Zn-0.05Ag-0.05Mg | HE | 164 | 180 | 9 | [8] |
Zn-0.1Ag-0.05Mg | HE | 204 | 245 | 35 | [8] |
Zn-1Ag-0.05Zr | HE | 166 | 211 | 35 | [17] |
Zn-1.5Ag-1.5Cu | HE | 164 | 222 | 36 | [36] |
Zn-2Ag-1.8Au-0.2V | HR | 168 | 233 | 17 | [49] |
Zn-4Ag-0.1Sc | HR | 202 | 261 | 73 | [26] |
Zn-4Ag-0.2Mn | HE | 267 | 25 | [18] | |
Zn-4Ag-0.4Mn | HE | 281 | 29 | [18] | |
Zn-4Ag-0.6Mn | HE | 302 | 36 | [18] | |
Zn-4Ag-1Cu | CR | 150 | 169 | 133 | [16] |
Zn-4Ag-1Mn | CR | 162 | 207 | 91 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, X.; Huang, T.; Xiong, Y.; Zuo, P.; Chen, X.; Jin, S. Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy. Materials 2025, 18, 2755. https://doi.org/10.3390/ma18122755
Zhuo X, Huang T, Xiong Y, Zuo P, Chen X, Jin S. Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy. Materials. 2025; 18(12):2755. https://doi.org/10.3390/ma18122755
Chicago/Turabian StyleZhuo, Xiaoru, Tiancheng Huang, Yuhan Xiong, Pengpeng Zuo, Xinyu Chen, and Senlin Jin. 2025. "Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy" Materials 18, no. 12: 2755. https://doi.org/10.3390/ma18122755
APA StyleZhuo, X., Huang, T., Xiong, Y., Zuo, P., Chen, X., & Jin, S. (2025). Effect of Combined Equal-Channel Angular Pressing and Rolling on the Microstructure and Mechanical Properties of Zn-0.5Ag-0.2Mg Alloy. Materials, 18(12), 2755. https://doi.org/10.3390/ma18122755