Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,451)

Search Parameters:
Keywords = temperature polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1647 KB  
Article
Thermo-Oxidative Stability and Functional Properties of Extra Virgin Olive Oil Oleogels
by Denisse Bascuñan, Claudia Vergara, Cristian Valdes, Yaneris Mirabal, Roberto Quiroz, Jaime Ortiz-Viedma, Vicente Barros, Jaime Vargas and Marcos Flores
Gels 2026, 12(2), 116; https://doi.org/10.3390/gels12020116 - 28 Jan 2026
Abstract
Structuring oils using oleogels (OGs) represents a promising strategy for developing semi-solid lipid matrices with applications in food and other soft systems. This study evaluated the thermal stability and physicochemical properties of an oleogel (OG) formulated with extra virgin olive oil (EVOO) and [...] Read more.
Structuring oils using oleogels (OGs) represents a promising strategy for developing semi-solid lipid matrices with applications in food and other soft systems. This study evaluated the thermal stability and physicochemical properties of an oleogel (OG) formulated with extra virgin olive oil (EVOO) and beeswax (BW, 6%). The oleogel and olive oil samples were initially characterized by thermogravimetric analysis (TGA/DTG). The beeswax and oleogel samples were initially characterized by texture analysis. An antioxidant capacity (ORAC) analysis was initially applied to the beeswax sample. An initial rheometric analysis was applied to the oleogel sample. Fatty acid profiling and infrared spectroscopy were applied initially and finally to the oleogel and olive oil samples. During the thermal processing (80 °C, 14 days) of the oleogel and olive oil, analyses of the percentage of polar compounds, refractive index, and absorption parameters (K232 and K270) were performed. The oleogel exhibited a soft, pseudoplastic network, with lower hardness and mechanical strength than pure beeswax. Gelation modified the thermo-oxidative stability of EVOO, showing lower levels of polar compounds (from day 7 of heating; p = 0.028) and a slight delay in the onset of thermal degradation (Tonset), suggesting partial protection against the formation of polar degradation compounds. Furthermore, the evolution of K232 indicated differences in the formation of primary oxidation products (p = 0.027) over the 14 days of heating, while K270 showed no differences in the formation of secondary oxidation compounds. This reflects the complex interaction between the gelled matrix and the lipid deterioration mechanisms. Overall, the results demonstrate that the incorporation of beeswax allows for a partial reduction in degradation compounds in high-temperature processes, producing technologically functional oleogels that offer a potential alternative source for structuring solid fats. This work provides relevant evidence for the rational design of oleogels based on unrefined oils and opens new opportunities for their application in food systems and gelled matrices with thermal processing requirements. Full article
(This article belongs to the Special Issue Advanced Gels in the Food System)
Show Figures

Figure 1

20 pages, 3062 KB  
Article
Investigation of III-Nitride MEMS Pressure Sensor for High-Temperature Applications
by Makhluk Hossain Prio, Maruf Morshed, Lavanya Muthusamy, Md Sohanur E. Hijrat Raju, Itmenon Towfeeq, Durga Gajula and Goutam Koley
Micromachines 2026, 17(2), 177; https://doi.org/10.3390/mi17020177 - 28 Jan 2026
Abstract
High-temperature operation of AlGaN/GaN Heterojunction Field Effect Transistor embedded diaphragm-based MEMS pressure sensors have been investigated, which utilized their wide bandgap and piezo resistivity to perform stably at elevated temperatures. The performance of the pressure sensor was observed over a change in applied [...] Read more.
High-temperature operation of AlGaN/GaN Heterojunction Field Effect Transistor embedded diaphragm-based MEMS pressure sensors have been investigated, which utilized their wide bandgap and piezo resistivity to perform stably at elevated temperatures. The performance of the pressure sensor was observed over a change in applied pressure of 35 kPa, which resulted in an experimentally measured change in drain–source resistance (ΔRDS/RDS(0)) of 0.32% at room temperature and 0.65% at 250 °C, respectively. Additionally, the COMSOL-based Finite Element (FE) Simulations, in conjunction with our developed theoretical model, was utilized to theoretically determine the change in drain–source resistance. This theoretically calculated ΔRDS/RDS(0) of 0.45% at room temperature closely aligns with the experimental observations. Moreover, the sensor exhibited a gate-bias-dependent tunability, with the enhancement of sensitivity under increasingly negative gate voltages. Furthermore, the sensors demonstrated a stable and repeatable sensing operation over multiple pressure cycles up to 300 °C, with a rapid response time of <10 ms, suggesting excellent potential for reliable, high-performance pressure sensing in harsh, high-temperature environments. Full article
Show Figures

Figure 1

13 pages, 2237 KB  
Article
BioClimPolar_2300 V1.0: A Mesoscale Bioclimatic Dataset for Future Climates in Arctic Regions
by Yuanbo Su, Shaomei Li, Bingyu Yang, Yan Zhang and Xiaojun Kou
Diversity 2026, 18(2), 70; https://doi.org/10.3390/d18020070 - 28 Jan 2026
Abstract
Arctic regions are warming rapidly, elevating extinction risks and accelerating ecosystem change, yet widely used bioclimatic datasets rarely represent polar-specific ecological constraints. Here we present BioClimPolar_2300 v1.0, a raster bioclimatic dataset designed for terrestrial Arctic biodiversity research under climate change. The dataset includes [...] Read more.
Arctic regions are warming rapidly, elevating extinction risks and accelerating ecosystem change, yet widely used bioclimatic datasets rarely represent polar-specific ecological constraints. Here we present BioClimPolar_2300 v1.0, a raster bioclimatic dataset designed for terrestrial Arctic biodiversity research under climate change. The dataset includes 33 gridded bioclimatic layers at a 10 km spatial resolution, covering seven discrete temporal intervals from 2010 to 2300 AD. In addition to conventional variables used globally, BioClimPolar_2300 incorporates three polar-relevant constraint domains: (1) polar day–night phenomena (PDNs), including degree-day metrics during polar night and polar day; (2) temperature-defined seasonal cycles (TSCs), including seasonal temperature, precipitation, aridity, and season length; (3) hot/cold stresses (HCSs), capturing indices of extreme summer heat and winter cold. Precipitation during snow-melting days (P_melting) is also included due to its relevance for species depending on subnivean habitats. Climate fields were extracted from CMIP6 models and statistically downscaled to 10 km using a change-factor approach under a polar projection. Monthly fields were linearly interpolated to derive daily grids, enabling the computation of variables that require daily inputs. Validation against observations from 30 Arctic weather stations indicates performance suitable for biodiversity applications, and two exemplar range shift case studies (one animal and one plant) illustrate biological relevance and provide practical guidance for data extraction and use. BioClimPolar_2300 fills a key gap in Arctic bioclimatic resources and supports more realistic biodiversity assessments and conservation planning through 2300. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

18 pages, 5836 KB  
Article
Molecular Orientation and Mechanical Properties of Biomass-Derived Aliphatic Polyamide (PA11) by High-Pressure Compression Molding
by Keisuke Ura, Shotaro Nishitsuji, Yutaka Kobayashi and Hiroshi Ito
Materials 2026, 19(3), 513; https://doi.org/10.3390/ma19030513 - 28 Jan 2026
Abstract
This study investigates the effects of high-pressure compression molding on the molecular orientation and mechanical properties of biomass-derived aliphatic polyamide (PA11). Tensile fracture strength exhibited a significant increase—up to 2.4 times that of untreated samples—under conditions of 1000 kN and 140 °C. Differential [...] Read more.
This study investigates the effects of high-pressure compression molding on the molecular orientation and mechanical properties of biomass-derived aliphatic polyamide (PA11). Tensile fracture strength exhibited a significant increase—up to 2.4 times that of untreated samples—under conditions of 1000 kN and 140 °C. Differential Scanning Calorimetry (DSC) and Wide-Angle X-ray Scattering (WAXS) analyses revealed a temperature- and pressure-dependent shift in crystalline phases, suggesting a transition from α’ to phase. The δ’ phase, formed by high-pressure compression molding, is retained even after cooling to room temperature (i.e., Brill transition was not observed). In addition, polarized optical microscopy (POM) observations further supported the presence of changes in molecular orientation. This enhancement (under conditions of 1000 kN and 140 °C) is primarily attributed to the molecular orientation. However, it is also noteworthy that the formation of the δ’ phase is accompanied by an increase in the degree of crystallinity, and that this δ’ phase is retained even after cooling to room temperature without undergoing a Brill transition. In contrast, at 180 °C, although the degree of crystallinity increased, molecular orientation decreased, resulting in reduced tensile strength. These findings indicate that the mechanical properties of PA11 are governed by a complex interplay among phase transitions, molecular orientation, and crystallization, all of which are strongly influenced by temperature and pressure conditions. These findings demonstrate that high-pressure compression molding is an effective method for enhancing the mechanical properties of PA11 through controlled phase transition and orientation Full article
Show Figures

Graphical abstract

9 pages, 2089 KB  
Article
The Effect of Different A-Site Divalent Elements on the Properties of Bi4Ti3O12-Based Piezoelectric Ceramics with Symbiotic Structure
by Jie Feng, Xishun Zheng and Deyi Zheng
Ceramics 2026, 9(2), 15; https://doi.org/10.3390/ceramics9020015 - 27 Jan 2026
Abstract
Bismuth layer-structured ferroelectrics (BLSFs) are core candidates for high-temperature piezoelectric applications owing to their excellent thermal stability and fatigue resistance, yet traditional Bi4Ti3O12 (BiT)-based ceramics suffer from limited piezoelectric performance. To address this, MBi4Ti4O [...] Read more.
Bismuth layer-structured ferroelectrics (BLSFs) are core candidates for high-temperature piezoelectric applications owing to their excellent thermal stability and fatigue resistance, yet traditional Bi4Ti3O12 (BiT)-based ceramics suffer from limited piezoelectric performance. To address this, MBi4Ti4O15-Bi4Ti3O12 (M=Ba, Sr, Ca) symbiotic structure bismuth-layered piezoelectric ceramics were fabricated via the conventional solid-state reaction method. Their crystal structure, microstructure, and electrical properties were systematically characterized using a X-ray diffractometer, scanning electron microscope, high-temperature dielectric spectrometer, and quasi-static d33 meter to explore the effects of different A-site divalent elements. Results show that all samples form a pure-phase symbiotic structure with the P21am space group, without secondary phases. The lattice constant decreases with increasing A-site ionic radius, while symbiosis-induced lattice mismatch and long-range disorder refine grains, reduce aspect ratio, lower conductivity, enhance spontaneous polarization, and improve piezoelectric properties. The ceramics exhibit d33 of 10 to 15 pC/N and TC of 502 to 685 °C, with SrBi4Ti4O15-Bi4Ti3O12 showing optimal comprehensive performance (d33 ≈ 15 pC/N, TC = 593 °C, tanδ = 0.6% at 1 kHz/475–575 °C, and a low AC conductivity of 5.3 × 10−5~4.8 × 10−4 S/m). This study improves bismuth-layered ceramics’ performance via A-site regulation and symbiotic structure design, offering theoretical and technical support for high-performance lead-free high-temperature piezoelectric ceramics. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

19 pages, 11282 KB  
Article
Bamboo Derived Charcoal for Highly-Efficient Photothermal Evaporation Materials
by Wenmu Feng, Shushan Yuan, Junyao Dai, Jiran Wu, Bing Li and Yue Wang
Separations 2026, 13(2), 44; https://doi.org/10.3390/separations13020044 - 26 Jan 2026
Viewed by 30
Abstract
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, [...] Read more.
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, BCs maintained high carbon content and polar functional groups but exhibited limited porosity. Above it, structural reorganization enhanced pore development and aromaticity while reducing polar surface groups. Residence time primarily influenced volatile retention, and prolonged pyrolysis led to pore collapse. The optimal BC—produced at 800 °C for 40 min—combined hierarchical porosity with balanced surface chemistry, achieving an evaporation rate of 1.21 kg/m2·h and a photothermal efficiency of 70.45% under high-salinity conditions. Mechanistic analysis indicates that short, high-temperature pyrolysis preserves structural integrity and interfacial activity with minimal energy input. These results establish a thermal processing approach that reconciles carbon stability with surface functionality, offering practical guidance for scaling efficient and sustainable biochar-based wastewater treatment systems. Full article
(This article belongs to the Special Issue Separation Process for Sustainable Utilization of Bioresources)
Show Figures

Figure 1

14 pages, 5578 KB  
Article
A Novel Paludibacterium Species Isolated from Human Blood
by Akihiro Nakamura, Jun Murakami, Hitoshi Itohara, Tamaki Orita, Saori Ishimura, Misako Ohkusu, Kiyofumi Ohkusu and Masaru Komatsu
Microorganisms 2026, 14(2), 280; https://doi.org/10.3390/microorganisms14020280 - 25 Jan 2026
Viewed by 81
Abstract
A novel facultatively anaerobic, Gram-negative, curved rod-shaped bacterium was isolated from blood cultures obtained from a patient with pyogenic spondylitis in Japan. The organism was additionally detected by 16S rRNA gene sequence analysis in a formalin-fixed, paraffin-embedded lumbar spine biopsy specimen from the [...] Read more.
A novel facultatively anaerobic, Gram-negative, curved rod-shaped bacterium was isolated from blood cultures obtained from a patient with pyogenic spondylitis in Japan. The organism was additionally detected by 16S rRNA gene sequence analysis in a formalin-fixed, paraffin-embedded lumbar spine biopsy specimen from the same patient. The type strain, designated THUN1379ᵀ, is motile by means of a single polar flagellum and forms circular, white to translucent colonies on R2A agar and 5% sheep blood agar. The strain is oxidase-positive and catalase-negative and grows at temperatures ranging from 25 to 42 °C. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain THUN1379ᵀ within the genus Paludibacterium (family Chromobacteriaceae), showing the highest sequence similarity to Paludibacterium purpuratum KJ031ᵀ (98.6%). Whole-genome sequencing revealed a genome size of approximately 3.6 Mb with a DNA G+C content of 61.3 mol%. Phylogenomic analysis based on whole-genome sequences supported the distinct taxonomic position of strain THUN1379ᵀ within the genus. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain THUN1379ᵀ and Paludibacterium purpuratum KJ031ᵀ were 79.7% and 23.1%, respectively, which are well below the accepted thresholds for species delineation. On the basis of phenotypic, chemotaxonomic, and genomic characteristics, strain THUN1379ᵀ represents a novel species of the genus Paludibacterium, for which the name Paludibacterium flexuosum sp. nov. is proposed. The type strain is THUN1379ᵀ (=JCM 36560ᵀ = KCTC 8465ᵀ). Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 3325 KB  
Article
Structural Study of L-Arabinose Isomerase from Latilactobacillus sakei
by Suwon Yang, Jeonghwa Cheon and Jung-Min Choi
Crystals 2026, 16(2), 84; https://doi.org/10.3390/cryst16020084 - 25 Jan 2026
Viewed by 83
Abstract
D-Tagatose is a rare sugar of interest as a low-calorie sweetener, and enzymatic isomerization of D-galactose is a practical production route. L-arabinose isomerase (L-AI; EC 5.3.1.4) is a promising catalyst for the above process, but many characterized L-AIs perform best at alkaline pH [...] Read more.
D-Tagatose is a rare sugar of interest as a low-calorie sweetener, and enzymatic isomerization of D-galactose is a practical production route. L-arabinose isomerase (L-AI; EC 5.3.1.4) is a promising catalyst for the above process, but many characterized L-AIs perform best at alkaline pH and high temperature and often require substantial divalent metal supplementation (e.g., Mn2+/Co2+), which complicates food-grade processing. Lactic acid bacteria (LAB) are attractive sources of food-compatible enzymes, yet structural information for LAB-derived L-AIs has been limited. Here, we report the 2.6 Å X-ray crystal structure of L-AI from Latilactobacillus sakei 23K (LsAI) and define its oligomeric assembly. Although the asymmetric unit contains a single monomer, crystallographic symmetry reconstructs a D3-symmetric homohexamer composed of two face-to-face trimers, consistent with a higher-order assembly in solution. Interface analysis shows predominantly polar interaction networks, and normalized B-factor mapping reveals localized flexibility near active-site-proximal regions. These findings provide a structural basis for understanding LAB-derived L-AIs and support structure-guided engineering toward food-grade, low-metal biocatalysts for rare-sugar production. Full article
(This article belongs to the Special Issue Structure and Characterization of Enzymes)
Show Figures

Figure 1

18 pages, 2264 KB  
Article
Unveiling the Bio-Interface via Spectroscopic and Computational Studies of (Propyl-3-ol/butyl-4-ol)triphenyltin(IV) Compound Binding to Human Serum Transferrin
by Žiko Milanović, Emina Mrkalić, Jovan Kulić and Goran N. Kaluđerović
Materials 2026, 19(3), 457; https://doi.org/10.3390/ma19030457 - 23 Jan 2026
Viewed by 235
Abstract
Two structurally tunable (propyl-3-ol)triphenyltin(IV) (Ph3SnL1) and (butyl-4-ol)triphenyltin(IV) (Ph3SnL2) compounds were investigated at the human serum transferrin (Tf) molecular interface to resolve how ligand architecture and protein metallation modulate organotin(IV) biocompound stability [...] Read more.
Two structurally tunable (propyl-3-ol)triphenyltin(IV) (Ph3SnL1) and (butyl-4-ol)triphenyltin(IV) (Ph3SnL2) compounds were investigated at the human serum transferrin (Tf) molecular interface to resolve how ligand architecture and protein metallation modulate organotin(IV) biocompound stability and lobe-selective binding. Steady-state fluorescence spectroscopy revealed efficient quenching of native Tf emission (λex = 280 nm, 296–310 K, pH 7.4) without significant spectral displacement, indicating the predominant formation of non-fluorescent ground-state complexes. Calculated bimolecular quenching constants (Kq ~1012 M−1 s−1) exceeded the diffusion-controlled aqueous limit, ruling out a collisional dynamic quenching mechanism and confirming static complexation as the principal origin of fluorescence suppression. Double-log binding analysis revealed moderate affinity (Ka ~102–103 M−1) and an approximately single dominant binding event per protein (n ≈ 0.65–0.90). Temperature-dependent van’t Hoff evaluation yielded positive ΔH° and ΔS° values, supporting a spontaneous, entropy-favored association process largely governed by hydrophobic and dispersion-type contributions, consistent with lipophilic organotin(IV) scaffold accommodation. Iron (Fe3+) loading of Tf markedly enhanced ligand engagement, especially for Ph3SnL1, evidencing that metallation-induced lobe closure reshapes pocket accessibility and local polarity relevant for organotin(IV) binding presentation rather than simply strengthening empirical docking scores. Molecular docking localized the most stable Ph3SnL2 poses in the sterically confined, rigid C-lobe, while Ph3SnL1 preferentially penetrated the more adaptive N-lobe. ONIOM QM/MM refinement of docking poses confirmed strong interfacial stabilization (ΔEint ≈ –38 to –62 kcal mol−1) and clarified charge–packing interplay without invoking frontier orbital analysis. The results map multiscale structure–interaction relationships defining lobe preference and complex stability at the transferrin interface. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 8291 KB  
Article
Thermosensitive Hydrogel for Controlled Delivery of PAD4 Inhibitor YJ-2 in Diabetic Wound Healing
by Kai Wang, Ayijiang Taledaohan, Liujia Chan, Yu Lu, Yijiang Jia and Yuji Wang
Pharmaceutics 2026, 18(1), 135; https://doi.org/10.3390/pharmaceutics18010135 - 22 Jan 2026
Viewed by 79
Abstract
Background: Diabetic wound healing is hampered by persistent inflammation and excessive neutrophil extracellular traps (NET) formation. Peptidylarginine deiminase 4 (PAD4) is a key enzyme driving this pathology. This study developed a thermosensitive chitosan/β-glycerophosphate hydrogel for the local delivery of a novel PAD4 [...] Read more.
Background: Diabetic wound healing is hampered by persistent inflammation and excessive neutrophil extracellular traps (NET) formation. Peptidylarginine deiminase 4 (PAD4) is a key enzyme driving this pathology. This study developed a thermosensitive chitosan/β-glycerophosphate hydrogel for the local delivery of a novel PAD4 inhibitor, YJ-2, to promote diabetic wound repair. Methods: A YJ-2-loaded hydrogel (CGY) was synthesized and characterized. In vitro studies used HaCaT cells and macrophages to assess proliferation, migration, NETs (via H3cit), and polarization. Efficacy was evaluated in diabetic C57 mouse wound models. Results: CGY exhibited temperature-sensitive gelation and sustained YJ-2 release. In vitro, YJ-2 inhibited NETs formation, reduced pro-inflammatory markers, promoted HaCaT migration, and induced M2 macrophage polarization. In vivo, CGY treatment significantly accelerated wound closure. Conclusions: Local hydrogel delivery of the PAD4 inhibitor YJ-2 effectively mitigates inflammation and NETs, promoting healing in diabetic wounds. This strategy represents a promising targeted therapy for diabetic wounds. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

13 pages, 4030 KB  
Article
Selenoether-Linked Liquid Crystal Trimers and the Twist-Bend Nematic Phase
by Yuki Arakawa and Takuma Shiba
Crystals 2026, 16(1), 69; https://doi.org/10.3390/cryst16010069 - 21 Jan 2026
Viewed by 132
Abstract
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still [...] Read more.
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still remain relatively rare compared to the predominant LC dimers. We report the first homologs of selenium-linked LC trimers, 4,4′-bis[ω-(4-cyanobiphenyl-4′-ylseleno)alkoxy]biphenyls (CBSenOBOnSeCB) with carbon numbers in the alkyl-chain spacers, n = 7 or 9). Polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction (XRD) measurements were performed to investigate the phase transition behavior and mesophase structures of the trimers. Both CBSenOBOnSeCB trimers exhibited nematic (N) and NTB phases. The XRD measurements revealed the presence of smectic A-like cybotactic clusters with a triply intercalated structure in the N and NTB phases. The LC phase transition temperatures of CBSenOBOnSeCB were lower than those of the already-known ether-linked CBOnOBOnOCB and thioether-linked CBSnOBOnSCB counterparts. This trend is ascribed to the enhanced molecular bending and molecular flexibility of CBSenOBOnSeCB, which are caused by the smaller bond angle and greater bond flexibility of C–Se–C compared to C–O–C and C–S–C. This study offers a new molecular design for multiply linked LC oligomers with heavier chalcogen atoms. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

21 pages, 5303 KB  
Article
A Mirror-Reflection Method for Measuring Microwave Emissivity of Flat Scenes with Ground-Based Radiometers
by Shilin Li, Taoyun Zhou, Yun Cheng, Yiming Xu, Xiaokang Mei, Jieqia Chen and Hailiang Lu
Remote Sens. 2026, 18(2), 341; https://doi.org/10.3390/rs18020341 - 20 Jan 2026
Viewed by 85
Abstract
Accurate brightness temperature (TB) measurements and microwave emissivity retrieval in passive microwave sensing conventionally rely on absolute radiometric calibration, which often requires additional hardware and complex procedures. Under well-defined geometric and environmental conditions, this study proposes a mirror-reflection-based method for measuring the microwave [...] Read more.
Accurate brightness temperature (TB) measurements and microwave emissivity retrieval in passive microwave sensing conventionally rely on absolute radiometric calibration, which often requires additional hardware and complex procedures. Under well-defined geometric and environmental conditions, this study proposes a mirror-reflection-based method for measuring the microwave emissivity of flat scenes using ground-based radiometers without conventional absolute calibration. The method employs a simplified four-step observation sequence, in which the radiometer measures the pure flat scene, the flat scene with mirror reflection, the reference wall, and the cold sky. A geometric model is developed to determine the effective incidence-angle range, and an analytical framework is developed to evaluate retrieval accuracy. Numerical simulations are conducted to examine the effects of scene material, reference-wall property, operating frequency, polarization, and radiometric sensitivity. Outdoor experiments are further performed to assess feasibility under practical measurement conditions. The results show that, within moderate incidence-angle ranges and under stable radiometric conditions, the retrieved emissivities of flat scenes agree well with theoretical predictions. These findings indicate that the proposed mirror-reflection-based approach provides a feasible supplementary or alternative solution for emissivity estimation of flat targets in ground-based measurements when absolute calibration is unavailable or impractical, rather than a replacement for conventional calibration techniques. Full article
Show Figures

Graphical abstract

23 pages, 2250 KB  
Article
MHY498 Nanosuspensions for Improved Topical Drug Delivery: Understanding of Its Solubility Behavior in DEGME + Water Mixtures and Preparation of Nanosuspension Using Box–Behnken Design
by Eun-Sol Ha, Ha Nim Lee, Seon-Kwang Lee, Ji-Su Jeong, Jeong-Soo Kim, Hyung Ryong Moon, In-hwan Baek, Heejun Park and Min-Soo Kim
Pharmaceutics 2026, 18(1), 127; https://doi.org/10.3390/pharmaceutics18010127 - 20 Jan 2026
Viewed by 291
Abstract
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, [...] Read more.
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, this study aimed to systematically evaluate the solubility characteristics of MHY498 and to develop a nanosuspension formulation using an antisolvent precipitation approach to facilitate the development of an optimized topical formulation. Methods: In this study, we measured the solubility of MHY498 in various monosolvents and diethylene glycol monoethyl ether (DEGME) + water solvent mixtures at 293.15–313.15 K using a solid–liquid equilibrium technique. Based on these solubility data, MHY498 nanosuspensions were prepared via antisolvent precipitation guided by a Box–Behnken design matrix. In vitro skin permeability was also assessed using a Franz diffusion cell system to assess the topical delivery potential of the MHY498 nanosuspensions. Results: Among the investigated monosolvents, MHY498 exhibited the highest solubility in dimethylformamide, dimethylacetamide, DEGME, while the lowest solubility was observed in water. The solubility increased with temperature and DEGME content in solvent mixtures, and the experimental data were well described by thermodynamic and semi-empirical models, indicating an endothermic and spontaneous dissolution process. Solvent–solute interaction analysis revealed that hydrogen-bonding and nonspecific polarity interactions played key roles in enhancing MHY498 solubility. All nanosuspensions prepared within the design space exhibited particle sizes below 150 nm, and the optimized formulation achieved an average particle size of 28.1 nm. The optimized nanosuspension demonstrated a 3.3-fold increase in the cumulative permeated amounts compared with the conventional microsuspension. Conclusions: These findings demonstrate that a rational solvent selection strategy based on thermodynamic solubility analysis and antisolvent precipitation enables effective nanosuspension formulation of MHY498. The DEGME–water system was identified as a formulation-relevant solvent environment that supports both adequate drug solubilization and reproducible formation of nanosized particles. The resulting nanosuspension exhibited favorable particle size characteristics and enhanced formulation feasibility for topical applications. Therefore, it was shown that the developed nanosuspension system, established through a solubility-driven systematic approach, represents a promising strategy for improving topical delivery of MHY498. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Figure 1

32 pages, 8079 KB  
Article
Daytime Sea Fog Detection in the South China Sea Based on Machine Learning and Physical Mechanism Using Fengyun-4B Meteorological Satellite
by Jie Zheng, Gang Wang, Wenping He, Qiang Yu, Zijing Liu, Huijiao Lin, Shuwen Li and Bin Wen
Remote Sens. 2026, 18(2), 336; https://doi.org/10.3390/rs18020336 - 19 Jan 2026
Viewed by 151
Abstract
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition [...] Read more.
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition method has been lacking. A key obstacle is the radiometric inconsistency between the Advanced Geostationary Radiation Imager (AGRI) sensors on FY-4A and FY-4B, compounded by the cessation of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations, which prevents direct transfer of fog labels. To address these challenges and fill this research gap, we propose a machine learning framework that integrates cross-satellite radiometric recalibration and physical mechanism constraints for robust daytime sea fog detection. First, we innovatively apply a radiation recalibration transfer technique based on the radiative transfer model to normalize FY-4A/B radiances and, together with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/fog classification products and ERA5 reanalysis, construct a highly consistent joint training set of FY-4A/B for the winter-spring seasons since 2019. Secondly, to enhance the model’s physical performance, we incorporate key physical parameters related to the sea fog formation process (such as temperature inversion, near-surface humidity, and wind field characteristics) as physical constraints, and combine them with multispectral channel sensitivity and the brightness temperature (BT) standard deviation that characterizes texture smoothness, resulting in an optimized 13-dimensional feature matrix. Using this, we optimize the sea fog recognition model parameters of decision tree (DT), random forest (RF), and support vector machine (SVM) with grid search and particle swarm optimization (PSO) algorithms. The validation results show that the RF model outperforms others with the highest overall classification accuracy (0.91) and probability of detection (POD, 0.81) that surpasses prior FY-4A-based work for the South China Sea (POD 0.71–0.76). More importantly, this study demonstrates that the proposed FY-4B framework provides reliable technical support for operational, continuous sea fog monitoring over the South China Sea. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 4195 KB  
Article
Preparation and Performance Study of Modified Graphene Oxide/Polyurethane Anti-Corrosion Coating
by Shudi Zhang, Xinya Wei, Na Xiao, Jiahui Bing, Jialin Dong, Jiacheng Ma and Tao Zhang
Coatings 2026, 16(1), 131; https://doi.org/10.3390/coatings16010131 - 19 Jan 2026
Viewed by 185
Abstract
To address the corrosion and degradation of metallic materials in seawater, tidal, and similar environments, this study employs lysine (C6H14N2O2) to modify graphene oxide (GO) via a hydrothermal process. The modified graphene oxide (f-GO) and [...] Read more.
To address the corrosion and degradation of metallic materials in seawater, tidal, and similar environments, this study employs lysine (C6H14N2O2) to modify graphene oxide (GO) via a hydrothermal process. The modified graphene oxide (f-GO) and poly(l-lysine) (PL) composite was characterized structurally and functionally using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) to characterize its structure and properties. A composite coating was prepared using modified graphene oxide (f-GO) and polyurethane (PU), which underwent electrochemical testing, hardness testing, corrosion rate testing, adhesion testing, impact resistance testing, and salt spray corrosion resistance testing. Experimental results indicate that C-N stretching vibration peaks appeared at all reaction temperatures. At 85 °C, f-GO85 exhibited optimal modification with a layer spacing of 1.471 nm, 72% transmittance, and superior thermal stability, confirming successful lysine grafting onto the GO surface. Corrosion resistance testing of the composite coating revealed enhanced adhesion and impact resistance, reduced corrosion rate, decreased corrosion current density in polarization curves, positive shift in corrosion potential, and higher impedance values in impedance curves, indicating improved coating density and corrosion resistance. Salt spray tests demonstrated that incorporating lysine-modified graphene oxide significantly improved the anti-corrosion performance of polyurethane coatings. Optimal corrosion resistance was achieved when the modified graphene oxide content was 0.2 wt%. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

Back to TopTop