Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,334)

Search Parameters:
Keywords = technological transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

37 pages, 2065 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 (registering DOI) - 31 Jul 2025
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 (registering DOI) - 31 Jul 2025
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

18 pages, 871 KiB  
Article
Social Innovation and Social Care: Local Solutions to Global Challenges
by Javier Castro-Spila, David Alonso González, Juan Brea-Iglesias and Xanti Moriones García
Soc. Sci. 2025, 14(8), 479; https://doi.org/10.3390/socsci14080479 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a case study of the Local Care Ecosystems developed by the provincial government of Gipuzkoa (Basque Country, Spain) to strengthen coordination between social services, health services, and community-based initiatives at the municipal level. The initiative seeks to personalize care, enhance [...] Read more.
This paper presents a case study of the Local Care Ecosystems developed by the provincial government of Gipuzkoa (Basque Country, Spain) to strengthen coordination between social services, health services, and community-based initiatives at the municipal level. The initiative seeks to personalize care, enhance service integration, and support community-based care with the overarching goal of improving the quality of life for older adults living at home. These ecosystems incorporate social, institutional, and technological innovations aimed at supporting individuals who are frail or vulnerable throughout the care cycle. At present, 18 Local Care Ecosystems are active, providing services to 1202 people over the age of 65 and 167 families. The model addresses a growing global challenge linked to population aging, which has led to increasing demand for care and support services that are often fragmented, under-resourced, and constrained by outdated regulatory frameworks. These structural issues can compromise both the quality and efficiency of care for dependent individuals. Based on the findings, the paper offers policy recommendations to support the transfer and adaptation of this model, with the aim of improving the well-being of older adults who wish to remain in their own homes. Full article
(This article belongs to the Special Issue Social Innovation: Local Solutions to Global Challenges)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 (registering DOI) - 31 Jul 2025
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

18 pages, 1327 KiB  
Article
The Shifting Geography of Innovation in the Era of COVID-19: Exploring Small Business Innovation and Technology Awards in the U.S.
by Bradley Bereitschaft
Urban Sci. 2025, 9(8), 296; https://doi.org/10.3390/urbansci9080296 - 30 Jul 2025
Viewed by 51
Abstract
This research examines the shifting geography of small firm innovation in the U.S. by tracking the location of small business innovation research (SBIR) and small business technology transfer (STTR) awardees between 2010 and 2024. The SBIR and STTR are “seed fund” awards coordinated [...] Read more.
This research examines the shifting geography of small firm innovation in the U.S. by tracking the location of small business innovation research (SBIR) and small business technology transfer (STTR) awardees between 2010 and 2024. The SBIR and STTR are “seed fund” awards coordinated by the Small Business Administration (SBA) and funded through 11 U.S. federal agencies. Of particular interest is whether the number of individual SBA awards, awarded firms, and/or funding amounts are (1) becoming increasingly concentrated within regional innovation hubs and (2) exhibiting a shift toward or away from urban centers and other walkable, transit-accessible urban neighborhoods, particularly since 2020 and the COVID-19 pandemic. While the rise of remote work and pandemic-related fears may have reduced the desirability of urban spaces for both living and working, there remain significant benefits to spatial agglomeration that may be especially crucial for startups and other small firms in the knowledge- or information-intensive industries. The results suggest that innovative activity of smaller firms has indeed trended toward more centralized, denser, and walkable urban areas in recent years while also remaining fairly concentrated within major metropolitan innovation hubs. The pandemic appears to have resulted in a measurable, though potentially short-lived, cessation of these trends. Full article
Show Figures

Figure 1

17 pages, 3620 KiB  
Article
Proposal of a Thermal Network Model for Fast Solution of Temperature Rise Characteristics of Aircraft Wire Harnesses
by Tao Cao, Wei Li, Tianxu Zhao and Shumei Cui
Energies 2025, 18(15), 4046; https://doi.org/10.3390/en18154046 - 30 Jul 2025
Viewed by 63
Abstract
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the [...] Read more.
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the safety margin of the system. However, existing calculation methods generally face a bottleneck in the balance between speed and accuracy, failing to meet the requirements of actual engineering applications. In this paper, we conduct an in-depth study on this issue. Firstly, a finite element harness model is established to accurately obtain the convective heat transfer coefficients of wires and harnesses. Based on the analysis of the influencing factors of the thermal network model for a single wire, an improved thermal resistance hierarchical wire thermal network model is proposed. A structure consisting of series thermal resistance within layers and iterative parallel algorithms between layers is proposed to equivalently integrate and iteratively calculate the mutual thermal influence relationship between each layer of the harness, thereby constructing a hierarchical harness thermal network model. This model successfully achieves a significant improvement in calculation speed while effectively ensuring useable temperature rise results, providing an effective method for EWIS design. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 3890 KiB  
Article
Numerical Analysis of Pressure Drops in Single-Phase Flow Through Channels of Brazed Plate Heat Exchangers with Dimpled Corrugated Plates
by Lorenzo Giunti, Francesco Giacomelli, Urban Močnik, Giacomo Villi, Adriano Milazzo and Lorenzo Talluri
Appl. Sci. 2025, 15(15), 8431; https://doi.org/10.3390/app15158431 (registering DOI) - 29 Jul 2025
Viewed by 138
Abstract
The presented research examines the performance characteristics of Brazed Plate Heat Exchangers through computational fluid dynamics (CFD), focusing on pressure drop calculations for single-phase flow within full channels of plates featuring dimpled corrugation. This work aims to bridge gaps in the literature, particularly [...] Read more.
The presented research examines the performance characteristics of Brazed Plate Heat Exchangers through computational fluid dynamics (CFD), focusing on pressure drop calculations for single-phase flow within full channels of plates featuring dimpled corrugation. This work aims to bridge gaps in the literature, particularly regarding the underexplored behavior near the ports for the studied technology and establishing a framework for future conjugate heat transfer studies. A methodology for the domain generation was developed, integrating a preliminary forming simulation to reproduce the complex plate geometry. Comprehensive sensitivity analyses were conducted to evaluate the influence of different parameters and identify the optimal settings for obtaining reliable results. The findings indicate that the kε realizable turbulence model with enhanced wall treatment offers superior accuracy in predicting pressure drops, with errors within ±4.4%. Additionally, leveraging the information derived from CFD, a strategy to estimate contributions from different channel sections without a direct reliance on those simulations was developed, offering practical implications for plate design. Full article
Show Figures

Figure 1

26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 249
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

20 pages, 3039 KiB  
Article
Heat Transfer Performance and Influencing Factors of Waste Tires During Pyrolysis in a Horizontal Rotary Furnace
by Hongting Ma, Yang Bai, Shuo Ma and Zhipeng Zhou
Energies 2025, 18(15), 4028; https://doi.org/10.3390/en18154028 - 29 Jul 2025
Viewed by 130
Abstract
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the [...] Read more.
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the effect laws of tire particle size, rotary furnace rotation speed, enhanced heat transfer materials, and adding spiral fins on heat transfer performance and pyrolysis product distribution were studied, respectively. The innovation lies in two aspects: first, aiming at the problems of slow heat transfer and low pyrolysis efficiency in horizontal rotary furnaces, we identified technical measures through experiments to enhance heat transfer, thereby accelerating pyrolysis and reducing energy consumption; second, with the goal of increasing high-value pyrolysis oil yield, we determined optimal operating parameters to improve economic and sustainability outcomes. The results showed that powdered particles of waste tires were heated more evenly during the pyrolysis process, which increased the overall heat transfer coefficient and the proportion of liquid products. When the rotational speed of the rotary pyrolysis furnace exceeded 2 rpm, there was sufficient contact between the material and the furnace wall, which was beneficial to the improvement of heat transfer performance. Adding heat transfer enhancement materials such as carborundum and white alundum could improve the heat transfer performance between the pyrolysis furnace and the material. Notably, a rotational speed of 3 rpm and carborundum were used as a heat transfer enhancement material with powdered waste tire particles during the pyrolysis process; the overall heat transfer coefficient was the highest, which was 16.89 W/(m2·K), and the proportion of pyrolysis oil products was 46.1%. When spiral fins were installed, the comprehensive heat transfer coefficient was increased from 12.78 W/(m2·K) to 16.32 W/(m2·K). The experimental results show that by increasing the speed of the pyrolysis furnace, adding heat transfer enhancing materials with high thermal conductivity to waste tires, and appropriate particle size, the heat transfer performance and pyrolysis rate can be improved, and energy consumption can be reduced. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

20 pages, 3123 KiB  
Article
Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection
by Antong Xia, Yanyou Wu, Kun Zhai, Dongshan Xiang, Lin Li, Zhanghui Qin and Gratien Twagirayezu
Plants 2025, 14(15), 2337; https://doi.org/10.3390/plants14152337 - 29 Jul 2025
Viewed by 172
Abstract
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of [...] Read more.
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of Plasmodiophora-infected B. rapa using rapid detection technology. Six soil groups planted with Yangtze No. 5 B. rapa were inoculated with varying Plasmodiophora concentrations (from 0 to 10 × 109 spores/mL). The results showed that at the highest infection concentration (PWB5, 10 × 109 spores/mL) of B. rapa leaves, the plant electrophysiological parameters showed the intracellular water-holding capacity (IWHC), the intracellular water use efficiency (IWUE), and the intracellular water translocation rate (IWTR) declined by 41.99–68.86%. The unit for translocation of nutrients (UNF) increased by 52.83%, whereas the nutrient translocation rate (NTR), the nutrient translocation capacity (NTC), the nutrient active translocation (NAT) value, and the nutrient active translocation capacity (NAC) decreased by 52.40–77.68%. The cellular energy metabolism decreased with worsening Plasmodiophora infection, in which the units for cellular energy metabolism (∆GE) and cellular energy metabolism (∆G) of the leaves decreased by 44.21% and 78.14% in PWB5, respectively. Typically, based on distribution of B-type dielectric substance transfer percentage (BPn), we found PWB4 (8 × 109 spores/mL) was the maximal immune response concentration, as evidenced by a maximal BPnR (B-type dielectric substance transfer percentage based on resistance), with increasing lignin and cork deposition to enhance immunity, and a minimum BPnXc (B-type dielectric substance transfer percentage based on capacitive reactance), with a decreasing quantity of surface proteins in the B. rapa leaves. This study suggests plant electrophysiological parameters could characterize intracellular water–nutrient metabolism and immunoregulation of B. rapa leaves under various Plasmodiophora infection concentrations, offering a dynamic detection method for agricultural disease management. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 6570 KiB  
Article
Deposition Process and Interface Performance of Aluminum–Steel Joints Prepared Using CMT Technology
by Jie Zhang, Hao Du, Xinyue Wang, Yinglong Zhang, Jipeng Zhao, Penglin Zhang, Jiankang Huang and Ding Fan
Metals 2025, 15(8), 844; https://doi.org/10.3390/met15080844 - 29 Jul 2025
Viewed by 183
Abstract
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of [...] Read more.
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of equipment. Achieving high-quality joining between the aluminum alloy and steel has become a key process in the preparation of the anode assembly. To join the guide rods and steel claws, this work uses Cold Metal Transfer (CMT) technology to clad aluminum on the steel surface and employs machine vision to detect surface forming defects in the cladding layer. The influence of different currents on the interfacial microstructure and mechanical properties of aluminum alloy cladding on the steel surface was investigated. The results show that increasing the cladding current leads to an increase in the width of the fusion line and grain size and the formation of layered Fe2Al5 intermetallic compounds (IMCs) at the interface. As the current increases from 90 A to 110 A, the thickness of the Al-Fe IMC layer increases from 1.46 μm to 2.06 μm. When the current reaches 110 A, the thickness of the interfacial brittle phase is the largest, at 2 ± 0.5 μm. The interfacial region where aluminum and steel are fused has the highest hardness, and the tensile strength first increases and then decreases with the current. The highest tensile strength is 120.45 MPa at 100 A. All the fracture surfaces exhibit a brittle fracture. Full article
Show Figures

Figure 1

23 pages, 1019 KiB  
Article
Deciphering the Environmental Consequences of Competition-Induced Cost Rationalization Strategies of the High-Tech Industry: A Synergistic Combination of Advanced Machine Learning and Method of Moments Quantile Regression Procedures
by Salih Çağrı İlkay, Harun Kınacı and Esra Betül Kınacı
Sustainability 2025, 17(15), 6867; https://doi.org/10.3390/su17156867 - 28 Jul 2025
Viewed by 445
Abstract
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of [...] Read more.
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of cost rationalization management regarding the opportunity cost of ecosystem service consumption and propose to test the fundamental hypothesis stating the possible transmission of competition-induced technological innovations to green economic transformation. Our new methodology estimates quantile-specific effects with MM-QR, while identifying the main interaction effects between regulatory pressure and trade competition uses an extended STIRPAT model. The results reveal a paradoxical finding: despite higher environmental policy stringency and opportunity costs of ecosystem services, HT sectors persistently adopt environmentally detrimental cost-reduction approaches. These findings carry important policy implications: (1) environmental regulations for HT sectors require complementary innovation subsidies, (2) trade agreements should incorporate clean technology transfer clauses, and (3) governments must monitor sectoral emission leakage risks. Our dual machine learning–econometric approach provides policymakers with targeted insights for different emission scenarios, highlighting the need for differentiated strategies across clean and polluting HT subsectors. Full article
Show Figures

Figure 1

Back to TopTop