Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (465)

Search Parameters:
Keywords = targeted tyrosine kinase inhibitor (TKIs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5322 KiB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 - 31 Jul 2025
Viewed by 295
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Figure 1

21 pages, 810 KiB  
Review
Molecular Crosstalk and Therapeutic Synergy: Tyrosine Kinase Inhibitors and Cannabidiol in Oral Cancer Treatment
by Zainab Saad Ghafil AlRaheem, Thao T. Le, Ali Seyfoddin and Yan Li
Curr. Issues Mol. Biol. 2025, 47(8), 584; https://doi.org/10.3390/cimb47080584 - 23 Jul 2025
Viewed by 310
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have emerged as targeted therapies for OSCC in clinical trials. However, their clinical efficacy remains a challenge. Cannabidiol (CBD), a non-psychoactive phytochemical from cannabis, has demonstrated anticancer and immunomodulatory properties. CBD induces apoptosis and autophagy and modulates signaling pathways often dysregulated in HNSCC. This review summarizes the molecular mechanisms of EGFR-TKIs and CBD and their clinical insights and further discusses potential implications of combination targeted therapies. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

12 pages, 1025 KiB  
Article
Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
by Yoshihiko Itoh, Kenichi Inagaki, Tomohiro Terasaka, Eisaku Morimoto, Takahiro Ishii, Kimitomo Yamaoka, Satoshi Fujisawa and Jun Wada
Int. J. Mol. Sci. 2025, 26(14), 6927; https://doi.org/10.3390/ijms26146927 - 18 Jul 2025
Viewed by 317
Abstract
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on [...] Read more.
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 2993 KiB  
Review
Recent Research Advances in HER2-Positive Breast Cancer Concerning Targeted Therapy Drugs
by Junmin Li, Xue Li, Ruixin Fu, Yakun Fang, Chunmei Zhang, Bingbing Ma, Yanan Ding, Chuanxin Shi and Qingfeng Zhou
Molecules 2025, 30(14), 3026; https://doi.org/10.3390/molecules30143026 - 18 Jul 2025
Viewed by 717
Abstract
Breast cancer is one of the most common malignant tumors among women, which seriously threatens women’s health. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer, characterized by poor prognosis, is an aggressive phenotype accounting for 15–20% of all kinds of breast cancers. [...] Read more.
Breast cancer is one of the most common malignant tumors among women, which seriously threatens women’s health. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer, characterized by poor prognosis, is an aggressive phenotype accounting for 15–20% of all kinds of breast cancers. Therefore, it has attracted great interest among researchers in discovering targeted therapy drugs countering HER2, and they have been considered as the pivotal therapeutic regimen for HER2-positive breast cancer patients. Nowadays, large progress has been achieved in HER2-targeted drugs, and this review categorizes them into four types according to the drug action mode, including monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs), antibody-drug conjugates (ADCs), and bispecific antibodies (bsAbs). The progress of HER2-targeted drugs reflects the discovery of drug targets, the screening of drug compounds, and the modification of antibodies, which offer diverse medical options and better therapeutic benefits for individual patients. In detail, we focus on the indication, administration, efficacy, strengths, and challenges of HER2-targeted drugs, concerning approved drugs and clinical trials. This review aims to provide significant references for the targeted therapeutic regimen and a more precise treatment strategy for HER2-positive breast cancer. Full article
Show Figures

Figure 1

19 pages, 577 KiB  
Review
Co-Occurring Genomic Alterations in NSCLC: Making Order into a Crowded List
by Ilaria Attili, Federico Pio Fabrizio and Filippo de Marinis
Cancers 2025, 17(14), 2388; https://doi.org/10.3390/cancers17142388 - 18 Jul 2025
Viewed by 554
Abstract
Worldwide, lung cancer is one of the most common cancers, with non-small cell lung cancer (NSCLC) including up to 80–85% of all lung cancer diagnoses. The landscape of NSCLC is characterized by a heterogeneous spectrum of gene alterations, with tyrosine kinase inhibitors (TKIs) [...] Read more.
Worldwide, lung cancer is one of the most common cancers, with non-small cell lung cancer (NSCLC) including up to 80–85% of all lung cancer diagnoses. The landscape of NSCLC is characterized by a heterogeneous spectrum of gene alterations, with tyrosine kinase inhibitors (TKIs) and targeted treatments that significantly improve survival outcomes for patients with oncogene-addicted NSCLC, offering superior efficacy, and often favorable safety and tolerability profiles compared to chemotherapy-based treatments. However, the complexity of NSCLC extends to co-occurring genomic alterations or amplifications in tumor suppressors and other oncogenes, such as TP53, STK11, KEAP1, PIK3CA, RB1, and others, that significantly influence disease progression, therapeutic resistance, and clinical outcomes. These co-mutations often contribute to the development of primary and acquired resistance to targeted therapies, complicating decision-making strategies. This review provides a timely and comprehensive synthesis of current insights into co-mutations in NSCLC, with a particular focus on their clinical implications, and offers a novel perspective by integrating recent molecular insights with therapeutic challenges, addressing existing knowledge gaps through a more integrative and clinically oriented analysis of co-mutations. Advances in next-generation sequencing (NGS) and molecular profiling have enabled the identification of these co-alterations, paving the way for more personalized therapeutic approaches. However, challenges remain in interpreting the functional interplay of co-mutations and translating these insights into effective clinical interventions. This review also highlights the significance of co-mutations in shaping NSCLC biology, and discusses their impact on current therapeutic paradigms, emphasizing the need for integrative biomarker-driven approaches to improve outcomes in NSCLC. Full article
Show Figures

Figure 1

19 pages, 8019 KiB  
Article
Identification of a PAK6-Mediated MDM2/p21 Axis That Modulates Survival and Cell Cycle Control of Drug-Resistant Stem/Progenitor Cells in Chronic Myeloid Leukemia
by Andrew Wu, Min Chen, Athena Phoa, Zesong Yang, Donna L. Forrest and Xiaoyan Jiang
Int. J. Mol. Sci. 2025, 26(13), 6533; https://doi.org/10.3390/ijms26136533 - 7 Jul 2025
Viewed by 527
Abstract
Chronic myeloid leukemia (CML) is a leading example of a malignancy where a molecular targeted therapy revolutionized treatment but has rarely led to cures. Overcoming tyrosine kinase inhibitor (TKI) drug resistance remains a challenge in the treatment of CML. We have recently identified [...] Read more.
Chronic myeloid leukemia (CML) is a leading example of a malignancy where a molecular targeted therapy revolutionized treatment but has rarely led to cures. Overcoming tyrosine kinase inhibitor (TKI) drug resistance remains a challenge in the treatment of CML. We have recently identified miR-185 as a predictive biomarker where reduced expression in CD34+ treatment-naïve CML cells was associated with TKI resistance. We have also identified PAK6 as a target gene of miR-185 that was upregulated in CD34+ TKI-nonresponder cells. However, its role in regulating TKI resistance remains largely unknown. In this study, we specifically targeted PAK6 in imatinib (IM)-resistant cells and CD34+ stem/progenitor cells from IM-nonresponders using a lentiviral-mediated PAK6 knockdown strategy. Interestingly, the genetic and pharmacological suppression of PAK6 significantly reduced proliferation and increased apoptosis in TKI-resistant cells. Cell survivability was further diminished when IM was combined with PAK6 knockdown. Importantly, PAK6 inhibition in TKI-resistant cells induced cell cycle arrest in the G2-M phase and cellular senescence, accompanied by increased levels of DNA damage-associated senescence markers. Mechanically, we identified a PAK6-mediated MDM2-p21 axis that regulates cell cycle arrest and senescence. Thus, PAK6 plays a critical role in determining alternative cell fates in leukemic cells, and targeting PAK6 may offer a therapeutic strategy to selectively eradicate TKI-resistant cells. Full article
(This article belongs to the Special Issue New Developments in Chronic Myeloid Leukemia)
Show Figures

Figure 1

12 pages, 247 KiB  
Case Report
Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin
by Delia Soare, Dan Soare, Camelia Dobrea, Eugen Radu and Horia Bumbea
Biomedicines 2025, 13(7), 1655; https://doi.org/10.3390/biomedicines13071655 - 7 Jul 2025
Viewed by 403
Abstract
Systemic mastocytosis (SM) is a rare and heterogeneous disorder characterized by clonal proliferation and accumulation of neoplastic mast cells in one or more organs, most commonly the bone marrow, liver, spleen, and skin. Among its clinical variants, aggressive SM (ASM) presents organ damage [...] Read more.
Systemic mastocytosis (SM) is a rare and heterogeneous disorder characterized by clonal proliferation and accumulation of neoplastic mast cells in one or more organs, most commonly the bone marrow, liver, spleen, and skin. Among its clinical variants, aggressive SM (ASM) presents organ damage and debilitating symptoms due to extensive mast cell infiltration. The management of ASM remains challenging, primarily because treatment must address both symptom control and disease progression. Background/Objectives: Recent therapeutic approaches have focused on tyrosine kinase inhibitors (TKIs) that target the oncogenic KIT driver mutation, predominantly the D816V mutation, which is implicated in mast cell proliferation. We report a case series of four patients diagnosed with ASM to highlight the real-world experience in the management of ASM. All patients had confirmed KIT D816V mutations and presented with signs of advanced organ dysfunction, such as marked hepatosplenomegaly, cytopenia, and significant bone marrow infiltration. First-line therapies, including cytoreductive agents or other TKIs were used. Responses varied in these patients, and ultimately, they were initiated on or transitioned to midostaurin, a multikinase TKI. Results: All four patients, after the initiation of midostaurin, presented clinical and biological improvement—at least a clinical improvement response according to the International Working Group-Myeloproliferative Neoplasms Research and Treatment & European Competence Network on Mastocytosis (IWG-MRT-ECNM) criteria. These findings highlight the benefits of KIT inhibition in managing ASM, especially for patients with inadequate responses to traditional therapies. The impact of midostaurin on organ function, mast cell burden, and symptom control emphasizes the importance of the timely integration of TKIs into therapeutic protocols. However, optimal treatment duration, long-term safety, and the development of acquired resistance remain critical questions that warrant further studies. Larger prospective trials are needed to better delineate the prognostic factors associated with sustained response, refine patient selection, and explore combination strategies that may enhance therapeutic efficacy. Conclusions: The patients presented in this case series benefited from midostaurin therapy, showing either a clinical improvement or partial response according to the IWG-MRT-ECNM criteria. Our case series illustrates that KIT inhibitors can offer meaningful clinical benefit in ASM, reinforcing their position as an emerging cornerstone option in ASM management. Full article
53 pages, 2742 KiB  
Review
The Role of Plant-Derived Natural Products as a Regulator of the Tyrosine Kinase Pathway in the Management of Lung Cancer
by Faris Alrumaihi, Arshad Husain Rahmani, Sitrarasu Vijaya Prabhu, Vikalp Kumar and Shehwaz Anwar
Curr. Issues Mol. Biol. 2025, 47(7), 498; https://doi.org/10.3390/cimb47070498 - 30 Jun 2025
Viewed by 744
Abstract
One of the most common malignant tumors worldwide is lung cancer, and it is associated with the highest death rate among all cancers. Traditional treatment options for lung cancer include radiation, chemotherapy, targeted therapy, and surgical resection. However, the survival rate is low, [...] Read more.
One of the most common malignant tumors worldwide is lung cancer, and it is associated with the highest death rate among all cancers. Traditional treatment options for lung cancer include radiation, chemotherapy, targeted therapy, and surgical resection. However, the survival rate is low, and the outlook is still dreadfully dire. The pursuit of a paradigm change in treatment approaches is, therefore, imperative. Tyrosine kinases (TKs), a subclass of protein kinases, regulate vital cellular function by phosphorylating tyrosine residues in proteins. Mutations, overexpression, and autocrine paracrine stimulation can transform TKs into oncogenic drivers, causing cancer pathogenesis. Tyrosine kinase inhibitors (TKIs) have emerged as an attractive targeted therapy option, especially for non-small cell lung cancer (NSCLC). However, resistance to TKIs, and adverse cardiovascular effects such as heart failure, atrial fibrillation, hypertension, and sudden death, are among the most common adverse effects of TKIs. There is increasing interest in plant-derived natural products in the hunt for powerful chemosensitizer and pathway modulators for enhancing TKI activity and/or overcoming resistance mechanisms. This highlights the mechanism of TKs’ activation in cancer, the role of TKIs in NSCLC mechanisms, and the challenges posed by TKI-acquired resistance. Additionally, we explored various plant-derived natural products’ bioactive compounds with the chemosensitizer and pathway-modulating potential with TKs’ inhibitory and anticancer effects. Our review suggests that a combination of natural products with TKIs may provide a novel and promising strategy for overcoming resistance in lung cancer. In future, further preclinical and clinical studies are advised. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

19 pages, 748 KiB  
Review
Management of MET-Driven Resistance to Osimertinib in EGFR-Mutant Non-Small Cell Lung Cancer
by Panagiotis Agisilaos Angelopoulos, Antonio Passaro, Ilaria Attili, Pamela Trillo Aliaga, Carla Corvaja, Gianluca Spitaleri, Elena Battaiotto, Ester Del Signore, Giuseppe Curigliano and Filippo de Marinis
Genes 2025, 16(7), 772; https://doi.org/10.3390/genes16070772 - 30 Jun 2025
Viewed by 701
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in approximately 10–20% of Caucasian and up to 50% of Asian patients with oncogene-addicted non-small cell lung cancer (NSCLC). Most frequently, alterations include exon 19 deletions and exon 21 L858R mutations, which confer sensitivity [...] Read more.
Epidermal growth factor receptor (EGFR) mutations occur in approximately 10–20% of Caucasian and up to 50% of Asian patients with oncogene-addicted non-small cell lung cancer (NSCLC). Most frequently, alterations include exon 19 deletions and exon 21 L858R mutations, which confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). In the last decade, the third-generation EGFR-TKI osimertinib has represented the first-line standard of care for EGFR-mutant NSCLC. However, the development of acquired mechanisms of resistance significantly impacts long-term outcomes and represents a major therapeutic challenge. The mesenchymal–epithelial transition (MET) gene amplification and MET protein overexpression have emerged as prominent EGFR-independent (off-target) resistance mechanisms, detected in approximately 25% of osimertinib-resistant NSCLC. Noteworthy, variability in diagnostic thresholds, which differ between fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) platforms, complicates its interpretation and clinical applicability. To address MET-driven resistance, several therapeutic strategies have been explored, including MET-TKIs, antibody–drug conjugates (ADCs), and bispecific monoclonal antibodies, and dual EGFR/MET inhibition has emerged as the most promising strategy. In this context, the bispecific EGFR/MET antibody amivantamab has demonstrated encouraging efficacy, regardless of MET alterations. Furthermore, the combination of the ADC telisotuzumab vedotin and osimertinib has been associated with activity in EGFR-mutant, c-MET protein-overexpressing, osimertinib-resistant NSCLC. Of note, several novel agents and combinations are currently under clinical development. The success of these targeted approaches relies on tissue re-biopsy at progression and accurate molecular profiling. Yet, tumor heterogeneity and procedural limitations may challenge the feasibility of re-biopsy, making biomarker-agnostic strategies viable alternatives. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 1197 KiB  
Article
Precision Enhanced Bioactivity Prediction of Tyrosine Kinase Inhibitors by Integrating Deep Learning and Molecular Fingerprints Towards Cost-Effective and Targeted Cancer Therapy
by Fatma Hilal Yagin, Yasin Gormez, Cemil Colak, Abdulmohsen Algarni, Fahaid Al-Hashem and Luca Paolo Ardigò
Pharmaceuticals 2025, 18(7), 975; https://doi.org/10.3390/ph18070975 - 28 Jun 2025
Viewed by 820
Abstract
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning [...] Read more.
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning framework—leveraging deep artificial neural networks (dANNs), convolutional neural networks (CNNs), and structural molecular fingerprints—to accurately predict TKI bioactivity, ultimately accelerating the preclinical phase of drug development. Methods: A curated dataset of 28,314 small molecules from the ChEMBL database targeting 11 tyrosine kinases was analyzed. Using Morgan fingerprints and physicochemical descriptors (e.g., molecular weight, LogP, hydrogen bonding), ten supervised models, including dANN, SVM, CatBoost, and CNN, were trained and optimized through a randomized hyperparameter search. Model performance was evaluated using F1-score, ROC–AUC, precision–recall curves, and log loss. Results: SVM achieved the highest F1-score (87.9%) and accuracy (85.1%), while dANNs yielded the lowest log loss (0.25096), indicating superior probabilistic reliability. CatBoost excelled in ROC–AUC and precision–recall metrics. The integration of Morgan fingerprints significantly improved bioactivity prediction across all models by enhancing structural feature recognition. Conclusions: This work highlights the transformative role of machine learning—particularly dANNs and SVM—in rational drug discovery. By enabling accurate bioactivity prediction, our model pipeline can effectively reduce experimental burden, optimize compound selection, and support personalized cancer treatment design. The proposed framework advances kinase inhibitor screening pipelines and provides a scalable foundation for translational applications in precision oncology. By enabling early identification of bioactive compounds with favorable pharmacological profiles, the results of this study may support more efficient candidate selection for clinical drug development, particularly in regards to cancer therapy and kinase-associated disorders. Full article
Show Figures

Figure 1

24 pages, 1558 KiB  
Review
Beyond the Basics: Exploring Pharmacokinetic Interactions and Safety in Tyrosine-Kinase Inhibitor Oral Therapy for Solid Tumors
by Laura Veronica Budău, Cristina Pop and Cristina Mogoșan
Pharmaceuticals 2025, 18(7), 959; https://doi.org/10.3390/ph18070959 - 26 Jun 2025
Viewed by 1030
Abstract
Cancer remains a major global health burden driven by complex biological mechanisms, and while targeted therapies like tyrosine kinase inhibitors (TKIs) have revolutionized treatment, their efficacy and safety are significantly influenced by drug–drug interactions (DDIs). Tyrosine-kinase receptors (RTKs) regulate critical cellular processes, and [...] Read more.
Cancer remains a major global health burden driven by complex biological mechanisms, and while targeted therapies like tyrosine kinase inhibitors (TKIs) have revolutionized treatment, their efficacy and safety are significantly influenced by drug–drug interactions (DDIs). Tyrosine-kinase receptors (RTKs) regulate critical cellular processes, and their dysregulation through mutations or overexpression drives oncogenesis, with TKIs designed to inhibit these aberrant signaling pathways by targeting RTK phosphorylation. Pharmacokinetic DDIs can critically impact the efficacy and safety of TKIs such as erlotinib, gefitinib, and pazopanib by affecting their absorption, distribution, and metabolism. The modification of pH can influence drug absorption; furthermore, the inhibition or induction of metabolizing enzymes may affect biotransformation, while distribution can be altered through the modulation of transmembrane transporters. Additionally, ensuring quality of life during TKI treatment requires vigilant monitoring and management of adverse events, which range from mild (e.g., rash, diarrhea, fatigue) to severe (e.g., hepatotoxicity, cardiotoxicity). Drug-specific toxicities, such as hyperlipidemia with lorlatinib or visual disturbances with crizotinib, must be assessed using specific criteria, with dose adjustments and supportive care tailored to individual patient responses. Thus, optimal TKI therapy relies on managing drug interactions through multidisciplinary care, monitoring, and patient education to ensure safety and treatment efficacy. Full article
(This article belongs to the Special Issue Drug Treatment of Thyroid Cancer)
Show Figures

Figure 1

28 pages, 1744 KiB  
Review
HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top
by Pamela Trillo Aliaga, Gianluca Spitaleri, Ilaria Attili, Carla Corvaja, Elena Battaiotto, Panagiotis Agisilaos Angelopoulos, Ester Del Signore, Antonio Passaro and Filippo de Marinis
Molecules 2025, 30(12), 2645; https://doi.org/10.3390/molecules30122645 - 18 Jun 2025
Viewed by 1503
Abstract
Non-small-cell lung cancer (NSCLC) can harbour different HER2 alterations: HER2 protein overexpression (2–35%), HER2 gene amplification (2–20%), and gene mutations (1–4%). The discovery of the HER2 gene in the 1980s raised great expectations for the treatment of several tumours. However, it was only [...] Read more.
Non-small-cell lung cancer (NSCLC) can harbour different HER2 alterations: HER2 protein overexpression (2–35%), HER2 gene amplification (2–20%), and gene mutations (1–4%). The discovery of the HER2 gene in the 1980s raised great expectations for the treatment of several tumours. However, it was only in 2004 that HER2 mutations were identified, and they currently represent a key druggable target in NSCLC. Despite numerous strengths, there is only one FDA/EMA-approved targeted therapy, an antibody-drug conjugate (ADC) called trastuzumab deruxtecan for pretreated patients with HER2 mutant NSCLC. In the first-line treatment, the standard of care (SoC) remains chemotherapy with or without immunotherapy. In the past, pan-HER tyrosine kinase inhibitors (TKIs) were extensively studied with poor results. But, two newly developed HER2-specific TKIs with low EGFR WT inhibition (BAY2927088 and zongertinib) reported encouraging results and received the breakthrough therapy designation from the FDA. Ongoing clinical trials are investigating new agents. This review focuses on HER2 alterations. Additionally, the anti-HER2 therapies explored so far will be discussed in detail, including the following: HER2 inhibitors (pan-inhibitors and selective inhibitors), monoclonal antibodies (mAbs), and ADCs. A section of this paper is dedicated to the role of immunotherapy in HER2-altered NSCLC. The last section of this paper focuses on the drugs under development and their challenges. Full article
(This article belongs to the Special Issue New Insights into Kinase Inhibitors II)
Show Figures

Figure 1

42 pages, 2266 KiB  
Review
Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
by Antónia Kurillová, Libor Kvítek and Aleš Panáček
Pharmaceutics 2025, 17(6), 783; https://doi.org/10.3390/pharmaceutics17060783 - 16 Jun 2025
Viewed by 845
Abstract
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge [...] Read more.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies. Full article
Show Figures

Graphical abstract

10 pages, 525 KiB  
Review
Myeloid and Lymphoid Malignancies with Fusion Kinases Involving Spleen Tyrosine Kinase (SYK)—Emerging Rare Entities?
by Velizar Shivarov and Stefan Lozenov
Hemato 2025, 6(2), 17; https://doi.org/10.3390/hemato6020017 - 14 Jun 2025
Viewed by 402
Abstract
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK [...] Read more.
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK gene, such as ETV6::SYK and ITK::SYK, have emerged as rare but potentially targetable genetic events in both myeloid and lymphoid neoplasms. SYK, a non-receptor tyrosine kinase critical for hematopoietic signalling, can become constitutively activated through gene fusions, driving oncogenesis via the PI3K/AKT, MAPK, and JAK-STAT pathways. ETV6::SYK has been primarily associated with myeloid neoplasms, often presenting with eosinophilia, bone marrow dysplasia, and skin involvement. In vitro and in vivo models confirm its leukemogenic potential and identify SYK as a therapeutic target. Although SYK inhibitors like fostamatinib have shown transient efficacy, resistance mechanisms, possibly involving alternative pathway activation, remain a challenge. The ITK::SYK fusion, on the other hand, has been identified in peripheral T-cell lymphomas, particularly of the follicular helper T-cell subtype, with similar pathway activation and potential for targeted intervention. Additional rare SYK fusions, such as PML::SYK and CTLC::SYK, have been reported in myeloid neoplasms and juvenile xanthogranuloma, respectively, expanding the spectrum of SYK-driven diseases. Accumulating evidence supports the inclusion of SYK fusions in future classification systems and highlights the need for broader molecular screening and clinical evaluation of SYK-targeted therapies. Full article
Show Figures

Figure 1

13 pages, 251 KiB  
Review
Perioperative Strategies in Resectable Non-Squamous Non-Small Cell Lung Cancer with EGFR Mutations and ALK Rearrangement
by Francesco Petrella, Andrea Cara, Enrico Mario Cassina, Sara Degiovanni, Lidia Libretti, Sara Lo Torto, Emanuele Pirondini, Federico Raveglia, Francesca Spinelli, Antonio Tuoro and Stefania Rizzo
Cancers 2025, 17(11), 1844; https://doi.org/10.3390/cancers17111844 - 31 May 2025
Viewed by 750
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, ranking first among men and second among women for both incidence and mortality. Surgery remains the primary treatment for early-stage, resectable non-small cell lung cancer (NSCLC), encompassing stages I and selected cases of [...] Read more.
Lung cancer is the leading cause of cancer-related death worldwide, ranking first among men and second among women for both incidence and mortality. Surgery remains the primary treatment for early-stage, resectable non-small cell lung cancer (NSCLC), encompassing stages I and selected cases of stage IIIB. For patients with stage II to III disease, as well as some stage IB tumors, neoadjuvant or adjuvant systemic therapies are recommended. It is well recognized that specific driver gene mutations play a critical role in tumor progression and aggressiveness, and patients with these genetic alterations may benefit from targeted treatment approaches. These alterations are referred to as “druggable”, “targetable”, or “actionable”, representing specific targets for personalized treatments. Tyrosine kinase inhibitors (TKIs) are now the preferred first-line treatment for patients harboring mutations in EGFR, ALK, ROS1, and BRAF. Additionally, targeted therapies exist for patients with alterations in RET, ERBB2, KRAS, MET, and NTRK, either for those who have received prior treatments or as part of ongoing clinical trials. The success of targeted therapies is reshaping treatment approaches for NSCLC with targetable driver gene alterations, both in early-stage and locally advanced settings. This review focuses on current therapeutic strategies that combine targeted therapies with surgical resection in patients with resectable non-small cell lung cancer (NSCLC) harboring actionable driver gene alterations. Full article
Back to TopTop