HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top
Abstract
:1. Introduction
2. HER2 Alterations
2.1. HER2 Overexpression
2.2. HER2 Amplification
2.3. HER2 Mutations
3. Targeting HER2
3.1. Monoclonal Antibodies
3.2. Tyrosine-Kinase Inhibitors
3.2.1. Pan-HER TKI
3.2.2. EGFR/HER2 TKI
3.2.3. Selective HER2 TKI
3.3. Antibody–Drug Conjugates
4. HER2 and Immunotherapy
5. New Drugs in Development
5.1. New HER2-Directed TKIs
5.2. New HER2-Directed Bispecific Antibodies
5.3. New Anti-HER2 ADCs
5.4. Combination Therapies
5.5. New Modalities (Novel Immunotherapies, Cell Therapies, and Nanotherapies)
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open 2021, 6, 100260. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-S.; Mason, K.; Ramyar, K.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W.; Leahy, D. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003, 421, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Graus-Porta, D. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997, 16, 1647–1655. [Google Scholar] [CrossRef]
- Schechter, A.L.; Stern, D.F.; Vaidyanathan, L.; Decker, S.J.; Debrin, J.A.; Greene, M.I.; Weinberg, R.A. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984, 312, 513–516. [Google Scholar] [CrossRef]
- Bargmann, C.I.; Hung, M.-C.; Weinberg, R.A. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986, 319, 226–230. [Google Scholar] [CrossRef]
- Passaro, A.; Peters, S. Targeting HER2-Mutant NSCLC—The Light Is On. N. Engl. J. Med. 2022, 386, 286–289. [Google Scholar] [CrossRef]
- Garrido-Castro, A.C.; Felip, E. HER2 driven non-small cell lung cancer (NSCLC): Potential therapeutic approaches. Transl. Lung Cancer Res. 2013, 2, 122–127. [Google Scholar] [CrossRef]
- Pellegrini, C.; Falleni, M.; Marchetti, A.; Cassani, B.; Miozzo, M.; Buttitta, F.; Roncalli, M.; Coggi, G.; Bosari, S. HER-2/Neu alterations in non-small cell lung cancer: A comprehensive evaluation by real time reverse transcription-PCR, fluorescence in situ hybridization, and immunohistochemistry. Clin. Cancer Res. 2003, 9, 3645–3652. [Google Scholar]
- Tan, D.; Deeb, G.; Wang, J.; Slocum, H.K.; Winston, J.; Wiseman, S.; Beck, A.; Sait, S.; Anderson, T.; Nwogu, C.; et al. HER-2/neu Protein Expression and Gene Alteration in Stage I-IIIA Non Small-Cell Lung Cancer: A Study of 140 Cases Using a Combination of High Throughput Tissue Microarray, Immunohistochemistry, and Fluorescent In Situ Hybridization. Diagn. Mol. Pathol. 2003, 12, 201–211. [Google Scholar] [CrossRef]
- Stephens, P.; Hunter, C.; Bignell, G.; Edkins, S.; Davies, H.; Teague, J.; Stevens, C.; O’meara, S.; Smith, R.; Parker, A.; et al. Intragenic ERBB2 kinase mutations in tumours. Nature 2004, 431, 525–526. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Takahashi, T.; Nomura, M.; Majmudar, K.; Suzuki, M.; Lee, H.; Wistuba, I.I.; Fong, K.M.; Toyooka, S.; Shimizu, N.; et al. Somatic Mutations of the HER2 Kinase Domain in Lung Adenocarcinomas. Cancer Res. 2005, 65, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Buttitta, F.; Barassi, F.; Fresu, G.; Lara, F.; Chella, A.; Paolizzi, D.; Lattanzio, G.; Salvatore, S.; Camplese, P.P.; Rosini, S.; et al. Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: Mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int. J. Cancer 2006, 119, 2586–2591. [Google Scholar] [CrossRef] [PubMed]
- Arcila, M.E.; Chaft, J.E.; Nafa, K.; Roy-Chowdhuri, S.; Lau, C.; Zaidinski, M.; Paik, P.K.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. Prevalence, Clinicopathologic Associations, and Molecular Spectrum of ERBB2 (HER2) Tyrosine Kinase Mutations in Lung Adenocarcinomas. Clin. Cancer Res. 2012, 18, 4910–4918. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.; Fang, R.; Han, X.; Luo, X.; Wang, R.; Pan, Y.; Hu, H.; Zhang, Y.; Pao, W.; et al. Lung Adenocarcinomas with HER2-Activating Mutations Are Associated with Distinct Clinical Features and HER2/EGFR Copy Number Gains. J. Thorac. Oncol. 2012, 7, 85–89. [Google Scholar] [CrossRef]
- Mazières, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; et al. Lung Cancer That Harbors an HER2 Mutation: Epidemiologic Characteristics and Therapeutic Perspectives. J. Clin. Oncol. 2013, 31, 1997–2003. [Google Scholar] [CrossRef]
- Song, Z.; Yu, X.; Shi, Z.; Zhao, J.; Zhang, Y. HER2 mutations in Chinese patients with non-small cell lung cancer. Oncotarget 2016, 7, 78152–78158. [Google Scholar] [CrossRef]
- Kim, E.K.; Kim, K.A.; Lee, C.Y.; Shim, H.S. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma. PLoS ONE 2017, 12, e0171280. [Google Scholar] [CrossRef]
- Bu, S.; Wang, R.; Pan, Y.; Yu, S.; Shen, X.; Li, Y.; Sun, Y.; Chen, H. Clinicopathologic Characteristics of Patients with HER2 Insertions in Non-small Cell Lung Cancer. Ann. Surg. Oncol. 2017, 24, 291–297. [Google Scholar] [CrossRef]
- Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers. J. Thorac. Oncol. 2016, 11, 414–419. [Google Scholar] [CrossRef]
- Nakamura, H.; Kawasaki, N.; Taguchi, M.; Kabasawa, K. Association of HER-2 overexpression with prognosis in nonsmall cell lung carcinoma: A metaanalysis. Cancer 2005, 103, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shao, X.; Gao, W.; Bai, J.; Wang, R.; Huang, P.; Yin, Y.; Liu, P.; Shu, Y. The Role of Human Epidermal Growth Factor Receptor 2 as a Prognostic Factor in Lung Cancer: A Meta-Analysis of Published Data. J. Thorac. Oncol. 2010, 5, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- Offin, M.; Feldman, D.; Ni, A.; Myers, M.L.; Lai, W.V.; Pentsova, E.; Boire, A.; Daras, M.; Jordan, E.J.; Solit, D.B.; et al. Frequency and outcomes of brain metastases in patients with HER2-mutant lung cancers. Cancer 2019, 125, 4380–4387. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.-C.; Han, Y.-J.; Kim, H.R.; Hong, M.H.; Cho, B.C.; Lim, S.M. Real World Characteristics and Clinical Outcomes of HER2-Mutant Non–Small Cell Lung Cancer Patients Detected by Next-Generation Sequencing. Cancer Res. Treat. 2023, 55, 488–497. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Non-Small Cell Lung Cancer Version 3.2025. 14 January 2025. Available online: https://www.nccn.org (accessed on 27 April 2025).
- Cappuzzo, F.; Ligorio, C.; Toschi, L.; Rossi, E.; Trisolini, R.; Paioli, D.; Magrini, E.; Finocchiaro, G.; Bartolini, S.; Cancellieri, A.; et al. EGFR and HER2 Gene Copy Number and Response to First-Line Chemotherapy in Patients with Advanced Non-small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2007, 2, 423–429. [Google Scholar] [CrossRef]
- Mazières, J.; Barlesi, F.; Filleron, T.; Besse, B.; Monnet, I.; Beau-Faller, M.; Peters, S.; Dansin, E.; Früh, M.; Pless, M.; et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: Results from the European EUHER2 cohort. Ann. Oncol. 2016, 27, 281–286. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Wu, F.; Zhao, J.; Li, X.; Zhao, C.; Ren, S.; Zhou, C. Outcomes of Pemetrexed-based chemotherapies in HER2-mutant lung cancers. BMC Cancer 2018, 18, 326. [Google Scholar] [CrossRef]
- FDA Grants Accelerated Approval to Fam-Trastuzumab Deruxtecan-Nxki for HER2-Mutant Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-her2-mutant-non-small-cell-lung (accessed on 27 April 2025).
- Ren, S.; Wang, J.; Ying, J.; Mitsudomi, T.; Lee, D.H.; Wang, Z.; Chu, Q.; Mack, P.C.; Cheng, Y.; Duan, J.; et al. Consensus for HER2 alterations testing in non-small-cell lung cancer. ESMO Open 2022, 7, 100395. [Google Scholar] [CrossRef]
- Ferrari, G.; Del Rio, B.; Novello, S.; Passiglia, F. HER2-Altered Non-Small Cell Lung Cancer: A Journey from Current Approaches to Emerging Strategies. Cancers 2024, 16, 2018. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Varella-Garcia, M.; Franklin, W.A.; Veve, R.; Chen, L.; Helfrich, B.; Zeng, C.; Baron, A.; Bunn, P.A., Jr. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br. J. Cancer 2002, 86, 1449–1456. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hale Hammond, M.E.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Ma, W.; Young, R.B.; Li, T. Targeting HER2 genomic alterations in non-small cell lung cancer. J. Natl. Cancer Cent. 2021, 1, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Hung, M.C.; Chiocca, S.M.; Manning, J.; Zhao, X.Y.; Fang, K.; Roth, J.A. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 1989, 49, 4968–4971. [Google Scholar] [PubMed]
- Kern, J.A.; Schwartz, D.A.; Nordberg, J.E.; Weiner, D.B.; Greene, M.I.; Torney, L.; Robinson, R.A. p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res. 1990, 50, 5184–5187. [Google Scholar]
- Tateishi, M.; Ishida, T.; Mitsudomi, T.; Kaneko, S.; Sugimachi, K. Prognostic value of c-erbB-2 protein expression in human lung adenocarcinoma and squamous cell carcinoma. Eur. J. Cancer Clin. Oncol. 1991, 27, 1372–1375. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Chang, K.T.; Perng, R.P.; Mitsudomi, T.; Chen, M.H.; Kadoyama, C.; Gazdar, A.F. Correlation of Intrinsic Chemoresistance of Non-Small-Cell Lung Cancer Cell Lines With HER-2/neu Gene Expression but Not With ras Gene Mutations. JNCI J. Natl. Cancer Inst. 1993, 85, 897–901. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Chow, K.C.; Fahn, H.J.; Tsai, C.M.; Li, W.Y.; Huang, M.H.; Wang, L.S. Prognostic significance of HER-2/neu overexpression in stage I adenocarcinoma of lung. Ann. Thorac. Surg. 1998, 66, 1159–1163. [Google Scholar] [CrossRef]
- Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin. Cancer Res. 2001, 7, 1850–1855. [Google Scholar]
- Heinmöller, P.; Gross, C.; Beyser, K.; Schmidtgen, C.; Maass, G.; Pedrocchi, M.; Rüschoff, J. HER2 status in non-small cell lung cancer: Results from patient screening for enrollment to a phase II study of herceptin. Clin. Cancer Res. 2003, 9, 5238–5243. [Google Scholar] [CrossRef]
- Shih, J.-Y. ERBB2 Amplification in NSCLC: How Many Faces? J. Thorac. Oncol. 2024, 19, 668–670. [Google Scholar] [CrossRef]
- Di Caro, G.; Lam, E.; Bourdon, D.; Singer, T.; Horne, K.; Slade, M.; Wenstrup, R.; Schwartzberg, S. Liquid biopsy identification of ERBB2 amplified and HER2 expressing metastatic breast cancer: Comparison and combination of cell and cell-free platforms. J. Clin. Oncol. 2023, 41, 3061. [Google Scholar] [CrossRef]
- Tagliamento, M.; Auclin, E.; Valent, A.; Ferrara, R.; Cotteret, S.; Rouleau, E.; Caramella, C.; Riudavets Melia, M.; Gazzah, A.; Adam, J.; et al. 1090P—HER2 copy number variation in non-small cell lung cancer (NSCLC). Ann. Oncol. 2022, 33 (Suppl. 7), S448–S554. [Google Scholar] [CrossRef]
- Hirashima, N.; Takahashi, W.; Yoshii, S.; Yamane, T.; Ooi, A. Protein Overexpression and Gene Amplification of c-erbB-2 in Pulmonary Carcinomas: A Comparative Immunohistochemical and Fluorescence In Situ Hybridization Study. Mod. Pathol. 2001, 14, 556–562. [Google Scholar] [CrossRef]
- Cox, G.; Vyberg, M.; Melgaard, B.; Askaa, J.; Oster, A.; O’Byrne, K.J. Herceptest: Her2 expression and gene amplification in non-small cell lung cancer. Int. J. Cancer 2001, 92, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Takezawa, K.; Pirazzoli, V.; Arcila, M.E.; Nebhan, C.A.; Song, X.; de Stanchina, E.; Ohashi, K.; Janjigian, Y.Y.; Spitzler, P.J.; Melnick, M.A.; et al. HER2Amplification: A Potential Mechanism of Acquired Resistance to EGFR Inhibition in EGFR-Mutant Lung Cancers That Lack the Second-Site EGFR T790M Mutation. Cancer Discov. 2012, 2, 922–933. [Google Scholar] [CrossRef] [PubMed]
- cBioPortal for cancer genomics. Available online: https://www.cbioportal.org (accessed on 10 April 2025).
- Robichaux, J.P.; Elamin, Y.Y.; Vijayan, R.S.K.; Nilsson, M.B.; Hu, L.; He, J.; Zhang, F.; Pisegna, M.; Poteete, A.; Sun, H.; et al. Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity. Cancer Cell 2019, 36, 444–457.e7. [Google Scholar] [CrossRef]
- Zhao, S.; Fang, W.; Pan, H.; Yang, Y.; Liang, Y.; Yang, L.; Dong, X.; Zhan, J.; Wang, K.; Zhang, L. Conformational Landscapes of HER2 Exon 20 Insertions Explain Their Sensitivity to Kinase Inhibitors in Lung Adenocarcinoma. J. Thorac. Oncol. 2020, 15, 962–972. [Google Scholar] [CrossRef]
- Baraibar, I.; Mezquita, L.; Gil-Bazo, I.; Planchard, D. Novel drugs targeting EGFR and HER2 exon 20 mutations in metastatic NSCLC. Crit. Rev. Oncol. Hematol. 2020, 148, 102906. [Google Scholar] [CrossRef]
- Greulich, H.; Kaplan, B.; Mertins, P.; Chen, T.-H.; Tanaka, K.E.; Yun, C.-H.; Zhang, X.; Lee, S.-H.; Cho, J.; Ambrogio, L.; et al. Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl. Acad. Sci. USA 2012, 109, 14476–14481. [Google Scholar] [CrossRef]
- Kinoshita, I.; Goda, T.; Watanabe, K.; Maemondo, M.; Oizumi, S.; Amano, T.; Hatanaka, Y.; Matsuno, Y.; Nishihara, H.; Asahina, H.; et al. A phase II study of trastuzumab monotherapy in pretreated patients with non-small cell lung cancers (NSCLCs) harboring HER2 alterations: HOT1303-B trial. Ann. Oncol. 2018, 29, viii540. [Google Scholar] [CrossRef]
- Lara, N.P.; Laptalo, L.; Longmate, J.; Lau, D.H.M.; Gandour-Edwards, R.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R. Trastuzumab plus Docetaxel in HER2/neu–Positive Non–Small-Cell Lung Cancer: A California Cancer Consortium Screening and Phase II Trial. Clin. Lung Cancer 2004, 5, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized phase II trial of gemcitabine–cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol. 2004, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zinner, R.G.; Glisson, B.S.; Fossella, F.V.; Pisters, K.M.W.; Kies, M.S.; Lee, P.M.; Massarelli, E.; Sabloff, B.; Fritsche, H.A.; Ro, J.Y.; et al. Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: Report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 2004, 44, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Langer, C.J.; Stephenson, P.; Thor, A.; Vangel, M.; Johnson, D.H. Trastuzumab in the Treatment of Advanced Non-Small-Cell Lung Cancer: Is There a Role? Focus on Eastern Cooperative Oncology Group Study 2598. J. Clin. Oncol. 2004, 22, 1180–1187. [Google Scholar] [CrossRef]
- Krug, L.M.; Miller, V.A.; Patel, J.; Crapanzano, J.; Azzoli, C.G.; Gomez, J.; Kris, M.G.; Heelan, R.T.; Pizzo, B.; Tyson, L.; et al. Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced nonsmall cell lung carcinoma. Cancer 2005, 104, 2149–2155. [Google Scholar] [CrossRef]
- van Berge Henegouwen, J.M.; Jebbink, M.; Hoes, L.R.; van der Wijngaart, H.; Zeverijin, L.J.; van der Velden, D.L.; Roepman, P.; de Leng, W.W.J.; Jansen, A.M.; van Werkhoven, E.; et al. Trastuzumab and pertuzumab combination therapy for advanced pre-treated HER2 exon 20-mutated non-small cell lung cancer. Eur. J. Cancer 2022, 171, 114–123. [Google Scholar] [CrossRef]
- Hainsworth, J.D.; Meric-Bernstam, F.; Swanton, C.; Hurwitz, H.; Spigel, D.R.; Sweeney, C.; Burris, H.; Bose, R.; Yoo, B.; Stein, A.; et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results from MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J. Clin. Oncol. 2018, 36, 536–542. [Google Scholar] [CrossRef]
- Mazieres, J.; Lafitte, C.; Ricordel, C.; Greillier, L.; Negre, E.; Zalcman, G.; Domblides, C.; Madelaine, J.; Bennouna, J.; Mascaux, C.; et al. Combination of Trastuzumab, Pertuzumab, and Docetaxel in Patients with Advanced Non–Small-Cell Lung Cancer Harboring HER2 Mutations: Results From the IFCT-1703 R2D2 Trial. J. Clin. Oncol. 2022, 40, 719–728. [Google Scholar] [CrossRef]
- Kris, M.G.; Camidge, D.R.; Giaccone, G.; Hida, T.; Li, B.T.; O’Connell, J.; Taylor, I.; Zhang, H.; Arcila, M.E.; Goldberg, Z.; et al. Targeting HER2 aberrations as actionable drivers in lung cancers: Phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015, 26, 1421–1427. [Google Scholar] [CrossRef]
- Gandhi, L.; Besse, B.; Mazieres, J.; Waqar, S.; Cortot, A.; Barlesi, F.; Quoix, E.; Otterson, G.; Ettinger, D.; Horn, L.; et al. MA04.02 Neratinib ± Temsirolimus in HER2-Mutant Lung Cancers: An International, Randomized Phase II Study. J. Thorac. Oncol. 2017, 12, S358–S359. [Google Scholar] [CrossRef]
- Li, B.; Gandhi, L.; Besse, B.; Jhaveri, K.; Mazieres, J.; Boni, V.; Shapiro, G.; Waqar, S.; Viteri, S.; Park, H.; et al. FP14.15 Neratinib-Based Combination Therapy in HER2-Mutant Lung Adenocarcinomas: Findings from two International Phase 2 Studies. J. Thorac. Oncol. 2021, 16, S234. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Smit, E.F.; Dafni, U.; Wolf, J.; Wasag, B.; Biernat, W.; Finn, S.P.; Kammler, R.; Tsourti, Z.; Rabaglio, M.; et al. Afatinib in NSCLC With HER2 Mutations: Results of the Prospective, Open-Label Phase II NICHE Trial of European Thoracic Oncology Platform (ETOP). J. Thorac. Oncol. 2019, 14, 1086–1094. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Zhou, C.; Wang, H.; Shu, Y.; Zhang, J.; Hua, H.; Huang, D.C.-L.; Zhou, C. Afatinib in patients with advanced non-small cell lung cancer harboring HER2 mutations, previously treated with chemotherapy: A phase II trial. Lung Cancer 2020, 147, 209–213. [Google Scholar] [CrossRef]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.-Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non–Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. 2022, 40, 710–718. [Google Scholar] [CrossRef]
- Cornelissen, R.; Prelaj, A.; Sun, S.; Baik, C.; Wollner, M.; Haura, E.B.; Mamdani, H.; Riess, J.W.; Cappuzzo, F.; Garassino, M.C.; et al. Poziotinib in Treatment-Naive NSCLC Harboring HER2 Exon 20 Mutations: ZENITH20-4, A Multicenter, Multicohort, Open-Label, Phase 2 Trial (Cohort 4). J. Thorac. Oncol. 2023, 18, 1031–1041. [Google Scholar] [CrossRef]
- Elamin, Y.Y.; Robichaux, J.P.; Carter, B.W.; Altan, M.; Tran, H.; Gibbons, D.L.; Heeke, S.; Fossella, F.V.; Lam, V.K.; Le, X.; et al. Poziotinib for EGFR exon 20-mutant NSCLC: Clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell 2022, 40, 754–767.e6. [Google Scholar] [CrossRef]
- Liu, S.V.; Villaruz, L.C.; Lee, V.H.F.; Zhu, V.W.; Baik, C.S.; Sacher, A.; McCoach, C.E.; Nguyen, D.; Li, J.Y.-C.; Pacheco, J.M.; et al. LBA61 First analysis of RAIN-701: Study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions. Ann. Oncol. 2020, 31, S1189. [Google Scholar] [CrossRef]
- Ross, H.J.; Blumenschein, G.R., Jr.; Aisner, J.; Damjanov, N.; Dowlati, A.; Garst, J.; Rigas, J.R.; Smylie, M.; Hassani, H.; Allen, K.E.; et al. Randomized Phase II Multicenter Trial of Two Schedules of Lapatinib as First- or Second-Line Monotherapy in Patients with Advanced or Metastatic Non–Small Cell Lung Cancer. Clin. Cancer Res. 2010, 16, 1938–1949. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, T.; Qin, Z.; Jiang, J.; Wang, Q.; Yang, S.; Rivard, C.; Gao, G.; Ng, T.L.; Tu, M.M.; et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. 2019, 30, 447–455. [Google Scholar] [CrossRef]
- Song, Z.; Li, Y.; Chen, S.; Ying, S.; Xu, S.; Huang, J.; Wu, D.; Lv, D.; Bei, T.; Liu, S.; et al. Efficacy and safety of pyrotinib in advanced lung adenocarcinoma with HER2 mutations: A multicenter, single-arm, phase II trial. BMC Med. 2022, 20, 42. [Google Scholar] [CrossRef]
- Liu, S.-Y.M.; Tu, H.-Y.; Wei, X.-W.; Yan, H.-H.; Dong, X.-R.; Cui, J.-W.; Zhou, Z.; Xu, C.-R.; Zheng, M.-Y.; Lin, J.-X.; et al. First-line pyrotinib in advanced HER2-mutant non-small-cell lung cancer: A patient-centric phase 2 trial. Nat. Med. 2023, 29, 2079–2086. [Google Scholar] [CrossRef]
- Kanemura, H.; Tanizaki, J.; Matsumoto, K.; Masuishi, T.; Isobe, T.; Kodama, H.; Shimizu, T.; Sunakawa, Y.; Chiba, Y.; Yanamoto, N.; et al. Phase Ia/Ib trial on the safety and efficacy of mobocertinib in combination with T-DM1 for patients with HER2-mutant solid tumors (WJOG16022M). J. Clin. Oncol. 2024, 42, 3025. [Google Scholar] [CrossRef]
- Le, X.; Girard, N.; Jänne, P.A.; Novello, S.; Kim, R.; Loong, H.H.; Goh, B.C.; Lee, K.H.; Nishino, K.; Lu, S.; et al. Safety and Efficacy of BAY 2927088 Patients with HER2-mutant non-small cell lung cancer (NSCLC): Expansion Cohort from the Phase I/II SOHO-01 Study. In Proceedings of the WCLC 2024, San Diego, CA, USA, 7–10 September 2024. [Google Scholar]
- Reck, M.; Ramos, J.; Tan, S.; Stinchcombe, T. P47.01 SGNTUC-019: Phase 2 Study of Tucatinib and Trastuzumab in Solid Tumors: Lung Cancer Cohorts (Clinical Trial in Progress). J. Thorac. Oncol. 2021, 16, S1096. [Google Scholar] [CrossRef]
- Heymach, J.V.; Ruiter, G.; Ahn, M.-J.; Girard, N.; Smit, E.F.; Planchard, D.; Wu, Y.-L.; Cho, B.C.; Yamamoto, N.; Sabari, J.K.; et al. Zongertinib in Previously Treated HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2025. [Google Scholar] [CrossRef]
- Poziotinib Suspended Phase 3 Trials for Non-Small Cell Lung Cancer (NSCLC) Treatment. Available online: https://go.drugbank.com/drugs/DB12114/clinical_trials?conditions=DBCOND0034130&phase=3&purpose=treatment&status=suspended (accessed on 25 April 2025).
- Estrada-Bernal, A.; Le, A.T.; Doak, A.E.; Tirunagaru, V.G.; Silva, S.; Bull, M.R.; Smaill, J.B.; Patterson, A.V.; Kim, C.; Liu, S.V.; et al. Tarloxotinib Is a Hypoxia-Activated Pan-HER Kinase Inhibitor Active Against a Broad Range of HER-Family Oncogenes. Clin. Cancer Res. 2021, 27, 1463–1475. [Google Scholar] [CrossRef]
- Han, H.; Li, S.; Chen, T.; Fitzgerald, M.; Liu, S.; Peng, C.; Tang, K.H.; Cao, S.; Chouitar, J.; Wu, J.; et al. Targeting HER2 Exon 20 Insertion–Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor Mobocertinib. Cancer Res. 2021, 81, 5311–5324. [Google Scholar] [CrossRef]
- Bayer. Bayer Receives U.S. FDA Breakthrough Therapy Designation for BAY 2927088 for Non-Small Cell Lung Cancer Harboring HER2 Activating Mutations. News Release, 26 February 2024. Available online: https://www.bayer.com/media/en-us/bayer-receives-us-fda-breakthrough-therapy-designation-for-bay-2927088-for-non-small-cell-lung-cancer-harboring-her2-activating-mutations/ (accessed on 26 February 2024).
- Girard, N.; Loong, H.H.F.; Goh, B.-C.; Jänne, P.A.; Dong, X.; Novello, S.; Lu, S.; Daniele, G.; Kim, H.R.; Yang, T.-Y.; et al. 3O: Phase I/II SOHO-01 study of BAY 2927088 in patients with previously treated HER2-mutant NSCLC: Safety and efficacy results from 2 expansion cohorts. J. Thorac. Oncol. 2025, 20, S5–S6. [Google Scholar] [CrossRef]
- Loong, H.H.; Li, L.; Wu, L.; Kim, T.M.; Prelaj, A.; Dong, X.; Kim, H.R.; Yang, T.-Y.; Daniele, G.; Lu, S.; et al. SOHO-01: Safety and efficacy of BAY 2927088 in patients with advanced HER2-mutant non-small cell lung cancer (NSCLC) who were pretreated but naïve to HER2-targeted therapy or had not received any treatment for advanced disease. J. Clin. Oncol. 2025, 43, 8504. [Google Scholar] [CrossRef]
- Heymach, J.V.; Opdam, F.; Barve, M.; Tu, H.-Y.; Wu, Y.-L.; Berz, D.; Schröter, L.; Botilde, Y.; Sadrolhefazi, B.; Serra, J.; et al. HER2-Selective Tyrosine Kinase Inhibitor, Zongertinib (BI 1810631), in Patients With Advanced/Metastatic Solid Tumors With HER2 Alterations: A Phase Ia Dose-Escalation Study. J. Clin. Oncol. 2025, 43, 1337–1347. [Google Scholar] [CrossRef]
- Boehringer Ingelheim. Boehringer Ingelheim to Unveil Groundbreaking Oncology Research at WCLC, Demonstrating Strength of Portfolio. News Release, 27 August 2024. Available online: https://www.boehringer-ingelheim.com/us/human-health/cancer/boehringer-ingelheim-unveil-oncology-research-wclc (accessed on 10 October 2024).
- Tsuchikama, K.; Anami, Y.; Ha, S.Y.Y.; Yamazaki, C.M. Exploring the next generation of antibody–drug conjugates. Nat. Rev. Clin. Oncol. 2024, 21, 203–223. [Google Scholar] [CrossRef]
- Tarantino, P.; Pestana, R.C.; Corti, C.; Modi, S.; Bardia, A.; Tolaney, S.M.; Cortes, J.; Soria, J.-C.; Curigliano, G. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 2022, 72, 165–182. [Google Scholar] [CrossRef]
- Passaro, A.; Jänne, A.; Peters, S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J. Clin. Oncol. 2023, 41, 3747–3761. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Gainsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients With HER2 -Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef]
- Hotta, K.; Aoe, K.; Kozuki, T.; Ohashi, K.; Ninomiya, K.; Ichihara, E.; Kubo, T.; Ninomiya, T.; Chikamori, K.; Harada, D.; et al. A Phase II Study of Trastuzumab Emtansine in HER2-Positive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 273–279. [Google Scholar] [CrossRef]
- Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; De Castro Carpeno, J.; Garrido, P.; et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non–Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin. Cancer Res. 2019, 25, 64–72. [Google Scholar] [CrossRef]
- Iwama, E.; Zenke, Y.; Sugawara, S.; Daga, H.; Morise, M.; Yanagitani, N.; Sakamoto, T.; Murakami, H.; Kishimoto, J.; Matsumoto, S.; et al. Trastuzumab emtansine for patients with non–small cell lung cancer positive for human epidermal growth factor receptor 2 exon-20 insertion mutations. Eur. J. Cancer 2022, 162, 99–106. [Google Scholar] [CrossRef]
- Tsurutani, J.; Iwata, H.; Krop, I.; Jänne, P.A.; Doi, T.; Takahashi, S.; Park, H.; Redfern, C.; Tamura, K.; Wise-Draper, T.M.; et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020, 10, 688–701. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazieres, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodriguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): Primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non–Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
- Janne, A.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab deruxtecan (T-DXd) in patients with HER2-mutant metastatic non–small cell lung cancer (mNSCLC): Final analysis results of DESTINY-Lung02. J. Clin. Oncol. 2024, 42, 8543. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Sun, Y.; Wang, L.; Li, X.; Sun, L.; He, Z.; Yang, H.; Wang, Y.; Wang, Q.; et al. Trastuzumab rezetecan, a HER2-directed antibody–drug conjugate, in patients with advanced HER2-mutant non-small-cell lung cancer (HORIZON-Lung): Phase 2 results from a multicentre, single-arm study. Lancet Oncol. 2025, 26, 437–446. [Google Scholar] [CrossRef] [PubMed]
- ENHERTU® (Fam-Trastuzumab Deruxtecan-Nxki) Approved in the US as First Tumor-Agnostic HER2-Directed Therapy for Previously Treated Patients with Metastatic HER2-Positive Solid Tumors. Available online: https://www.astrazeneca-us.com/media/press-releases/2024/enhertu-approved-in-the-us-as-first-tumor-agnostic-her2-directed-therapy-for-previously-treated-patients-with-metastatic-her2-positive-solid-tumors.html#:~:text=The%20accelerated%20approval%20by%20the,Lung01%20and%20DESTINY%2DCRC02%20trials (accessed on 10 April 2025).
- Dudnik, E.; Bshara, E.; Grubstein, A.; Fridel, L.; Shochat, T.; Roisman, L.C.; Ilouze, M.; Rozenblum, A.B.; Geva, S.; Zer, A.; et al. Rare targetable drivers (RTDs) in non-small cell lung cancer (NSCLC): Outcomes with immune check-point inhibitors (ICPi). Lung Cancer 2018, 124, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-C.V.; Feldman, D.L.; Buonocore, D.J.; Brzostowski, E.B.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Sabari, J.K.; Offin, M.D.; Kris, M.G.; et al. PD-L1 expression, tumor mutation burden and response to immune checkpoint blockade in patients with HER2-mutant lung cancers. J. Clin. Oncol. 2018, 36, 9060. [Google Scholar] [CrossRef]
- Negrao, M.V.; Reuben, A.; Robichaux, J.P.; Le, X.; Nilsson, M.B.; Wu, C.-J.; Zhang, J.; Landry, L.C.A.; Roarty, E.; Rinsurongkawong, W.; et al. Association of EGFR and HER-2 exon 20 mutations with distinct patterns of response to immune checkpoint blockade in non-small cell lung cancer. J. Clin. Oncol. 2018, 36, 9052. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
- Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Janicot, H.; Bernardi, M.; Fournel, P.; Lamy, R.; et al. Efficacy and Safety of Anti–PD-1 Immunotherapy in Patients with Advanced NSCLC With BRAF, HER2, or MET Mutations or RET Translocation: GFPC 01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef]
- Lau, S.C.; Fusco Fares, A.; Le, L.W.; Mackay, K.M.; Soberano, S.; Wah Chan, S.; Smith, E.; Ryan, M.; Tsao, M.S.; Bradbury, P.A.; et al. Subtypes of EGFR- and HER2-Mutant Metastatic NSCLC Influence Response to Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, 253–259. [Google Scholar] [CrossRef]
- Negrao, M.V.; Skoulidis, F.; Montesion, M.; Schulze, K.; Bara, I.; Shen, V.; Xu, H.; Hu, S.; Sui, D.; Elamin, Y.Y.; et al. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J. Immunother. Cancer 2021, 9, e002891. [Google Scholar] [CrossRef]
- Saalfeld, F.C.; Wenzel, C.; Christopoulos, P.; Merkelbach-Bruse, S.; Reissing, T.M.; Laβmann, S.; Thiel, S.; Stratmann, J.A.; Marienfeld, R.; Berger, J.; et al. Efficacy of Immune Checkpoint Inhibitors Alone or in Combination with Chemotherapy in NSCLC Harboring ERBB2 Mutations. J. Thorac. Oncol. 2021, 16, 1952–1958. [Google Scholar] [CrossRef]
- DeMatteo, R.; Goldman, D.A.; Lin, S.T.; Buonocore, D.J.; Gao, J.J.; Chang, J.C.; Rekhtman, N.; Offin, M.; Yu, H.A.; Isbell, J.M.; et al. Clinical outcomes of immune checkpoint inhibitors in HER2-amplified non-small cell lung cancers. J. Clin. Oncol. 2022, 40, e21098. [Google Scholar] [CrossRef]
- Tian, P.; Zeng, H.; Ji, L.; Ding, Z.; Ren, L.; Gao, W.; Fan, Z.; Li, L.; Le, X.; Li, P.; et al. Lung adenocarcinoma with ERBB2 exon 20 insertions: Comutations and immunogenomic features related to chemoimmunotherapy. Lung Cancer 2021, 160, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yang, Y.; Liu, R.; Li, W.; Xu, H.; Hao, X.; Li, J.; Xing, P.; Zhang, S.; Ai, X.; et al. First-line immunotherapy or angiogenesis inhibitor plus chemotherapy for HER2 -altered NSCLC: A retrospective real-world POLISH study. Ther. Adv. Med. Oncol. 2022, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Qiang, H.; Xie, M.; Li, X.; Zhao, J.; Wu, Y.; Zhou, J.; Ye, J.; Zhao, C.; Han, C.; et al. Treatment efficacy of HER2-mutant lung adenocarcinoma by immune checkpoint inhibitors: A multicenter retrospective study. Cancer Immunol. Immunother. 2022, 71, 1625–1631. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Jiang, X.-M.; Wang, B.-L.; Sun, Y.; Lu, J.-J. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: Strategies and mechanisms. Pharmacol. Ther. 2021, 219, 107694. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Beeram, M.; Hamilton, E.; Oh, D.-Y.; Hanna, D.L.; Kang, Y.-K.; Elinova, E.; Chavez, J.; Goodwin, R.; Lee, J.; et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: A phase 1, dose-escalation and expansion study. Lancet Oncol. 2022, 23, 1558–1570. [Google Scholar] [CrossRef]
- Chinese Regulator Conditionally Approves Disitamab Vedotin in Advanced or Metastatic Gastric Cancer. Available online: https://www.adcreview.com/clinical-trials-update/chinese-regulator-conditionally-approves-disitamab-vedotin-in-advanced-or-metastatic-gastric-cancer/ (accessed on 4 May 2025).
- Available online: https://www.prnewswire.com/news-releases/remegen-announces-publication-of-results-from-two-phase-ii-studies-for-disitamab-vedotin-in-latest-issue-of-journal-of-clinical-oncology-jco-301998515.html (accessed on 4 May 2025).
- Cheema, P.; Harti, S.; Koczywas, M.; Hochmair, M.; Shepherd, F.A.; Chu, Q.; Galletti, G.; Gustavson, M.; Iyer, S.; Barrett, J.C.; et al. 695 Efficacy and safety of trastuzumab deruxtecan (T-DXd) with durvalumab in patients with non-small cell lung cancer (HER2 altered NSCLC) who progressed on anti-PD1/PD-L1 therapy (HUDSON). J. Immunother. Cancer 2023, 11, A787. [Google Scholar] [CrossRef]
- Italiano, A.; Besse, B.; Borghaei, H.; Popat, S.; Anguera Palacios, G.; Goncalves, A.; Meurer, M.; Mazieres, J.; Chouaid, C.; Soberino Garcia, J.; et al. 118MO Trastuzumab deruxtecan (T-DXd) and pembrolizumab in immuno-oncology (IO)-naive HER2-expressing or HER2-mutant non-small cell lung cancer (NSCLC): Interim analysis of a phase Ib study. ESMO Immuno-Oncol. Congr. 2024, 24, 100747. [Google Scholar] [CrossRef]
- Planchard, D.; Chih-Hsin Yang, J.; Nakajima, E.; Schreffler, E.; Chang, Y.T.; Brahmer, J.R. 132TiP—Phase Ib open-label study of trastuzumab deruxtecan (T-DXd) + rilvegostomig ± carboplatin as first-line (1L) treatment (Tx) for metastatic HER2-overexpressing (HER2-OE) non-small cell lung cancer (NSCLC): DESTINY-Lung03 (DL-03) part 4. J. Thorac. Oncol. 2025, 20, S94. [Google Scholar] [CrossRef]
- Pelzek, A.; Murphy, S.; Ebtehaj, S.; Muda, M.; Lulo, J.; Barros, B.; Zhang, L.; Zhang, C.; Markelewicz, R.; Kang, B.; et al. ABP-102/CT-P72: A novel HER2 × CD3 T cell engager with selective activity for HER2-overexpressing tumors and reduced activity on cells with normal HER2 expression levels. Cancer Res. 2025, 85 (Suppl. 2), ND04. [Google Scholar] [CrossRef]
- Cardoso, V.M.d.O.; Bistaffa, M.J.; Sterman, R.G.; de Lima, L.L.P.; Toldo, G.S.; Cancino-Bernardi, J.; Zucolotto, V. Nanomedicine Innovations for Lung Cancer Diagnosis and Therapy. ACS Appl. Mater. Interfaces 2025, 17, 13197–13220. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Ariga, S. History and Future of HER2-Targeted Therapy for Advanced Gastric Cancer. J. Clin. Med. 2023, 12, 3391. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Coussens, L.; Yang-Feng, T.L.; Liao, Y.C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.A.; Schlessinger, J.; Franche, U.; et al. Tyrosine Kinase Receptor with Extensive Homology to EGF Receptor Shares Chromosomal Location with neu Oncogene. Science 1985, 230, 1132–1139. [Google Scholar] [CrossRef]
- Zhao, H.; Beyett, T.S.; Jiang, J.; Rana, J.K.; Schaeffner, I.K.; Santana, J.; Jänne, P.A.; Eck, M.J. Biochemical analysis of EGFR exon20 insertion variants insASV and insSVD and their inhibitor sensitivity. Proc. Natl. Acad. Sci. USA 2024, 121, e2417144121. [Google Scholar] [CrossRef]
- Zhong, T.; Liu, N.; Wang, J.; Xie, S.; Liu, L.; Wang, M.; Wu, F.; Chen, X.; Xiao, C.; Gongye, X.; et al. ASPM Induces Radiotherapy Resistance by Disrupting Microtubule Stability Leading to Chromosome Malsegregation in Non-Small Cell Lung Cancer. Exploration 2025, e20230024. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, K.-J.; Cho, B.C.; Liu, B.; Paz-Ares, L.; Cheng, S.; Kitazono, S.; Thiagarajan, M.; Goldman, J.W.; Sabari, J.K.; et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar] [CrossRef]
Reference | Histology | Setting | Treatment | HER2 Testing | Pt N | ORR (%) | DCR (%) | mPFS (mos) | mOS (mos) |
---|---|---|---|---|---|---|---|---|---|
Kinoshita (2018) [53] [HOT1303.B] | ADK | >2 L | Trastuzumab | HER2 OE (3+/2+ DISH+) HER2 MUT | 10 $ | 0 | 70 | 5.2 | - |
Lara (2004) [54] | NSCLC | ≥2 L | Trastuzumab + docetaxel | HER2 OE | 13 | 8 | - | 4.3 | 5.7 |
Gatzemeier (2004) [55] | NSCLC | 1 L | Trastuzumab + Cisplatin/gemcitabine | HER2 OE or HER2 AMP | 51 | 36 | 80 | 6.1 | - |
Cisplatin/gemcitabine | 50 | 41 | 94 | 7.0 | - | ||||
Zinner (2004) [56] | NSCLC | 1 L | Trastuzumab + Cisplatin/gemcitabine | Not selected IHC (0–3+) £ | 21 (9 *) | 38 | 71 | 8.5 | 70 + weeks |
Langer (2004) [57] | NSCLC | 1 L | Trastuzumab + carboplatin/paclitaxel | Not selected IHC (1+/2+/3+) | 53 | 24.5 | 3.3 | 10.1 | |
Krug (2005) [58] | NSCLC | 1 L | Trastuzumab + weekly docetaxel | Not selected IHC (0–3+) | 30 (9 *) | 23 | 63 | - | 16 |
Trastuzumab + weekly paclitaxel | 34 (11 *) | 32 | 58 | - | 14 | ||||
Van Berge HJM (2022) [59] | NSCLC | ≥2 L | Trastuzumab + pertuzumab | HER2 MUT ** | 24 | 8.3 | 38 | 4 | 10 |
Hainsworth (2018) [60] [MyPathway study] | NSCLC & | ≥2 L | Trastuzumab + pertuzumab | HER2 OE (3+) AMP or GCN | 16 | 13 | 46 | - | - |
HER 2 MUT | 14 | 21 | 42 | - | - | ||||
Mazieres (2022) [61] IFCT-1703 R2D2 Trial | NSQ-NSCLC | ≥1 L | Trastuzumab + pertuzumab + docetaxel | HER2 MUT (Ex20 ins) | 45 | 29 | 87 | 6.8 | 17.6 |
Ref. | Drug | Trial Phase | Histology | Setting | Pt N | Type of HER2 | ORR (%) | DCR (%) | mDOR (mos) | mPFS (mos) | mOS (mos) | Safety (Most Common AEs) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pan-HER TKIs | ||||||||||||
Kris (2015) [62] | Dacomitinib | II | ADK | ≥1 L $ | 30 | MUT (26) °, AMP (4) | 12 # | 60 # | - | 3 # | 9 # | Diarrhoea 90% (G ≥ 3 23%), skin rash 73% (G ≥ 3 3%). |
Gandhi (2017) [63] PUMA-NER-4201 | Neratinib | II | NSCLC | ≥1 L | 17 | MUT (Ex20 95%) | 0 | 35 | 0 | 2.9 | 10 | Diarrhoea 82% (G ≥ 3 12%) @, stomatitis 6% (G ≥ 3 0%). |
Neratinib + temsirolimus | 43 | 8 | 49 | 2.4–22.6 | 4.0 | 15.8 | Diarrhoea 86% (G ≥ 3 14%) @, stomatitis 49% (G ≥ 3 7%). | |||||
Li (2021) [64] PUMA-NER-5201 (SUMMIT) | Neratinib | II (basket) | NSCLC | ≥2 L | 26 | MUT (Ex20 66%) | 4 | 39 | 9.2 | 5.4 | - | Anaemia 13%, diarrhoea 66%, costipation 35%, nausea 41%, vomiting 33%. |
Neratinib + trastuzumab | 52 | 8 | 27 | 4.0–18.3 | 4.1 | - | Anaemia 18%, diarrhoea 80%, costipation 30%, nausea 46%, vomiting 45%. | |||||
Dziadziuszko(2019) [65] NICHE trial | Afatinib | II | NSCLC | ≥2 L | 13 | MUT Ex20 | 7.7 | 54 | - | 3.7 (15.9 weeks) | 13.1 (56 weeks) | Gastrointestinal AEs, skin rash, paronychia, mucositis. |
Fan (2020) [66] | Afatinib | II (part A £) | NSCLC | 18 | MUT Ex19–20 | 0 | 61 | - | 2.8 | 10.0 | Diarrhoea 66.7% (G ≥ 3 16.7%), skin rash 33% (G ≥ 3 0%), transamitis 38.9% (G ≥ 3 5.6%). | |
Robichaux (2019) [49] | Poziotinib | II | NSCLC | ≥2 L | 12 | MUT Ex20 ins | 42 | 83 | - | 5.6 | - | Diarrhoea 69% (G ≥ 3 17%), skin rash 42% (G ≥ 3 58%), nausea 31% (G ≥ 3 8%). |
Le (2022) [67] ZENITH20–2 | Poziotinib | II | NSCLC | ≥2 L | 90 | MUT Ex20 ins | 27.8 | 70.0 | 5.1 | 5.5 | - | Skin rash 91.1% (G ≥ 3 48.9%), diarrhoea 82.2% (G ≥ 3 25.6%), stomatitis 68.9% (G ≥ 3 24.4%). |
Cornelissen (2023) [68] ZENITH20–4 | Poziotinib | II | NSCLC | 1 L | 80 | MUT Ex20 ins | 39 | 73 | 5.7 | 5.6 | - | Skin rash 98% (G ≥ 3 45%), diarrhoea 83% (G ≥ 3 15%), stomatitis 81% (G ≥ 3 21%). |
Elamin (2022) [69] | Poziotinib | II | NSCLC | ≥2 L | 30 | MUT Ex20 ins | 27 | 73 | 5.0 | 5.5 | 15 | Skin rash 83% (G ≥ 3 47%), diarrhoea 80% (G ≥ 3 20%), stomatitis 67% (G ≥ 3 10%). |
Liu (2020) [70] RAIN-701 | Tarloxitinib | II (cohort B) | NSCLC | ≥2 L | 11 | MUT | 22 | 66 | - | - | - | Prolonged QTc 60.9% (G≥ 3 34.8%), rash 43.5% (G ≥ 3 4.3%), diarrhoea 21.7% G ≥ 3 4.3%). |
EGFR/HER2 TKIs | ||||||||||||
Ross (2010) [71] | Lapatinib | II | NSCLC | 1–2 L | 56 ç | MUT and AMP | 0 | - | 21–28 | 8.7–15.6 weeks | 55.4–60.9 weeks | Diarrhoea, rash, fatigue, nausea, anorexia. |
Wang (2019) [72] | Pyrotinib | II | NSCLC | ≥2 L | 15 | MUT Ex20 | 53 | 83 | 7.2 | 6.4 | 12.9 | Anaemia 27%, hypocalcemia 27%, rash 14%, nausea 7%. |
Song (2022) [73] | Pyrotinib | II | ADC | ≥1 L | 78 | Mutations (Ex20 and not Ex20) | 19.2 | 74.4 | 9.9 | 5.6 | 10.5 | Diarrhoea 85.9% (G ≥ 3 16.7%), anaemia 35.9% (G ≥ 3 2.6%), fatigue 57.7% (G ≥ 3 1.3%). |
Liu (2023) [74] | Pyrotinib | II | NSCLC | 1 L | 28 * | MUT | 37.5 | 89.3 | 6.4 | 7.3 | 14.3 | Diarrhoea 85.7% (G ≥3 0%), rash 32.1% (G ≥ 3 0%), creat. increased 16.7% (G≥ 3 0%). |
12 ** | 16.7 | 83.4 | (4.6 + −10.5) | 4.7 | 14.2 | Diarrhoea 91.7% (G ≥ 3 16.7%), rash 4.7% (G ≥ 3 0%), increased AST 25% (G≥ 3 3.6%). | ||||||
8 *** | 0 | 75.0 | - | 3.0 | 12.2 | na | ||||||
Kanemura (2024) [75] | Mobocertinib + TDM1 | Ia/Ib | NSCLC | NS | 13 | MUT exon 20 ins YVMA | 53.8 | 84.6 | - | 6.1 | - | Thrombocytopenia 50.0%, diarrhoea 13.6%, anorexia, 13.6%, no ILD. |
Le (2024) [76] SOHO-01 | BAY2927088 | I/II (cohort D) | NSCLC | ≥ 2 L | 44 | MUT | 72.1 | 83.7 | 8.7 | 7.5 | - | Diarrhoea 86.4% (G ≥ 3 25%), rash 43% (G ≥ 3 0%), paronychia 25% (G ≥ 3 0%), no ILD. |
Selective HER2 TKIs | ||||||||||||
Reck (2021) [77] SGNTUC-019 | Tucatinib | II | All solid tumours (NSCLC) | ≥ 2 L | 217 | OE/AMP cohort and MUT cohort | NP | NP | NP | NP | NP | NP |
Heymach (2025) [78] Beamion LUNG-1 | Zongertinib @ | Ia/Ib Cohort 1 | NSCLC | ≥ 2 L | 75 | MUT TKD | 71 | 95 | 14.1 | 12.4 | - | Diarrhoea 56% (G ≥ 3 1%), rash 33% (G≥3 0%), ALT increased 21% (G ≥ 3 8%). |
Ia/Ib Cohort 3 | NSCLC | ≥ 2 L | 20 | MUT non-TKD | 30 | 65 | NE °° | NE °° | - | Diarrhoea 50% (G ≥ 3 5%), rash 15% (G ≥ 3 0%), nausea 25% (G ≥ 3 0%). | ||
Ia/Ib Cohort 5 | NSCLC | ≥ 2 L (treated with ADC) | 22 & (31) | MUT TKD | 41 | - | 5.3 | 6.8 | - | Diarrhoea 45% (G ≥ 3 0%), rash 19% (G ≥ 3 0%), nausea 26% (G ≥ 3 3%). |
Ref. | Drug | Trial Phase | Histology | Setting | Pt N | HER2 Alteration | ORR (%) | mDOR (mos) | mPFS (mos) | mOS (mos) | FUP | Safety (Most Common AEs) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li (2018) [90] | TDM1 | II | ADK | ≥2 L | 49 | 28 MUT, 11 AMP, 10 both | 51 | 4.4 | 5.0 | NR | NR | Transaminitis 63% (G ≥ 3 0%), thrombocytopenia 31% (G ≥ 3 2%), fatigue 16% (G ≥ 3 0%), nausea 29% (G ≥ 3 0%). |
28 MUT | 50 | 4.0 | 5.0 | NR | NR | Transaminitis 44% (G ≥ 3 0%), thrombocytopenia 33% (G ≥ 3 0%), fatigue 33% (G ≥ 3 0%), nausea 33% (G ≥ 3 0%). | ||||||
Hotta (2018) [91] | TDM1 | II | NSCLC | ≥2 L | 15 * | 5 pts IHC 3+, 3 pts IHC 2+/FISH+ | 0 | NR | 2.0 $ | 10.9 $ | 9.2 $ | G ≥ 3: thrombocytopenia 40%, AST/ALT increases 7%, hyperuricemia 7%, nausea 7%. |
7 pts MUT (Ex20) | 14.3 | NR | ||||||||||
Peters (2019) [92] | TDM1 | II | NSCLC | ≥2 L | 49 | 29 IHC 2+ | 0 | 0 | 2.6 | 12.2 | 23.1 | Any AEs: 45% (G ≥ 3 11%): haemorrhage 7% (G ≥ 3 0%), peripheral neuropathy 7% (G ≥ 3 0%), thrombocytopenia 4% (G ≥ 3: 1%). |
20 IHC 3+ | 20 | 2.9–10.8 | 2.7 | 15.3 | 18.4 | |||||||
Iwama (2022) [93] | TDM1 | II | ADK | ≥2 L | 22 | MUT (Ex20) | 38.1 | 3.5 | 2.8 | 8.1 | 8.0 | Thrombocytopenia 63.6% (G ≥ 3 18.2%), transaminitis 43% (G ≥ 3 0%), nausea 31% (G ≥ 3 0%). |
Tsurutani (2020) [94] | T-DXd | I | NSCLC & | ≥2 L | 18 | MUT 11 pts; OE 18 pts (16 pts IHC 3+ and 2 pts IHC 2+). | 55.6 | 10.3 | 11.3 | NE (17.3-NE) | 11 | G ≥ 3: anaemia 25.4%, neutropenia 20.3%, leucopenia 18.6, thombocytopenia 15.3%, febbrile neutropenia 5.1%. ILD G1 (1.7%). |
Li (2022) DESTINY-Lung01 [95] | T-DXd | II (cohort 2) | NSCLC | ≥2 L | 91 (6.4 mg/kg) | MUT (OE/AMP) ° | 55 | 9.3 | 8.2 | 17.8 | 13.1 | Nausea 73% (G ≥ 3 9%), fatigue 53% (G ≥ 3 7%), vomitinig 40% (G ≥ 3 0%), neutropenia 35% (G≥3 19%), ILD 26% (G1-2: 20%, G3: 4%, G5: 2%). |
Smit (2024) [96] DESTINY-Lung01 | T-DXd | II (cohort 1) | NSCLC | ≥2 L | 49 (6.4 mg/kg) | OE (IHC 2+/3+) | 26.5 | 5.8 | 5.7 | 12.4 | 12.0 | G ≥ 3: 53%. Nausea 59% (G ≥ 3 6%), fatigue 59% (G ≥ 3 12%), vomiting 31% (G ≥ 3 4%), neutropenia 25% (G ≥ 3 24%), ILD 20% (G ≥ 3 6%). |
II (cohort 1A) | 41 (5.4 mg/Kg) | OE (IHC 2+/3+) | 34.1 | 6.2 | 6.7 | 11.2 | 10.6 | G ≥ 3: 22%. Nausea 73% (G ≥ 3 5%), fatigue 70% (G ≥ 3 7%), vomiting 29% (G ≥ 3 2%), neutropenia 10% (G ≥ 3 0%), ILD 5% (G ≥ 3 2%). | ||||
Goto (2023), [97] Janne (2024) [98] DESTINY-Lung02 | T-DXd | II | NSCLC | ≥2 L | 102 (5.4 mg/Kg) | MUT | 50 | 12.6 | 10.0 | 19.0 | 15.8 | G ≥ 3: 39%. Nausea 67.3% (G ≥ 3 4%), neutropenia 42.6% (G ≥ 3 18.8%), anaemia 36.6% (G ≥ 3 10.9%), fatigue 44.6% (G ≥ 3 7.9%), ILD 14% (G ≥ 3 2%). |
50 (6.4 mg/kg) | MUT | 56 | 12.2 | 12.9 | 17.3 | 16.5 | G≥3: 60%. Nausea 82% (G ≥ 3 6%), neutropenia 56% (G ≥ 3 36%), anaemia 52% (G ≥ 3 16%), fatigue 50% (G ≥ 3 10%), ILD 32% (G ≥ 3 2%). | |||||
Li (2025) [99] HORIZON-Lung | SHR-A1811 | II | NSCLC | ≥2 L | 94 (4.8 mg/Kg) | MUT (IHC 0, 1+, 2+) ° | 73 | NE (8.3-NE) | 11.5 | NE § | 8.7 | G3-4: neutropenia 40%, leucopenia 27%, anaemia 23%, thrombocytopenia 11%, ILD 7%. |
Ref. | Country | Study | Time | Line | HER2 Alteration | Pt N | ORR (%) | mPFS (95% CI) mos | mOS (95% CI) mos | Predictive Factors |
---|---|---|---|---|---|---|---|---|---|---|
Dudnik 2018 [101] | Israel | R | 2013–2017 | 1–4 L | AMP | 5 | 12 | 6.3 (1.8–9.3) | 10.4 (2.2-NR) | No correlations with PD-L1, TMB, or smoking. |
MUT | 9 | 20 | 3.4 (2.4–8.5) | 17.5 (3.0–17.5) | ||||||
Lai 2018 [102] | USA | R | NA | NA | MUT (Ex 7, 8, 16, 17, 19, 20) | 26 | 16 | 1.9 (1.5–4.0) | 10.4 (5.9-NR) | Correlation with PD-L1 and high and median TMB. |
Negrao 2018 [103] (MDACC) | USA | R | NA | ≥1 L | MUT (Ex20) | 16 | 6 | 1.8 | 17.1 | Correlation with high PD-L1. |
Mazieres 2019 [104] [IMMUNOTARGET] | Europe | R | 2017–2018 | ≥1 L | MUT (Ex20) | 29 | 7.4 | 2.5 (1.8–3.5) | 21.3 (3.2–18.0) | Smoking status/PD-L1 positive (>1%). |
Guisier 2020 [105] | France | R | NR | 2–4 L | MUT (Ex20) | 23 | 27.3 | 2.2 (1.7–15.2) | 20.4 (9.3-NR) | Correlation with positive PD-L1 and early treatment line. |
Lau 2021 [106] | Canada | R | 2013–2019 | 2 (1–4) L | MUT: Ex20 (8 pts), Ex 17–19 (6 pts) | 14 | 29 | 3.6 (1.6-NR) | 5.9 * (3.4–12) | PD-L1 as an independent predictor of improved PFS. |
Negrao 2021 [107] | USA | R (MDACC) | 2014–2018 | ≥1 L | MUT (codons 755 and 770–785) | 15 | 8 | 1.88 | 16.8 | Positive association between PFS and OS with positive PD-L1. |
USA | R (CGBD) | 2011–2018 | ≥1 L | MUT (codons 755 and 770–785) | 28 | NA | 3.02 | 10.81 | Positive association between PFS and OS with postive PD-L1 and TMB ≥10 mt/Mb. | |
Saalfeld 2021 [108] | Germany | R | 2016–2020 | 1 L (CT + IO) | MUT (Ex 20, 19, 8) | 22 | 52 | 6 (6–14) | NE (immature) | Correlation with PD-L1 in first-line therapy with CT-IO. |
1 L (IO) | 5 | 25 | NA | NA | - | |||||
≥ 2 L (IO) | 34 | 16 | 4 (4–6) | 10 (6-NA) | - | |||||
DeMatteo (2022) [109] | USA | R | 2014–2021 | ≥ 1 L | AMP (NGS) | 18 | 0 | 2 (1–7) | 11 (4–37) | No correlations with high PD-L1 (n = 3) and TMB ≥ 10 mt/Mb (n = 9). |
Tian 2021 [110] | China | R | 2015–2019 | 1–2 L (CT + IO) | MUT (Ex20 ins) | 13 | 31 | 8.0 (5.2-NR) | NA | Correlation with high TMB, DNA MMR, and SWI/SNF complex. |
Yang 2022 [111] [POLISH] | China | R | 2015–2021 | 1 L (CT + IO) | MUT (42 pts), AMP (5 pts) | 46 | 28.9 | 5.2 (3.64–6.76) | NE (immature) | No correlations with high PD-L1 and high TMB. |
1 L (CT + A) | MUT (78 pts), AMP (3 pts) | 81 | 23.8 | 5.63 (4.84–6.43) | 36.27 (28.71–42.83) | |||||
1 L (CT) | MUT (78 pts), AMP (5 pts) | 83 | 16.9 | 4.03 (2.70–5.37) | 31.67 (29.63–33.71) | |||||
Chu 2022 [112] | China | R | 2016–2021 | ≥1 L (CT + IO) | MUT | 16 | 60 | 8.4 | NA | Lower proportion of female patients (6/16). |
≥2 L (IO) | 5 | 40 | 5.3 | NA | No association with PD-L1 or smoking status. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trillo Aliaga, P.; Spitaleri, G.; Attili, I.; Corvaja, C.; Battaiotto, E.; Angelopoulos, P.A.; Del Signore, E.; Passaro, A.; de Marinis, F. HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top. Molecules 2025, 30, 2645. https://doi.org/10.3390/molecules30122645
Trillo Aliaga P, Spitaleri G, Attili I, Corvaja C, Battaiotto E, Angelopoulos PA, Del Signore E, Passaro A, de Marinis F. HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top. Molecules. 2025; 30(12):2645. https://doi.org/10.3390/molecules30122645
Chicago/Turabian StyleTrillo Aliaga, Pamela, Gianluca Spitaleri, Ilaria Attili, Carla Corvaja, Elena Battaiotto, Panagiotis Agisilaos Angelopoulos, Ester Del Signore, Antonio Passaro, and Filippo de Marinis. 2025. "HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top" Molecules 30, no. 12: 2645. https://doi.org/10.3390/molecules30122645
APA StyleTrillo Aliaga, P., Spitaleri, G., Attili, I., Corvaja, C., Battaiotto, E., Angelopoulos, P. A., Del Signore, E., Passaro, A., & de Marinis, F. (2025). HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top. Molecules, 30(12), 2645. https://doi.org/10.3390/molecules30122645