Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin
Abstract
1. Introduction
2. Materials and Methods
3. Results
- Case 1
- Case 2
- Case 3
- Case 4
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SM | Systemic mastocytosis |
ASM | Aggressive systemic mastocytosis |
TKIs | Tyrosine kinase inhibitors |
FLT3 | FMS-like tyrosine kinase 3 |
KIT | Kinase Insert Transdomain receptor |
FcεRI | Fragment crystallizable epsilon Receptor I (high-affinity IgE receptor) |
WHO | World Health Organization |
IWG-MRT-ECNM | International Working Group—Myeloproliferative neoplasms Research & Treatment—European Competence Network on Mastocytosis |
MRI | Magnetic Resonance Imaging |
PET-CT | Positron Emission Tomography—Computed Tomography |
anti-RANKL | Antibody against Receptor Activator of Nuclear factor-κB Ligand |
5-HT3 | 5-Hydroxytryptamine 3 receptor |
SSM | Smoldering systemic mastocytosis |
ISM | Indolent systemic mastocytosis |
PI3K | Phosphatidylinositol-3-Kinase |
AKT | Protein Kinase B |
MAPK | Mitogen-Activated Protein Kinase |
FES | Feline Erythro-blastosis Sarcoma viral oncogene homolog |
PKC | Protein Kinase C |
SYK | Spleen Y-Kinase |
LYN | Lck/Yes-related Novel tyrosine kinase |
References
- Leguit, R.J.; Wang, S.A.; George, T.I.; Tzankov, A.; Orazi, A. The international consensus classification of mastocytosis and related entities. Virchows Arch. 2023, 482, 99–112. [Google Scholar] [CrossRef]
- Gotlib, J.; Gerds, A.T.; Abdelmessieh, P.; Ali, H.; Castells, M.; Dunbar, A.; Fein Revell, R.; George, T.I.; Green, S.; Gundabolu, K.; et al. NCCN Guidelines® Insights: Systemic Mastocytosis, Version 3.2024. J. Natl. Compr. Cancer Netw. 2024, 22, e240030. [Google Scholar] [CrossRef] [PubMed]
- Bergström, A.; Hägglund, H.; Berglund, A.; Nilsson, G.; Lambe, M. Epidemiology of mastocytosis: A population-based study (Sweden). Acta Oncol. 2024, 63, 44–50. [Google Scholar] [CrossRef]
- Zanotti, R.; Bonifacio, M.; Isolan, C.; Tanasi, I.; Crosera, L.; Olivieri, F.; Orsolini, G.; Schena, D.; Bonadonna, P. A Multidisciplinary Diagnostic Approach Reveals a Higher Prevalence of Indolent Systemic Mastocytosis: 15-Years’ Experience of the GISM Network. Cancers 2021, 13, 6380. [Google Scholar] [CrossRef] [PubMed]
- Brockow, K. Epidemiology, Prognosis, and Risk Factors in Mastocytosis. Immunol. Allergy Clin. N. Am. 2014, 34, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.S.; Skovbo, S.; Vestergaard, H.; Kristensen, T.; Møller, M.; Bindslev-Jensen, C.; Fryzek, J.P.; Broesby-Olsen, S. Epidemiology of systemic mastocytosis in Denmark. Br. J. Haematol. 2014, 166, 521–528. [Google Scholar] [CrossRef]
- Mihaela Leru, P.; Matei, D. Difficulties in diagnosis and management of mastocytosis in clinical practice and role of patients’ associations. Rom. J. Med. Pract. 2017, 12, 49. [Google Scholar]
- Gallogly, M.M.; Lazarus, H.M.; Cooper, B.W. Midostaurin: A novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Ther. Adv. Hematol. 2017, 8, 245–261. [Google Scholar] [CrossRef]
- Piris-Villaespesa, M.; Alvarez-Twose, I. Systemic Mastocytosis: Following the Tyrosine Kinase Inhibition Roadmap. Front. Pharmacol. 2020, 11, 443. [Google Scholar] [CrossRef]
- Inamura, N.; Mekori, Y.A.; Bhattacharyya, S.P.; Bianchine, P.J.; Metcalfe, D.D. Induction and Enhancement of FcεRI-Dependent Mast Cell Degranulation Following Coculture with Activated T Cells: Dependency on ICAM-1- and Leukocyte Function-Associated Antigen (LFA)-1-Mediated Heterotypic Aggregation. J. Immunol. 1998, 160, 4026–4033. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; George, T.I.; Linder, A.; Langford, C.; Perkins, C.; Ma, J.; Westervelt, P.; Merker, J.D.; Berube, C.; Coutre, S.; et al. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia 2018, 32, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Valent, P.; Akin, C.; Hartmann, K.; George, T.I.; Sotlar, K.; Peter, B.; Gleixner, K.V.; Blatt, K.; Sperr, W.R.; Manley, P.W.; et al. Midostaurin: A magic bullet that blocks mast cell expansion and activation. Ann. Oncol. 2017, 28, 2367–2376. [Google Scholar] [CrossRef]
- Tefferi, A.; Barosi, G.; Mesa, R.A.; Cervantes, F.; Deeg, H.J.; Reilly, J.T.; Verstovsek, S.; Dupriez, B.; Silver, R.T.; Odenike, O.; et al. International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood 2006, 108, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-H.; Tefferi, A.; Lasho, T.L.; Finke, C.; Patnaik, M.; Butterfield, J.H.; McClure, R.F.; Li, C.-Y.; Pardanani, A. Systemic mastocytosis in 342 consecutive adults: Survival studies and prognostic factors. Blood 2009, 113, 5727–5736. [Google Scholar] [CrossRef]
- Barete, S.; Assous, N.; de Gennes, C.; Grandpeix, C.; Feger, F.; Palmerini, F.; Dubreuil, P.; Arock, M.; Roux, C.; Launay, J.M.; et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann. Rheum. Dis. 2010, 69, 1838–1841. [Google Scholar] [CrossRef]
- Bonifacio, M.; Zanotti, R.; Guardalben, E.; Mimiola, E.; Scognamiglio, F.; Perbellini, O.; De Matteis, G.; Escribano, L.; Bonadonna, P.; Grigolato, D.; et al. Multiple large osteolytic lesions in a patient with systemic mastocytosis: A challenging diagnosis. Clin. Case Rep. 2017, 5, 1988–1991. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Li, C.Y. Pathology of the lymph node and spleen in systemic mast cell disease. Mod. Pathol. 1988, 1, 4–14. [Google Scholar]
- Metcalfe, D.D.; Mekori, Y.A. Pathogenesis and Pathology of Mastocytosis. Annu. Rev. Pathol. 2017, 12, 487–514. [Google Scholar] [CrossRef]
- Avila, N.A.; Ling, A.; Worobec, A.S.; Mican, J.A.M.; Metcalfe, D.D. Systemic mastocytosis: CT and US features of abdominal mani-festations. Radiology 1997, 202, 367–372. [Google Scholar] [CrossRef]
- Elsaiey, A.; Mahmoud, H.S.; Jensen, C.T.; Klimkowski, S.; Taher, A.; Chaudhry, H.; Morani, A.C.; Wong, V.K.; Salem, U.I.; Palmquist, S.M.; et al. Mastocytosis—A Review of Disease Spectrum with Imaging Correlation. Cancers 2021, 13, 5102. [Google Scholar] [CrossRef]
- Pardanani, A. How I treat patients with indolent and smoldering mastocytosis (rare conditions but difficult to manage). Blood 2013, 121, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A.; Lim, K.-H.; Lasho, T.L.; Finke, C.M.; McClure, R.F.; Li, C.-Y.; Tefferi, A. WHO subvariants of indolent mastocytosis: Clinical details and prognostic evaluation in 159 consecutive adults. Blood 2010, 115, 150–151. [Google Scholar] [CrossRef]
- Chandesris, M.O.; Damaj, G.; Canioni, D.; Brouzes, C.; Lhermitte, L.; Hanssens, K.; Frenzel, L.; Cherquaoui, Z.; Durieu, I.; Durupt, S.; et al. Midostaurin in Advanced Systemic Mas-tocytosis. N. Engl. J. Med. 2016, 374, 2605–2606. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Stone, R.M.; DeAngelo, D.J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E.J.; Schiller, G.J.; et al. Phase IIB Trial of Oral Midostaurin (PKC412), the FMS-Like Tyrosine Kinase 3 Receptor (FLT3) and Multi-Targeted Kinase Inhibitor, in Patients with Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome with Either Wild-Type or Mutated FLT3. J. Clin. Oncol. 2010, 28, 4339–4345. [Google Scholar] [CrossRef]
- Weisberg, E.; Meng, C.; Case, A.E.; Tiv, H.L.; Gokhale, P.C.; Buhrlage, S.J.; Yang, J.; Liu, X.; Wang, J.; Gray, N.; et al. Effects of the multi-kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia. J. Cell. Mol. Med. 2020, 24, 2968–2980. [Google Scholar] [CrossRef]
- Peschel, I.; Podmirseg, S.R.; Taschler, M.; Duyster, J.; Götze, K.S.; Sill, H.; Nachbaur, D.; Jäkel, H.; Hengst, L. FLT3 and FLT3-ITD phosphorylate and inactivate the cyclin-dependent kinase inhibitor p27Kip1 in acute myeloid leukemia. Haematologica 2017, 102, 1378. [Google Scholar] [CrossRef] [PubMed]
- Tecik, M.; Adan, A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. OncoTargets Ther. 2022, 15, 1449–1478. [Google Scholar] [CrossRef]
- Weisberg, E.; Liu, Q.; Nelson, E.; Kung, A.L.; Christie, A.L.; Bronson, R.; Sattler, M.; Sanda, T.; Zhao, Z.; Hur, W.; et al. Using combination therapy to override stro-mal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors. Leukemia 2012, 26, 2233–2244. [Google Scholar] [CrossRef]
- Brinton, L.T.; Williams, K.; Orwick, S.; Beaver, L.; Canfield, D.; Cempre, C.; Skinner, J.; Wasmuth, R.; Hassan, Q.N.; Byrd, J.; et al. Abstract 371: Synthetic lethal and resistance pathways in midostaurin-treated AML. Cancer Res. 2019, 79 (Suppl. 13), 371. [Google Scholar] [CrossRef]
- Skwarska, A.; Moujalled, D.M.; Panis, P.F.; Patel, S.; Zhang, Q.; Herbrich, S.; Kurvilla, V.; Baran, N.; Pomilio, G.; Halilovic, E.; et al. Combination Therapy of FLT3 Tyrosine Kinase Inhibitors and BH3 Mimetics Targeting Antiapoptotic MCL-1 Synergistically Eliminates FLT3-ITD Acute Myeloid Leukemia Cells in Vitro and In Vivo. Blood 2021, 138 (Suppl. 1), 2248. [Google Scholar] [CrossRef]
- Chen, A.W.; Baek, G.T.; Palmer, S.; Rasmussen, J.; Bubalo, J.S.; Namburi, S.; Schwarz, T.; Tsomo, T.; Cohen, J.; Russell, K.; et al. Evaluation of the toxicity and outcomes of the combination of midostaurin and CLAG-M in patients with FLT3-mutated acute myeloid leukemia (AML): A multicenter retrospective analysis. J. Clin. Oncol. 2024, 42 (Suppl. 16), 6523. [Google Scholar] [CrossRef]
- He, H.; Tran, P.; Gu, H.; Tedesco, V.; Zhang, J.; Lin, W.; Gatlik, E.; Klein, K.; Heimbach, T. Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab. Dispos. 2017, 45, 540–555. [Google Scholar] [CrossRef]
- Schlaweck, S.; Radcke, A.; Kampmann, S.; Becker, B.V.; Brossart, P.; Heine, A. The Immunomodulatory Effect of Different FLT3 Inhibitors on Dendritic Cells. Cancers 2024, 16, 3719. [Google Scholar] [CrossRef]
- Ustun, C.; Karadag, F.K.; Linden, M.A.; Valent, P.; Akin, C. Systemic Mastocytosis: Current Status and Challenges in 2024. Blood Adv. 2025, 9, 2048–2062. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, E.; Boulton, C.; Kelly, L.M.; Manley, P.; Fabbro, D.; Meyer, T.; Gilliland, D.; Griffin, J.D. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002, 1, 433–443. [Google Scholar] [CrossRef]
- Pardanani, A. Systemic mastocytosis in adults: 2023 update on diagnosis, risk stratification and management. Am. J. Hematol. 2023, 98, 1097–1116. [Google Scholar] [CrossRef] [PubMed]
- Krauth, M.; Mirkina, I.; Herrmann, H.; Baumgartner, C.; Kneidinger, M.; Valent, P. Midostaurin (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin. Exp. Allergy 2009, 39, 1711–1720. [Google Scholar] [CrossRef]
- Broderick, V.; Waghorn, K.; Langabeer, S.E.; Jeffers, M.; Cross, N.C.; Hayden, P.J. Molecular response to imatinib in KIT F522C-mutated systemic mastocytosis. Leuk. Res. 2019, 77, 28–29. [Google Scholar] [CrossRef]
- Alvarez-Twose, I.; Matito, A.; Morgado, J.M.; Sánchez-Muñoz, L.; Jara-Acevedo, M.; García-Montero, A.; Mayado, A.; Caldas, C.; Teodósio, C.; Muñoz-González, J.I.; et al. Imatinib in systemic mastocytosis: A phase IV clinical trial in patients lacking exon 17 KIT mutations and review of the literature. Oncotarget 2016, 8, 68950–68963. [Google Scholar] [CrossRef]
- lvarez-Twose, I.; Jara-Acevedo, M.; Morgado, J.M.; García-Montero, A.; Sánchez-Muñoz, L.; Teodósio, C.; Matito, A.; Mayado, A.; Caldas, C.; Mollejo, M.; et al. Clinical, im-munophenotypic, and molecular characteristics of well-differentiated systemic mastocytosis. J. Allergy Clin. Immunol. 2016, 137, 168–178.e1. [Google Scholar] [CrossRef]
- Campos, P.d.M.; Machado-Neto, J.A.; Scopim-Ribeiro, R.; Visconte, V.; Tabarroki, A.; Duarte, A.S.; Barra, F.F.; Vassalo, J.; Rogers, H.J.; Lorand-Metze, I.; et al. Familial systemic mastocytosis with germline KIT K509I mutation is sensitive to treatment with imatinib, dasatinib and PKC412. Leuk. Res. 2014, 38, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Mital, A.; Piskorz, A.; Lewandowski, K.; Wasąg, B.; Limon, J.; Hellmann, A. A case of mast cell leukaemia with exon 9 KIT mutation and good response to imatinib. Eur. J. Haematol. 2011, 86, 531–535. [Google Scholar] [CrossRef]
- Vega-Ruiz, A.; Cortes, J.E.; Sever, M.; Manshouri, T.; Quintás-Cardama, A.; Luthra, R.; Kantarjian, H.M.; Verstovsek, S. Phase II study of imatinib mesylate as therapy for patients with systemic mastocytosis. Leuk. Res. 2009, 33, 1481–1484. [Google Scholar] [CrossRef]
- Jawhar, M.; Schwaab, J.; Naumann, N.; Horny, H.-P.; Sotlar, K.; Haferlach, T.; Metzgeroth, G.; Fabarius, A.; Valent, P.; Hofmann, W.-K.; et al. Response and progression on midostaurin in advanced systemic mastocytosis: KIT D816V and other molecular markers. Blood 2017, 130, 137–145. [Google Scholar] [CrossRef]
- Jawhar, M.; Schwaab, J.; Schnittger, S.; Meggendorfer, M.; Pfirrmann, M.; Sotlar, K.; Horny, H.-P.; Metzgeroth, G.; Kluger, S.; Naumann, N.; et al. Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V+ advanced systemic mastocytosis. Leukemia 2016, 30, 136–143. [Google Scholar] [CrossRef]
- Jawhar, M.; Schwaab, J.; Hausmann, D.; Clemens, J.; Naumann, N.; Henzler, T.; Horny, H.-P.; Sotlar, K.; Schoenberg, S.O.; Cross, N.C.P.; et al. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia 2016, 30, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am. J. Hematol. 2021, 96, 508–525. [Google Scholar] [CrossRef]
- Gotlib, J.; Kluin-Nelemans, H.C.; George, T.I.; Akin, C.; Sotlar, K.; Hermine, O.; Awan, F.T.; Hexner, E.; Mauro, M.J.; Sternberg, D.W.; et al. Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N. Engl. J. Med. 2016, 374, 2530–2541. [Google Scholar] [CrossRef]
- Sciumè, M.; De Magistris, C.; Galli, N.; Ferretti, E.; Milesi, G.; De Roberto, P.; Fabris, S.; Grifoni, F.I. Target Therapies for Systemic Mastocytosis: An Update. Pharmaceuticals 2022, 15, 738. [Google Scholar] [CrossRef]
- Fabbro, D.; Ruetz, S.; Bodis, S.; Pruschy, M.; Csermak, K.; Man, A.; Campochiaro, P.; Wood, J.; O’Reilly, T.; Meyer, T. PKC412—A protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000, 15, 17–28. [Google Scholar]
- Fabbro, D.; Buchdunger, E.; Wood, J.; Mestan, J.; Hofmann, F.; Ferrari, S.; Mett, H.; O’rEilly, T.; Meyer, T. Inhibitors of Protein KinasesCGP 41251, a Protein Kinase Inhibitor with Potential as an Anticancer Agent. Pharmacol. Ther. 1999, 82, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am. J. Hematol. 2019, 94, 363–377. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Age at diagnosis | 57 | 44 | 75 | 53 |
Sex | Female | Female | Male | Female |
Serum tryptase level at diagnosis ng/mL | 387 | 319 | 64.6 | 208 |
KIT D816V mutation | Positive | Positive | Positive (VAF 7.89%) | Positive |
Bone marrow mast cell burden | 40% | 55% | 20% | 55% |
Bone marrow fibrosis | MF-3 | MF-2 | Not evaluated | MF-3 |
ALK at diagnosis | 256 | 110 | 114 | 79 |
ALK at midostaurin initiation | 386 | 192 | 149 | 108 |
Hepatomegaly | Yes | No | Yes | Yes |
Splenomegaly | Yes | No | Yes | Yes |
B findings (mast cell burden/organ infiltration) | Hepatomegaly, splenomegaly, signs of dysplasia or myeloproliferation, 40% mast cells in bone marrow, and serum total tryptase 387 ng/mL | 50% mast cells on bone marrow and serum tryptase of 319 ng/mL | Lymphadenopathy, hepatomegaly, splenomegaly 45% mast cells on bone marrow biopsy | Hepatomegaly, splenomegaly, signs of dysplasia or myeloproliferation, 55% mast cells on bone marrow biopsy, and serum tryptase of 208 ng/mL |
C findings (organ dysfunction) | Hepatomegaly with ascites, portal hypertension, malabsorption with weight loss | Skeletal involvement | Bone marrow dysfunction caused by neoplastic mast cell infiltration, and malabsorption with weight loss. | Hepatomegaly with impairment of liver function, ascites, malabsorption with weight loss |
Treatment period (follow-up) | 57 months | 42 months | 22 months | 9 months |
Previous treatments | Cladribine, imatinib | None | None | Cladribine |
Prognostic score at diagnosis (IPSM) | 1 | 1 | 3 | 1 |
Midostaurin Treatment Response IWG-MRT-ECNM response criteria | Partial remission | Clinical improvement | Clinical improvement | Clinical improvement |
Organ function improvement and symptom relief after midostaurin | Resolution of ascites, splenic size reduction over 50%, decrease in both serum tryptase and bone marrow mast cell infiltration, resolution of malabsorption | Decreased tryptase levels, consolidation of osteolytic lesions, and resolution of bone pain | Resolution of lymphadenopathies, splenic size reduction | Resolution of bone pain, resolution of malabsorption |
Midostaurin-related side effects | Nausea | Nausea | Nausea | Nausea and diarrhea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soare, D.; Soare, D.; Dobrea, C.; Radu, E.; Bumbea, H. Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin. Biomedicines 2025, 13, 1655. https://doi.org/10.3390/biomedicines13071655
Soare D, Soare D, Dobrea C, Radu E, Bumbea H. Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin. Biomedicines. 2025; 13(7):1655. https://doi.org/10.3390/biomedicines13071655
Chicago/Turabian StyleSoare, Delia, Dan Soare, Camelia Dobrea, Eugen Radu, and Horia Bumbea. 2025. "Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin" Biomedicines 13, no. 7: 1655. https://doi.org/10.3390/biomedicines13071655
APA StyleSoare, D., Soare, D., Dobrea, C., Radu, E., & Bumbea, H. (2025). Clinical and Biological Characteristics of Four Patients with Aggressive Systemic Mastocytosis Treated with Midostaurin. Biomedicines, 13(7), 1655. https://doi.org/10.3390/biomedicines13071655