Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,093)

Search Parameters:
Keywords = sustainable water infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

32 pages, 3202 KiB  
Article
An Integrated Framework for Urban Water Infrastructure Planning and Management: A Case Study for Gauteng Province, South Africa
by Khathutshelo Godfrey Maumela, Tebello Ntsiki Don Mathaba and Mahalieo Kao
Water 2025, 17(15), 2290; https://doi.org/10.3390/w17152290 - 1 Aug 2025
Viewed by 237
Abstract
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the [...] Read more.
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the achievement of Sustainable Development Goals 6 and 11; hence, an integrated approach is required for water sustainability. The study responds to a gap in the literature, which often treats planning and management separately, by adopting an integrated, multi-institutional approach across the water value chain. A mixed-methods triangulation strategy was employed for data collection whereby surveys provided quantitative data, while two sets of structured interviews were conducted: the first round to determine causal relationships among the critical success factors and the second round to validate the proposed framework. The findings reveal a misalignment between infrastructure planning and implementation, contributing to infrastructure backlogs and a short- to medium-term focus. Infrastructure management is further constrained by inadequate system redundancy, leading to ineffective maintenance. External factors such as delayed adoption of 4IR technologies, lack of climate resilient strategies, and fragmented institutional coordination exacerbate these issues. Using Decision-Making Trial and Evaluation Laboratory (DEMATEL) analysis, the study identified Strategic Alignment and a Value-Driven Approach as the most influential critical success factors in water asset management. The research concludes by proposing an integrated water infrastructure and planning framework that supports sustainable water supply. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 - 1 Aug 2025
Viewed by 197
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 250
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

19 pages, 1806 KiB  
Article
A Novel Approach to Solving Generalised Nonlinear Dynamical Systems Within the Caputo Operator
by Mashael M. AlBaidani and Rabab Alzahrani
Fractal Fract. 2025, 9(8), 503; https://doi.org/10.3390/fractalfract9080503 - 31 Jul 2025
Viewed by 121
Abstract
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and [...] Read more.
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and efficient solutions. Readers can understand the procedures clearly, since the implementation of Yang transform directly transforms fractional derivative sections into algebraic terms in the given problems. The new iterative scheme is applied to generate series solutions for the provided problems. The fractional derivatives are considered in the Caputo sense. To validate the proposed approach, two numerical examples are analysed and compared with exact solutions, as well as with the results obtained from the fractional reduced differential transform method (FRDTM) and the q-homotopy analysis transform method (q-HATM). The comparisons, presented through both tables and graphical illustrations, confirm the enhanced accuracy and reliability of the proposed method. Moreover, the effect of varying the fractional order is explored, demonstrating convergence of the solution as the order approaches an integer value. Importantly, the time-fractional Hirota–Satsuma coupled KdV and modified Korteweg–de Vries (MKdV) equations investigated in this work are not only of theoretical and computational interest but also possess significant implications for achieving global sustainability goals. Specifically, these equations contribute to the Sustainable Development Goal (SDG) “Life Below Water” by offering advanced modelling capabilities for understanding wave propagation and ocean dynamics, thus supporting marine ecosystem research and management. It is also relevant to SDG “Climate Action” as it aids in the simulation of environmental phenomena crucial to climate change analysis and mitigation. Additionally, the development and application of innovative mathematical modelling techniques align with “Industry, Innovation, and Infrastructure” promoting advanced computational tools for use in ocean engineering, environmental monitoring, and other infrastructure-related domains. Therefore, the proposed method not only advances mathematical and numerical analysis but also fosters interdisciplinary contributions toward sustainable development. Full article
(This article belongs to the Special Issue Recent Trends in Computational Physics with Fractional Applications)
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 315
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

25 pages, 2893 KiB  
Review
Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review
by Xuefei Wang, Qi Hu, Run Zhang, Chuanhao Sun and Mo Wang
Water 2025, 17(15), 2273; https://doi.org/10.3390/w17152273 - 30 Jul 2025
Viewed by 263
Abstract
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between [...] Read more.
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between 2000 and 2023 in the Web of Science Core Collection, focusing specifically on the ecosystem services associated with UBGI. Employing CiteSpace visualization technology, this study elucidates the major research trends, thematic clusters, and international collaboration patterns shaping this field. The research delves into the diverse range of ecosystem services provided by blue-green infrastructure and analyzes their contributions to urban well-being. Findings indicate that regulatory services—particularly climate regulation, biodiversity enhancement, and water resource management—have become central research foci within the contexts of urban green infrastructure (UGI), urban blue infrastructure (UBI), and UBGI. Co-citation and keyword analyses reveal that nature-based solutions, hybrid green–gray infrastructure, and the application of urban resilience frameworks are gaining increasing scholarly attention. By summarizing the evolutionary trajectory and priority directions of UBGI research, this study provides significant insights for future interdisciplinary research aimed at enhancing the supply of urban environmental ecosystem services. Full article
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Technical Evaluation and Problem-Solving in the Reopening of a Thermal Bath Facility
by Krisztián Szolga, Dóra Buzetzky, Nebojša Jurišević and Dénes Kocsis
Appl. Sci. 2025, 15(15), 8456; https://doi.org/10.3390/app15158456 - 30 Jul 2025
Viewed by 183
Abstract
The aim of the study is to carry out a technical assessment of a Hungarian baths complex, which is a major tourist center with approximately 180,000 visitors per year. The bath complex had been partially closed. Following the partial closure of the spa, [...] Read more.
The aim of the study is to carry out a technical assessment of a Hungarian baths complex, which is a major tourist center with approximately 180,000 visitors per year. The bath complex had been partially closed. Following the partial closure of the spa, a comprehensive survey was carried out, identifying four main problem areas: operational difficulties with the thermal and cold-water wells, outdated water treatment technology, structural damage to the swimming pool and general mechanical deficiencies. Based on these investigations, recommendations were made for a safe and sustainable reopening of the spa, such as the reactivation of the geothermal system, the installation of modern filtration and dosing systems, and the application of energy-efficient and intelligent technologies. Based on the recommendations, the safe, economical, and sustainable reopening of the spa can be achieved, while also providing guidance for the modernization of other spa complexes. A separate section presents detailed development proposals, such as restarting the geothermal system, applying modern water treatment technologies and intelligent control systems, renovating the pool structure, and modernizing the mechanical and electrical systems. These proposals contribute to the modernization of the spa infrastructure and can also provide guidance for solving technical problems in other similar facilities. Full article
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 324
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

21 pages, 1011 KiB  
Article
Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran
by Akbar Irani, Roghayeh Jahdi, Zeinab Hazbavi, Raoof Mostafazadeh and Abazar Esmali Ouri
Sustainability 2025, 17(15), 6841; https://doi.org/10.3390/su17156841 - 28 Jul 2025
Viewed by 301
Abstract
This paper presents the Green Watershed Index (GWI) methodology, focusing on the 17 sustainability indicators selected in the Razey watershed, NW Iran. Field surveys and data collection have provided the possibility of field inspection and measurement of the present condition of the watershed [...] Read more.
This paper presents the Green Watershed Index (GWI) methodology, focusing on the 17 sustainability indicators selected in the Razey watershed, NW Iran. Field surveys and data collection have provided the possibility of field inspection and measurement of the present condition of the watershed and the indicators taken. Based on the degree of compliance with the required process, each indicator was scored from 0 to 10 and classified into three categories: unsustainable, semi-sustainable, and sustainable. Using the Entropy method to assign weight to each indicator and formulating a proportional mathematical relationship, the GWI score for each sub-watershed was derived. Spatial changes regarding the selected indicators and, consequently, the GWI were detected in the study area. Development of water infrastructure, particularly in the upstream sub-watersheds, plays a great role in increasing the GWI score. The highest weight is related to environmental productivity (0.26), and the five indicators of water footprint, knowledge management and information quality system, landscape attractiveness, waste recycling, and corruption control have approximately zero weight due to their monotonous spatial distribution throughout sub-watersheds. Only sub-watershed R1 has the highest score (5.13), indicating a semi-sustainable condition. The rest of the sub-watersheds have unsustainable conditions (score below 5). Concerning the GWI, the watershed is facing a critical situation, necessitating the implementation of management and conservation strategies that align with the sustainability level of each sub-watershed. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 224
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

22 pages, 6699 KiB  
Article
Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
by Baiyang Li, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li and Zhiyuan Song
Land 2025, 14(8), 1542; https://doi.org/10.3390/land14081542 - 27 Jul 2025
Viewed by 303
Abstract
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout [...] Read more.
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout the area. Utilizing an integrated “water–soil–carbon–grain” framework, this study conducted a quantitative assessment of four essential ecosystem services within the Hexi Corridor from 2000 to 2020: water yield, soil conservation, vegetation carbon sequestration, and grain production. Our research thoroughly explores the equilibrium and synergistic interactions between grain production and other ecosystem services, while also exploring potential strategies to boost grain yields through the precise management of these services. The insights garnered are invaluable for strategic regional development and will contribute to the revitalization efforts in Northwest China. Key findings include the following: (1) between 2000 and 2020, grain production exhibited a steady increase, alongside rising trends in water yields, soil conservation, and carbon sequestration, all of which demonstrated significant synergies with agricultural productivity; (2) in areas identified as grain production hotspots, there were stronger positive correlations between grain output and carbon sequestration services, soil conservation, and water yields than the regional averages, suggesting more pronounced mutual benefits; (3) the implementation of strategic initiatives such as controlling soil erosion, expanding afforestation efforts, and enhancing water-saving irrigation infrastructure could simultaneously boost ecological services and agricultural productivity. These results significantly enhance our comprehension of the interplay between ecosystem services in the Hexi Corridor and present practical approaches for the optimization of regional agricultural systems. Full article
Show Figures

Figure 1

20 pages, 2319 KiB  
Article
Sustainability Synergies Between Water Governance and Agrotourism Development in the Semi-Arid Climate: A Case Study of Esmeraldas Province, Ecuador
by Eliana Ivanova Cuero Espinoza, Qudus Adeyi, Mirza Junaid Ahmad, Hwa-Seok Hwang and Kyung-Sook Choi
Water 2025, 17(15), 2215; https://doi.org/10.3390/w17152215 - 24 Jul 2025
Viewed by 309
Abstract
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water [...] Read more.
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water governance can support agrotourism development in Esmeraldas Province, Ecuador. This study combined policy gaps analysis, stakeholder surveys (policymakers, farmers, community leaders, and tourism operators), and water availability using the Standardized Precipitation Evapotranspiration Index (SPEI) from 1980 to 2022. The results revealed a lack of policy regulation and water infrastructure as the major governance gaps that need more intervention. The survey respondents indicated that water is mainly used for domestic and economic activities and the conservation of natural ecosystems. The SPEI revealed a significant drought trend falling below −3, with severe drought years coinciding with many crop losses and a fall in tourism. This study highlights the interconnection between water governance and agrotourism in Esmeraldas, Ecuador, proposing a strategic framework that incorporates adaptive governance principles and inclusive participation mechanisms, emphasizing targeted capacity building to strengthen water management practices and enhance the Sustainable Development Goals for agrotourism resilience. Full article
(This article belongs to the Special Issue Water: Economic, Social and Environmental Analysis)
Show Figures

Figure 1

25 pages, 5543 KiB  
Article
Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(15), 1596; https://doi.org/10.3390/agriculture15151596 - 24 Jul 2025
Viewed by 286
Abstract
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating [...] Read more.
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating GIS spatial statistics, imbalance index, and geodetector models, we reveal critical insights: (1) Pronounced spatial inequity is observed, where a small number of eastern provinces dominate the total reserve count, highlighting significant regional disparities in ecological resource allocation. The sparse kernel density in western regions, indicating sparse reserve coverage. The Standard Deviation Ellipse highlights directional dispersion and human-ecological conflicts in high-density zones. (2) Key sustainability indicators driving reserve distribution include: total water resources, water resources per capita, forest area. (3) The spatial distribution of China’s nature reserves, along with factors such as altitude, river distribution, and transportation infrastructure, plays a crucial role in their development. This research provides theoretical support for the scientific planning and policy-making of nature reserves in China and offers practical guidance for optimizing and adjusting sustainable agricultural development. The study emphasizes the vital functions of nature reserves in maintaining ecosystem balance, enhancing regional climate resilience, and serving as biodiversity reservoirs. This research offers strategic insights for integrating nature reserve spatial planning with sustainable agricultural development policies, providing a scientific basis for optimizing the eco-agricultural interface in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop