Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Measurement of Ecosystem Services
- (1)
- Estimation of Water Production Services
- (2)
- Estimation of Soil Conservation Services
- (3)
- Estimation of Vegetation Carbon Sequestration Services
- (4)
- Estimation of Grain Production Services
2.3.2. Analysis of Ecosystem Trade-Offs and Synergies
2.3.3. Conversion of Land Use
2.3.4. Coldspot and Hotspot Analysis
3. Result
3.1. Analysis of Spatiotemporal Distribution Characteristics of Different Ecosystem Services
3.2. Analysis of the Trade-Off and Collaborative Relationship Between Grain Production Services and Other Services
3.3. Temporal and Spatial Changes in Land Use Patterns
3.4. Hotspot Analysis of Grain Production Services
3.5. The Impact of Irrigation Factors on Grain Yields in Hot Areas of Grain Production Services
4. Discussion
4.1. Balancing and Coordinating Between Grain Production and Other Services in the Hexi Corridor Region
4.2. The Impact of Irrigation Factors on Grain Production Services
4.3. Balance and Synergy Between Grain Production Services and Other Services in Hot Areas of Grain Production Services
4.4. Limitations and Future Prospects
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Food Programme. State of World Food Security and Nutrition in 2023 (R/OL); World Food Programme: Rome, Italy, 2023. [Google Scholar]
- Zhang, J.; Yang, H.; Zhou, F.; Li, J.; Zhou, D.; Cen, G.; Ma, J.; Zhu, X. Spatiotemporal changes of agricultural water footprint and its driving factors using the ARDL model in the Hexi corridor, China. J. Arid Environ. 2023, 213, 104966. [Google Scholar] [CrossRef]
- Wei, W.; Nan, S.; Xie, B.; Liu, C.; Zhou, J.; Liu, C. The spatial-temporal changes of supply-demand of ecosystem services and ecological compensation: A case study of Hexi Corridor, Northwest China. Ecol. Eng. 2023, 187, 106861. [Google Scholar] [CrossRef]
- Su, Y.; Wang, F.; Zhang, Z.; Du, M. Soil Properties and Characteristics of Soil Aggregate in Marginal Farmlands of Oasis in the Middle of Hexi Corridor Region, Northwest China. Agric. Sci. China 2007, 6, 706–714. [Google Scholar] [CrossRef]
- Liu, F.; Pan, Y.; Gong, C.; Yu, Z. Poverty alleviation and ecological resource consumption across different agricultural zones: A case study of Inner Mongolia based on HANPP. Reg. Environ. Change 2024, 24, 118. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Adhikary, P.P.; Shit, P.K. Implement agroforestry practices to reduce soil erosion and promote multiple beneficial ecosystem services in the gully-degraded lands of Northwest West Bengal, India. Ecol. Front. 2025, 45, 547–560. [Google Scholar] [CrossRef]
- Prangel, E.; Reitalu, T.; Neuenkamp, L.; Kasari-Toussaint, L.; Karise, R.; Tiitsaar, A.; Soon, V.; Kuppe-r, T.; Meriste, M.; Ingerpuu, N.; et al. Restoration of semi-natural grasslands boosts biodiversity and re-creat-es hotspots for ecosystem services. Agric. Ecosyst. Environ. 2024, 374, 109–139. [Google Scholar] [CrossRef]
- Lin, K.; Pan, S.; Yuan, M.; Zhang, Y.; Guo, H. Synergies between rice production security and soil-related ecosystem services: From field observations to policy implementations. Agric. Syst. 2025, 224, 104256. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; James, D.; Stacie, W. InVEST 3.5.0 User’s Guide; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MI, USA; The Nature Conservancy and World Wildlife Fund: Gland, Switzerland, 2018. [Google Scholar]
- Obateru, R.O.; Okhimamhe, A.A.; Fashae, O.A.; Olusola, A.O.; Dragovich, D.; Conrad, C. Assessing the status of ecosystem regulating services in the urbanising Rainforest and Guinea savanna ecological regions of Nigeria using InVEST models. Urban Clim. 2025, 61, 102410. [Google Scholar] [CrossRef]
- Padminda, H.B.G.D.M.; Abeysingha, N.S.; Amarasekara, T.; Ray, R.L.; Samarathunga, D.K. The use of InVEST-SDR model to evaluate soil erosion and sedimentation in the closer catchment of a proposed tropical reservoir in Sri Lanka. Int. J. Sediment Res. 2025, 40, 253–268. [Google Scholar]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Krey, V.; Riahi, K.; Bertram, C.; Bodirsky, B.L.; Bosetti, V.; Callen, J.; Després, J.; Doelman, J.; et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2019, 2, 386–396. [Google Scholar] [CrossRef]
- Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. Sci. Food 2018, 2, 14. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Yan, X.; Ma, C.; Zheng, X.; Wu, J.; Wu, C. Study on trade-offs and synergies of rural ecosystem services in the Tacheng-Emin Basin, Xinjiang, China: Implications for zoning management of rural ecological functions. J. Environ. Manag. 2024, 363, 121411. [Google Scholar] [CrossRef]
- Dai, E.; Zhao, Z.; Jia, L.; Jiang, X. Contribution of ecosystem services improvement on achieving Sustainable development Goals under ecological engineering projects on the Qinghai-Tibet Plateau. Ecol. Eng. 2024, 199, 107146. [Google Scholar] [CrossRef]
- Du, D.; Dong, B.; Zhang, R.; Cui, S.; Chen, G.; Du, F. Spatiotemporal dynamics of irrigated cropland water use efficiency and driving factors in northwest China’s Hexi Corridor. Ecol. Process. 2024, 13, 72. [Google Scholar] [CrossRef]
- Zhao, W.; Ren, H.; Du, J.; Yang, R.; Yang, Q.; Liu, H. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor. Bull. Chin. Acad. Sci. 2023, 38, 424–434. [Google Scholar]
- Fu, J.; Niu, J.; Kang, S.; Adeloye, A.J.; Du, T. Crop production in the Hexi Corridor challenged by future climate change. J. Hydrol. 2019, 579, 124197. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Z.; Tong, W. Construction and application of decision support indicator system for new energy development in Hexi Corridor. Energy Rep. 2022, 8, 187–193. [Google Scholar] [CrossRef]
- He, Y.; Jiang, X.; Wang, N.; Zhang, S.; Ning, T.; Zhao, Y.; Hu, Y. Changes in mountainous runoff in three inland river basins in the arid Hexi Corridor, China, and its influencing factors. Sustain. Cities Soc. 2019, 50, 101703. [Google Scholar] [CrossRef]
- An, N.; Guo, B.; Zhang, D.; Yang, Q.; Luo, W. Desert vegetation composition and spatial distribution of soil nutrients in the middle section of Hexi Corridor. Arid Zone Res. 2024, 41, 432–443. [Google Scholar]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. Drain. Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Luo, T.; Dan, Y.; Zhou, L.; Lv, X. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 2020, 7, 15. [Google Scholar] [CrossRef]
- Kuri, F.; Murwira, A.; Murwira, K.S.; Masocha, M. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. Int. J. Appl. Earth Obs. 2014, 33, 39–46. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef]
- Cui, F.; Tang, H.; Zhang, Q.; Wang, B.; Dai, L. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Lu, N.; Sun, G.; Feng, X.; Fu, B. Water yield responses to climate change and variability across the North–South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Sun, X.Q. Evaluation of Ecosystem Services in Shangri-La Based on InVEST Model. Master’s Thesis, Yunnan Normal University, Kunming, China, 2017. (In Chinese). [Google Scholar]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Qin, K.; Li, J.; Liu, J.; Yan, L.; Huang, H. Setting conservation priorities based on ecosystem services—A case study of the Guanzhong-Tianshui Economic Region. Sci. Total Environ. 2019, 650, 3062–3074. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, X.F.; Feng, X.M. National Barrier Zone Ecosystem Services Assessment; Science Press: Beijing, China, 2017. [Google Scholar]
- Yu, Y.Y.; Li, J.; Zeng, L. Spatial pattern of carbon sequestration services and value of ecosystems of the North-South transitional zone in China. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2020, 48, 11–20. [Google Scholar]
- Chen, L.; Zhang, F.P.; Si, J.H.; Feng, Q.; Wei, Y.F. Spatially differentiated characteristics of vegetation carbon sequestration function in Helan Mountain area and its driving factors. Acta Ecol. Sin. 2023, 43, 10250–10262. [Google Scholar]
- Zhu, P.; Liu, X.; Zheng, Y.; Wang, S.; Huang, L. Tradeoffs and synergies of ecosystem services in key ecological function zones in northern China. Acta Ecol. Sin. 2020, 40, 8694–8706. [Google Scholar]
- Liu, D.; Zhang, J.; Gong, J.; Qian, C. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the Longzhong Loess Hilly Region: A case study of the Anding District, Gansu Province. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar] [CrossRef]
- Zhang, B.T.; Zhou, Z.X. Impact of land use change on agro-ecosystem services in Qinba Mountain area: A case study of Hanzhong Basin. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2020, 48, 21–31. [Google Scholar][Green Version]
- Gao, H.; Fu, T.; Liang, H.; Liu, J. Cold/hot spots identification and tradeoff/synergy analysis of ecosystem services in Taihang Mountain area. Chin. J. Eco-Agric. 2022, 30, 1045–1053. [Google Scholar][Green Version]
- Keith, O.J.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, W.; Pu, X.; Wu, Y.; Wang, Y. Analysis of the Spatial-temporal Variation and Driving Factors of Water Yield in Qilian Mountain National Park. J. Soil Water Conserv. 2023, 37, 161–169. [Google Scholar]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Pan, J.; Li, Z. Analysis on trade-offs and synergies of ecosystem services in arid inland river basin. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 280–289. [Google Scholar]
- Du, K.X.; Zhang, F.P.; Feng, Q.; Wei, Y.F.; Yang, J.W. The relationship among ecosystem services in the middle and lower reaches of Heihe River Basin from the perspective of food supply. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2022, 50, 34–44. [Google Scholar]
- Zhang, H.; Zhang, Z.; Liu, K.; Huang, C.; Dong, G. Integrating land use management with trade-offs between ecosystem services: A framework and application. Ecol. Indic. 2023, 149, 110193. [Google Scholar] [CrossRef]
- Bai, T.; Liu, X.; Liu, D.; Zhou, Y. Water allocation and irrigation scheme considering runoff forecasting of Ulungur River. Ecol. Indic. 2025, 173, 113381. [Google Scholar] [CrossRef]
- Tang, X.; Li, S. An Analysis on the oasis evolution of Hexi Corridor in historical period. J. Arid Land Resour. Environ. 2021, 35, 48–55. [Google Scholar]
- Yang, L.; Feng, Q.; Lu, T.; Adamowski, J.F.; Yin, Z.; Hatami, S.; Zhu, M.; Wen, X. The response of agroecosystem water use efficiency to cropland change in northwest China’s Hexi Corridor. Agric. Water Manag. 2023, 276, 108062. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high g-rain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Chai, L.; Liu, A.; Li, X.; Guo, Z.; He, W.; Huang, J.; Bai, T.; Liu, J. Telecoupled impacts ofthe Russia-Ukraine war on global cropland expansion and biodiversity. Nat. Sustain. 2024, 7, 432–441. [Google Scholar] [CrossRef]
- Shangguan, Z.P.; Shao, M.A.; Lei, T.W.; Fan, T.L. Runoff water management technologies for dryland agriculture on the Loess. Int. J. Sustain. Dev. World Ecol. 2002, 9, 341–350. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, J.; Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 2014, 17, 79–86. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Liu, L.; Cao, Y.; Zhang, M.; Yuan, Z.; Ma, R.; Liu, X.; Liu, Y. Scaling effects of ecosystem service trade-off and synergy in arid inland river basins: A case study of the Manas River Basin of Xinjiang, China. Ecol. Indic. 2025, 173, 113358. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, X.; Yu, J.; Liu, Y.; Du, H.; Li, X. Exploring Ecological Management Plans for Typical Systems in Arid Areas from the Perspective of Ecosystem Service Value Evolution. Systems 2024, 12, 166. [Google Scholar] [CrossRef]
- Lu, L. The Spatio-temporal Characteristics of Grain Production in Gansu Province and the Impact Mechanism Analysis. Ph.D. Thesis, Northwest Normal University, Lanzhou, China, 2014. [Google Scholar]
- Zhou, J. Study on the Coordinated Development Between Water Resources and Food Security in Inner Mongolia. Master’s Thesis, Inner Mongolia University of Science & Technology, Baotou, China, 2022. [Google Scholar]
- Chen, S.; Liu, W.; Du, T. Achieving high-yield and high-efficient management strategy based on optimized irrigation and nitrogen fertilization management and planting structure. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 38, 144–152. [Google Scholar]
- Li, Q.; Deng, S.; Xu, G.; Wen, Q.; Zhu, J. Analysis of the Characteristics and Influencing Factors of Grain Output in Henan Province. Chin. Agric. Sci. Bull. 2015, 31, 226–230. [Google Scholar]
- Peng, C. Study on Dynamic Feedback and Policy Simulation of Grain Price and Grain Yield. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2016. [Google Scholar]
Data Type | Data Source and Processing |
---|---|
Land use data | Resources and Environment Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn/ (accessed on 4 June 2024)), including land use data from 2000, 2005, 2010, 2015, and 2020 at 1 km spatial resolution |
Soil data | World Soil Database (HWSD), Chinese soil dataset, 1 km spatial resolution |
Bedrock depth data | National Oceanic and Atmospheric Administration of the United States (https://www.ncei.noaa.gov/ (accessed on 6 June 2024)), 1 km spatial resolution |
DEM data | Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 20 June 2024)), 1 km spatial resolution |
NDVI data | Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 27 June 2024)), ASTER GDEM 30 m resolution digital elevation data |
Rainfall data | China Meteorological Data Network (http://data.cma.cn/ (accessed on 14 July 2024)), station data processed using ANUSPLIN interpolation, 1 km spatial resolution |
Potential evapotranspiration data | China Meteorological Data Network (http://data.cma.cn/ (accessed on 14 July 2024)), station data calculated using the Modified Hargreaves formula [24], includes daily maximum and minimum temperatures and daily radiation, 1 km spatial resolution |
Statistical data | Statistical Yearbook and Water Resources Bulletin of Gansu Province from 2000 to 2020 (https://tjj.gansu.gov.cn/ (accessed on 3 December 2024) and https://slt.gansu.gov.cn/ (accessed on 3 December 2024)) |
Year | WY–GP | SC–GP | CS–GP |
---|---|---|---|
2000 | 0.419 ** | 0.668 *** | 0.579 *** |
2005 | 0.460 *** | 0.605 *** | 0.781 ** |
2010 | 0.407 ** | 0.591 *** | 0.742 ** |
2015 | 0.497 ** | 0.611 *** | 0.780 *** |
2020 | 0.455 ** | 0.611 *** | 0.779 ** |
Land Type in 2000 | 2020 | Total | |||||
---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Water | Construction Land | Unused Land | ||
Farmland | 10,745 | 6 | 2297 | 14 | 21 | 69 | 13,152 |
Woodland | 9 | 6884 | 194 | 2 | 3 | 4 | 7096 |
Grassland | 2205 | 306 | 43,668 | 84 | 186 | 5645 | 52,094 |
Water | 6 | 3 | 19 | 1721 | 1 | 193 | 1943 |
Construction land | 4 | 1 | 5 | 0 | 465 | 2 | 477 |
Unused land | 1601 | 253 | 9632 | 540 | 197 | 159,625 | 171,848 |
Total | 14,570 | 7453 | 55,815 | 2361 | 873 | 165,538 | 246,610 |
Year | WY–GP | SC–GP | CS–GP |
---|---|---|---|
2000 | 0.370 *** | 0.701 *** | 0.722 *** |
2005 | 0.343 *** | 0.693 ** | 0.837 ** |
2010 | 0.382 ** | 0.634 *** | 0.861 ** |
2015 | 0.369 ** | 0.728 *** | 0.823 *** |
2020 | 0.327 ** | 0.736 *** | 0.846 ** |
Year | WY–GP | SC–GP | CS–GP | |||
---|---|---|---|---|---|---|
q | p | q | p | q | p | |
2000 | 0.31 | 0 | 0.52 | 0 | 0.44 | 0 |
2005 | 0.34 | 0 | 0.56 | 0 | 0.42 | 0 |
2010 | 0.28 | 0 | 0.51 | 0 | 0.48 | 0 |
2015 | 0.35 | 0 | 0.46 | 0 | 0.43 | 0 |
2020 | 0.31 | 0 | 0.57 | 0 | 0.41 | 0 |
Year | Grain Yield (t/km2) | Irrigation Water Consumption (Billion m3) | Water-Saving Irrigation Area (Ten Thousand Acres) |
---|---|---|---|
2000 | 171 | 42.47 | 564.57 |
2005 | 193 | 46.07 | 673.45 |
2010 | 217 | 45.29 | 699.53 |
2015 | 239 | 45.88 | 805.07 |
2020 | 246 | 40.12 | 987.80 |
Factor | Grain Yield | Significance |
---|---|---|
Irrigation water consumption | −0.15 | Not significant |
Water-saving irrigation area | 0.92 * | 0.05 level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, F.; Feng, Q.; Wei, Y.; Li, G.; Song, Z. Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”. Land 2025, 14, 1542. https://doi.org/10.3390/land14081542
Li B, Zhang F, Feng Q, Wei Y, Li G, Song Z. Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”. Land. 2025; 14(8):1542. https://doi.org/10.3390/land14081542
Chicago/Turabian StyleLi, Baiyang, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li, and Zhiyuan Song. 2025. "Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”" Land 14, no. 8: 1542. https://doi.org/10.3390/land14081542
APA StyleLi, B., Zhang, F., Feng, Q., Wei, Y., Li, G., & Song, Z. (2025). Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”. Land, 14(8), 1542. https://doi.org/10.3390/land14081542