Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Screen Strategy
2.2. Bibliometric Analysis
3. Results
3.1. Annual Publishing Trend
3.2. Cooperation Network
3.3. Keyword Co-Occurrence Analysis
3.4. Most Frequently Cited Literature
3.5. Cluster Analysis
3.5.1. Cluster 0: Nature-Based Solution
3.5.2. Cluster 1: Ecosystem Services
3.5.3. Cluster 2: Green Infrastructure
3.5.4. Cluster 3: Climate Change Adaptation
3.5.5. Cluster 5: Urban Planning
3.6. Keywords with the Strongest Citation Bursts
4. Discussion
4.1. Geographical and Institutional Trends
4.2. Thematic Clusters and Research Gaps
4.3. Emergent Themes and Citation Bursts
4.4. Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhyani, S.; Singh, S.; Basu, M.; Dasgupta, R.; Santhanam, H. Blue-Green Infrastructure for Addressing Urban Resilience and Sustainability in the Warming World. In Blue-Green Infrastructure Across Asian Countries: Improving Urban Resilience and Sustainability; Dhyani, S., Basu, M., Santhanam, H., Dasgupta, R., Eds.; Springer: Singapore, 2022; pp. 1–22. [Google Scholar]
- Brears, R. Blue and Green Cities: The Role of Blue-Green Infrastructure in Managing Urban Water Resources 2023; Palgrave Macmillan: London, UK, 2023. [Google Scholar]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Xue, F.; Luan, B.; Fan, Y.; Xie, S.; Yang, X.; Luo, J.; Zheng, R. Assessing the Lifecycle Environmental Resilience of Urban Green Infrastructures Coping with Acute Disturbances and Chronic Stresses. Water 2024, 16, 1162. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total. Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wu, Y. A Planning Support Tool for Layout Integral Optimization of Urban Blue–Green Infrastructure. Sustainability 2020, 12, 1613. [Google Scholar] [CrossRef]
- Benedict, M.; MacMahon, E. Green Infrastructure: Smart Conservation for the 21st Century 2002; The Conservation Fund: Arlington, VA, USA, 2002. [Google Scholar]
- Canzonieri, C.; Benedict, M.E.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities. Landsc. Ecol. 2007, 22, 797–798. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C.; Maksimović, Č. Rethinking urban areas: An example of an integrated blue-green approach. Water Supply 2013, 13, 1534–1542. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Czyża, S.; Kowalczyk, A.M. Applying GIS in Blue-Green Infrastructure Design in Urban Areas for Better Life Quality and Climate Resilience. Sustainability 2024, 16, 5187. [Google Scholar] [CrossRef]
- Hunter, R.F.; Nieuwenhuijsen, M.; Fabian, C.; Murphy, N.; O’Hara, K.; Rappe, E.; Sallis, J.F.; Lambert, E.V.; Duenas, O.L.; Sugiyama, T.; et al. Advancing urban green and blue space contributions to public health. Lancet Public Health 2023, 8, e735–e742. [Google Scholar] [CrossRef]
- Qu, S.; Li, H.; Wu, J.; Zhao, B. Environmental and Health Benefits: A Bibliometric and Knowledge Mapping Analysis of Research Progress. Sustainability 2025, 17, 2269. [Google Scholar] [CrossRef]
- Reid, W.; Mooney, H.; Cropper, A.; Capistrano, D.; Carpenter, S.; Chopra, K. Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Synthesis 2005; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Guo, S.; Luo, Y.; Cao, Y.; Zhang, Y.; Yu, J. Cultural ecosystem services show superiority in promoting subjective mental health of senior residents: Evidences from old urban areas of Beijing. Urban For. Urban Green. 2023, 86, 128011. [Google Scholar] [CrossRef]
- Gupta, A.; De, B. A systematic review on urban blue-green infrastructure in the south Asian region: Recent advancements, applications, and challenges. Water Sci. Technol. 2024, 89, 382–403. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.; Thorne, C.; O’Donnell, E. Delivering and Evaluating Multiple Flood Risk Benefits in Blue-Green Cities; ICE Publishing: London, UK, 2014. [Google Scholar]
- Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U. Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. Water 2019, 11, 1234. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review. Blue-Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rotzer, T.; Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Varentsov, M.; Vasenev, V.; Dvornikov, Y.; Samsonov, T.; Klimanova, O. Does size matter? Modelling the cooling effect of green infrastructures in a megacity during a heat wave. Sci. Total. Environ. 2023, 902, 165966. [Google Scholar] [CrossRef]
- Zinia, N.J.; McShane, P. Urban ecosystems and ecosystem services in megacity Dhaka: Mapping and inventory analysis. Urban Ecosyst. 2021, 24, 915–928. [Google Scholar] [CrossRef]
- Geneshka, M.; Coventry, P.; Cruz, J.; Gilbody, S. Relationship between Green and Blue Spaces with Mental and Physical Health: A Systematic Review of Longitudinal Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 9010. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, L.; Lin, J.; An, P.; Wang, W.; Liu, L.; Wu, L. Spatial Patterns of Urban Green-Blue Spaces and Residents’ Well-Being: The Mediating Effect of Neighborhood Social Cohesion. Land 2023, 12, 1454. [Google Scholar] [CrossRef]
- Georgiou, M.; Morison, G.; Smith, N.; Tieges, Z.; Chastin, S. Mechanisms of Impact of Blue Spaces on Human Health: A Systematic Literature Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2021, 18, 2486. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J. Ecosystem service delivery by urban agriculture and green infrastructure—A systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2015, 10, 121–124. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.H.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- IUCN. IUCN Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling up of NbS, 1st ed.; IUCN: Gland, Switzerland, 2020. [Google Scholar] [CrossRef]
- de Lemos, G.L.; de Aquino Eslabão, A.; dos Santos, J.F.; Rodrigues, A.T.; da Costa, L.F.; de Medeiros Costa, H.K.; Fagá, M.T.; dos Santos, E.M. Nature-based solutions experiences: A systematic literature review for public policies. Nat. Based Solut. 2024, 5, 100121. [Google Scholar] [CrossRef]
- European Commission Topics: Nature-Based Solutions 2016. Available online: https://ec.europa.eu/research/environment/index.cfm?pg=nbs (accessed on 14 July 2025).
- Pauleit, S.; Hansen, R.; Rall, E.; Rolf, W.; van Lierop, M. Green Infrastructure for the city of the future. In Perspectives from Europe; Centro nazionale di studi per le politiche urbane: Milano, Italy, 2020; p. 11. [Google Scholar]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Bolliger, J.; Silbernagel, J. Contribution of Connectivity Assessments to Green Infrastructure (GI). ISPRS Int. J. Geo-Inf. 2020, 9, 212. [Google Scholar] [CrossRef]
- Andersson, E.; Langemeyer, J.; Borgstrom, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.; et al. Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. BioScience 2019, 69, 566–574. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgstrom, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H.; et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef]
- Voskamp, I.M.; Van de Ven, F.H.M. Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Build. Environ. 2015, 83, 159–167. [Google Scholar] [CrossRef]
- Fenner, R. Spatial Evaluation of Multiple Benefits to Encourage Multi-Functional Design of Sustainable Drainage in Blue-Green Cities. Water 2017, 9, 953. [Google Scholar] [CrossRef]
- Campisano, A.; Gullotta, A.; Modica, C. Laboratory analysis of the outflow and detention processes from modular tray-based blue roofs. Urban Water J. 2019, 15, 934–942. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, J.; Jia, W.; Xu, H.; Xu, X.; Wang, M.; Sun, C.; Qiao, R.; Wu, Z. Multi-stage optimization framework for synergetic grey-green infrastructure in response to long-term climate variability based on shared socio-economic pathways. Water Res. 2025, 274, 123091. [Google Scholar] [CrossRef]
- Spraakman, S.; Rodgers, T.F.M.; Monri-Fung, H.; Nowicki, A.; Diamond, M.L.; Passeport, E.; Passeport, E.; Thuna, M.; Drake, J. A Need for Standardized Reporting: A Scoping Review of Bioretention Research 2000–2019. Water 2020, 12, 3122. [Google Scholar] [CrossRef]
- Mehmood, T.; Gaurav, G.K.; Cheng, L.; Klemeš, J.J.; Usman, M.; Bokhari, A.; Lu, J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. J. Environ. Manag. 2021, 294, 113108. [Google Scholar] [CrossRef]
- Nazarpour, S.; Gnecco, I.; Palla, A. Evaluating the Effectiveness of Bioretention Cells for Urban Stormwater Management: A Systematic Review. Water 2023, 15, 913. [Google Scholar] [CrossRef]
- Perrelet, K.; Moretti, M.; Dietzel, A.; Altermatt, F.; Cook, L.M. Engineering blue-green infrastructure for and with biodiversity in cities. Npj Urban Sustain. 2024, 4, 27. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Z.; Cai, M.; Liu, L.; Wu, H.; Peng, Z. Impacts of Urban Blue-Green Space on Residents’ Health: A Bibliometric Review. Int. J. Environ. Res. Public Health 2022, 19, 16192. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, M.; Jia, W.; Wang, Y.; Liu, Z.; Gan, W.; Zhou, M.; Wu, Z.; Zhao, Z. Knowledge mapping and emerging trends of urban resilient infrastructure research in urban studies: Precedent work, current progress and future perspectives. J. Clean. Prod. 2024, 452, 142087. [Google Scholar] [CrossRef]
- Dianat, H.; Wilkinson, S.; Williams, P.; Khatibi, H. Choosing a holistic urban resilience assessment tool. Int. J. Disaster Risk Reduct. 2022, 71, 102789. [Google Scholar] [CrossRef]
- Ferrer, A.L.; Thomé, A.M.; Scavarda, A. Sustainable urban infrastructure: A review. Resour. Conserv. Recycl. 2016, 128, 360–372. [Google Scholar] [CrossRef]
- Bautista-Puig, N.; Benayas, J.; Mañana-Rodríguez, J.; Suárez, M.; Sanz-Casado, E. The role of urban resilience in research and its contribution to sustainability. Cities 2022, 126, 103715. [Google Scholar] [CrossRef]
- Waseem, H.B.; Mirza, M.N.E.E.; Rana, I.A.; Waheed, A. Adaptation planning for climate change: An application of the advanced bibliometric analytical framework. Nat. Hazards Res. 2024, 4, 459–469. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G.; Li, Q.; Newman, G. Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace. Land 2021, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, J. Bursty and Hierarchical Structure in Streams. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; Volume 7. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Pub Inc: Hauppauge, NY, USA, 2016. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2005, 57, 359–377. [Google Scholar] [CrossRef]
- McNabb, T.; Charters, F.J.; Challies, E.; Dionisio, R. Unlocking urban blue-green infrastructure: An interdisciplinary literature review analysing co-benefits and synergies between bio-physical and socio-cultural outcomes. Blue-Green Syst. 2024, 6, 217–231. [Google Scholar] [CrossRef]
- Jakstis, K.; Dubovik, M.; Laikari, A.; Mustajärvi, K.; Wendling, L.; Fischer, L.K. Informing the design of urban green and blue spaces through an understanding of Europeans’ usage and preferences. People Nat. 2022, 5, 162–182. [Google Scholar] [CrossRef]
- Qiao, X.-J.; Kristoffersson, A.; Randrup, T.B. Challenges to implementing urban sustainable stormwater management from a governance perspective: A literature review. J. Clean. Prod. 2018, 196, 943–952. [Google Scholar] [CrossRef]
- Tolentino, P.L.M.; Williams, R.D.; Hurst, M.D. Natural Flood Risk Management in Tropical Southeast Asia: Prospects in the Biodiverse Archipelagic Nation of the Philippines. WIREs Water 2025, 12, e70000. [Google Scholar] [CrossRef]
- Guerra-Vargas, L.A.; Gillis, L.G.; Mancera-Pineda, J.E. Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Front. Mar. Sci. 2020, 7, 628. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Nesshover, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Walters, G.; Maginnis, S.; Janzen, C. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.L.; Voigt, A.; et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 2016, 21, 29. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Cheng, X.; Van Damme, S.; Uyttenhove, P. A review of empirical studies of cultural ecosystem services in urban green infrastructure. J. Environ. Manag. 2021, 293, 112895. [Google Scholar] [CrossRef]
- Dickinson, D.C.; Hobbs, R.J. Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research. Ecosyst. Serv. 2017, 25, 179–194. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Romanuk, T.N.; Guo, Z.; Zhang, L.; Li, Y. Increased Dependence of Humans on Ecosystem Services and Biodiversity. PLoS ONE 2010, 5, e13113. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, K.E.; Ragnarsdóttir, K.V.; Roberts, D.; De Vogli, R.; Wilkinson, R. Development: Time to leave GDP behind. Nature 2014, 505, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Westermann, J.R.; Kowarik, I.; van der Meer, E. Perceptions of parks and urban derelict land by landscape planners and residents. Urban For. Urban Green. 2012, 11, 303–312. [Google Scholar] [CrossRef]
- Fischer, L.K.; von der Lippe, M.; Kowarik, I. Urban grassland restoration: Which plant traits make desired species successful colonizers? Appl. Veg. Sci. 2013, 16, 272–285. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; van Rooij, S. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Qi, J.J.; Dauvergne, P. China and the global politics of nature-based solutions. Environ. Sci. Policy 2022, 137, 1–11. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—If we act now. Nature 2021, 593, 191–194. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Perrotti, D.; Stremke, S. Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research. Environ. Plan. B Urban Anal. City Sci. 2018, 47, 678–694. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Wang, M.; Parmar, K.S.; Kisi, O.; Zounemat-Kermani, M. Improved random vector functional link network with an enhanced remora optimization algorithm for predicting monthly streamflow. J. Hydrol. 2025, 650, 132496. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Radinja, M.; Atanasova, N.; Zavodnik Lamovšek, A. The water-management aspect of blue-green infrastructure in cities. Urbani Izziv. 2021, 32, 98–110. [Google Scholar] [CrossRef]
- United Nations University Institute for Water, Environment and Health; Smakhtin, V.; Duminda, P. Water-related extremes and risk management. In The United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: London, UK, 2020. [Google Scholar]
- Smith, N.; Georgiou, M.; King, A.C.; Tieges, Z.; Webb, S.; Chastin, S. Urban blue spaces and human health: A systematic review and meta-analysis of quantitative studies. Cities 2021, 119, 103413. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef]
- Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have lower prevalence of asthma. J. Epidemiol. Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Navakatikyan, M.A.; Feng, X. Why might urban tree canopy reduce dementia risk? A causal mediation analysis of 109,688 adults with 11 years of hospital and mortality records. Health Place 2023, 82, 103028. [Google Scholar] [CrossRef]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Suzuki, H.; Li, Y.; Wakayama, Y.; Kawasa, T.; et al. Visiting a Forest, but Not a City, Increases Human Natural Killer Activity and Expression of Anti-Cancer Proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef]
- Hamel, P.; Tan, L. Blue-Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef]
- Lamprom, W.; Poommai, S.; Bhumkittipich, P.; Meela, N.; Jotaworn, S. The Patterns and Roles of People’s Network in Water Resource Conservation in Urban Area. Water Conserv. Manag. 2023, 7, 19–27. [Google Scholar] [CrossRef]
- Alwathaf, Y.; Kawy, W.; Al-Areeq, N.; Al-Areeq, A.; Kamal, Y.; Al, Q. Urban Water Security Index Assessment for Ibb City. Water Conserv. Manag. 2023, 7, 28–35. [Google Scholar] [CrossRef]
- Washbourne, C.-L. Environmental policy narratives and urban green infrastructure: Reflections from five major cities in South Africa and the UK. Environ. Sci. Policy 2022, 129, 96–106. [Google Scholar] [CrossRef]
- Iwaszuk, E.; Rudik, G.; Duin, L.; Mederake, L.; Davis, M.; Naumann, S.; Wagner, I. Błękitno-Zielona Infrastruktura dla Łagodzenia Zmian Klimatu W Miastach Katalog Techniczny; Uniwersytet Rolniczy w Krakowie: Kraków, Poland, 2019. [Google Scholar]
- European Commission (EC). Green Infrastructure in Denmark; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Bassolino, E. The impact of climate change on local water management strategies. Learn. Rotterdam Cph. 2019, 4, 21–40. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Bosseler, B.; Salomon, M.; Schlüter, M.; Rubinato, M. Living with Urban Flooding: A Continuous Learning Process for Local Municipalities and Lessons Learnt from the 2021 Events in Germany. Water 2021, 13, 2769. [Google Scholar] [CrossRef]
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing Green Infrastructure in Spatial Planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Blanco, E.; Pedersen Zari, M.; Raskin, K.; Clergeau, P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability 2021, 13, 404. [Google Scholar] [CrossRef]
- Matsler, A.M.; Meerow, S.; Mell, I.C.; Pavao-Zuckerman, M.A. A ‘green’ chameleon: Exploring the many disciplinary definitions, goals, and forms of “green infrastructure”. Landsc. Urban Plan. 2021, 214, 104145. [Google Scholar] [CrossRef]
- Dushkova, D.; Ignatieva, M.; Hughes, M.; Konstantinova, A.; Vasenev, V.; Dovletyarova, E. Human Dimensions of Urban Blue and Green Infrastructure during a Pandemic. Case Study of Moscow (Russia) and Perth (Australia). Sustainability 2021, 13, 4148. [Google Scholar] [CrossRef]
- Dobson, J. Wellbeing and blue-green space in post-pandemic cities: Drivers, debates and departures. Geogr. Compass 2021, 15, e12593. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, W.; Diao, H.; Geng, X.; Wu, Y.; Wang, M.; Wang, Y.; Xu, H.; Lu, Y.; Wu, Z. A CycleGAN-Pix2pix framework for multi-objective 3D urban morphology optimization: Enhancing thermal performance in high-density areas. Sustain. Cities Soc. 2025, 126, 106400. [Google Scholar] [CrossRef]
- Ayad, A.; Fahmy, M.; Kamel, W. Urban Green and Blue Infrastructure Simulation in a Changing Climate from Microclimate to Energy Consumption: A Case Study in Alexandria, Egypt. In Proceedings of the 16th IBPSA International Conference & Exhibition (Building Simulation 2019), Rome, Italy, 2–4 September 2019. [Google Scholar]
- Shah, A.M.; Liu, G.; Meng, F.; Yang, Q.; Xue, J.; Dumontet, S.; Passaro, R.; Casazza, M. A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus. Energies 2021, 14, 4583. [Google Scholar] [CrossRef]
- Baron, K. błękitno-zielona infrastruktura a bezpieczeństwo powodziowe środowisk zurbanizowanych. In Najnowsze Doniesienia Z Zakresu Ochrony Środowiska I Nauk Pokrewnych; Wydawnictwo Naukowe: Warsaw, Poland, 2020. [Google Scholar]
- Puzdrakiewicz, K. Zielona infrastruktura jako wielozadaniowe narzędzie zrównoważonego rozwoju. Stud. Miej. 2018, 27, 155–174. [Google Scholar] [CrossRef]
- O’Donnell, E.; Netusil, N.; Chan, F.; Dolman, N.; Gosling, S. International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities. Water 2021, 13, 544. [Google Scholar] [CrossRef]
- Wilbers, G.-J.; de Bruin, K.; Seifert-Dähnn, I.; Lekkerkerk, W.; Li, H.; Budding-Polo Ballinas, M. Investing in Urban Blue–Green Infrastructure—Assessing the Costs and Benefits of Stormwater Management in a Peri-Urban Catchment in Oslo, Norway. Sustainability 2022, 14, 1934. [Google Scholar] [CrossRef]
- Mazur, K. Błękitna infrastruktura Londynu w kontekście adaptacji do zmian klimatu. Builder 2021, 287, 76–79. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Li, B.; Duan, Z.; Hu, L.; Liu, J. Spatiotemporal simulation of blue-green space pattern evolution and carbon storage under different SSP-RCP scenarios in Wuhan. Sci. Rep. 2025, 15, 4017. [Google Scholar] [CrossRef]
- Ping, Q.; He, J.; Chen, C. How many ways to use CiteSpace? A study of user interactive events over 14 months. J. Assoc. Inf. Sci. Technol. 2017, 68, 1234–1256. [Google Scholar] [CrossRef]
Rank | Keywords (by Frequency) | Count | Centrality | First Appearance |
---|---|---|---|---|
1 | Ecosystem services | 342 | 0.13 | 2013 |
2 | Nature-based solutions | 334 | 0.11 | 2016 |
3 | Biodiversity | 254 | 0.3 | 2012 |
4 | Green infrastructure | 175 | 0.18 | 2013 |
5 | Climate change | 172 | 0.26 | 2014 |
6 | City | 153 | 0.19 | 2012 |
7 | Management | 148 | 0.09 | 2013 |
8 | Conservation | 92 | 0.09 | 2014 |
9 | Urban green infrastructure | 85 | 0.05 | 2016 |
10 | Framework | 84 | 0.15 | 2015 |
Rank | Keywords (by Centrality) | Count | Centrality | Appearance |
---|---|---|---|---|
1 | Carbon | 11 | 0.32 | 2021 |
2 | Biodiversity | 254 | 0.3 | 2012 |
3 | Soil | 7 | 0.3 | 2003 |
4 | Climate change | 142 | 0.26 | 2014 |
5 | City | 153 | 0.19 | 2012 |
6 | Green infrastructure | 175 | 0.18 | 2013 |
7 | Framework | 84 | 0.15 | 2015 |
8 | Land use | 40 | 0.14 | 2014 |
9 | Ecosystem services | 342 | 0.13 | 2013 |
10 | Nature-based solutions | 334 | 0.11 | 2016 |
ID | Title | Author | Source | Citation Count | Centrality | Type |
---|---|---|---|---|---|---|
1 | “Understanding the value and limits of nature-based solutions to climate change and other global challenges” | Seddon [65] | Philosophical Transactions of the Royal Society B | 93 | 0.06 | Review |
2 | “The science, policy and practice of nature-based solutions: An interdisciplinary perspective” | Nesshöver [66] | Science of the Total Environment | 81 | 0.15 | Article |
3 | “Core principles for successfully implementing and upscaling Nature-based Solutions” | Cohen-Shacham [67] | Environmental Science & Policy | 77 | 0.05 | Review |
4 | “A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas” | Raymond [35] | Environmental Science & Policy | 66 | 0.08 | Article |
5 | “Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem” Services | Bongaarts [68] | Population & Development Review | 62 | 0.01 | Article |
6 | “Seven lessons for planning nature-based solutions in cities” | Frantzeskaki [69] | Environmental Science & Policy | 57 | 0.06 | Review |
7 | “Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges” | Faivre [70] | Environmental Research | 57 | 0.36 | Article |
8 | “Getting the message right on nature-based solutions to climate change” | Seddon [71] | Global Change Biology | 53 | 0.06 | Article |
9 | “The superior effect of nature-based solutions in land management for enhancing ecosystem services” | Keesstra [72] | Science of the Total Environment | 44 | 0.04 | Article |
10 | “Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action” | Kabisch [73] | Ecology&Society | 43 | 0.03 | Article |
11 | “Mapping the effectiveness of nature-based solutions for climate change adaptation” | Chausson [74] | Global Change Biology | 41 | 0.03 | Article |
12 | “Nature-Based Solutions for Europe’s Sustainable Development” | Maes [29] | Conservation Letters | 41 | 0.01 | Article |
13 | “Nature-based solutions to address global societal challenges” | Cohen-Shacham [75] | Nature-Based Solutions | 40 | 0.04 | Article |
Number | Cluster | Size | Silhouette | Representative Themes (LSI) |
---|---|---|---|---|
#0 | Nature-Based Solution | 60 | 0.871 | Nature-based solutions; climate change resilience; urban water; wastewater treatment; innovation systems; green infrastructure; ecosystem services; green space governance; boundary objects; natural risks |
#1 | Ecosystem Services | 47 | 0.97 | Ecosystem services; green infrastructure; nature-based solutions; green space governance; boundary objects; urban green infrastructure; provisioning ecosystem services; edible plants; cultural ecosystem services; urban gathering |
#2 | Green Infrastructure | 34 | 0.982 | Green infrastructure; social ecological systems; urban green space; lay-people comparison; lawn vegetation; lawn vegetation; urban meadow; biotope type mapping; patch connectivity |
#3 | Climate Change Adaptation | 33 | 0.878 | Nature-based solutions; climate change adaptation; ecosystem-based adaptation; biodiversity conservation; ecosystem health; climate change; systematic map |
#5 | Urban Planning | 20 | 0.994 | Ecosystem function; tree planting; experimental restoration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, Q.; Zhang, R.; Sun, C.; Wang, M. Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review. Water 2025, 17, 2273. https://doi.org/10.3390/w17152273
Wang X, Hu Q, Zhang R, Sun C, Wang M. Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review. Water. 2025; 17(15):2273. https://doi.org/10.3390/w17152273
Chicago/Turabian StyleWang, Xuefei, Qi Hu, Run Zhang, Chuanhao Sun, and Mo Wang. 2025. "Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review" Water 17, no. 15: 2273. https://doi.org/10.3390/w17152273
APA StyleWang, X., Hu, Q., Zhang, R., Sun, C., & Wang, M. (2025). Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review. Water, 17(15), 2273. https://doi.org/10.3390/w17152273