Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,267)

Search Parameters:
Keywords = sustainable greenhouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1557 KiB  
Article
Multi-Objective Optimization of Raw Mix Design and Alternative Fuel Blending for Sustainable Cement Production
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Sustainability 2025, 17(16), 7438; https://doi.org/10.3390/su17167438 (registering DOI) - 17 Aug 2025
Abstract
Cement production is a carbon-intensive process that contributes significantly to global greenhouse gas emissions. Approximately 50–60% of these emissions result from limestone calcination, while 30–40% result from fossil fuel combustion in kilns. This study presents a multi-objective optimization (MOO) framework that integrates raw [...] Read more.
Cement production is a carbon-intensive process that contributes significantly to global greenhouse gas emissions. Approximately 50–60% of these emissions result from limestone calcination, while 30–40% result from fossil fuel combustion in kilns. This study presents a multi-objective optimization (MOO) framework that integrates raw mix design and alternative fuel blending to simultaneously reduce production costs and carbon dioxide (CO2) emissions while maintaining clinker quality. A hybrid Genetic Algorithm–Linear Programming (GA-LP) model was developed to navigate the balance between economic and environmental objectives under stringent chemical and operational constraints. The approach models the impact of raw materials and fuel ash on critical clinker quality indices: the Lime Saturation Factor (LSF), Silica Modulus (SM), and Alumina Modulus (AM). It incorporates practical constraints such as maximum substitution rates and specific fuel compositions. A case study inspired by a medium-sized African cement plant demonstrates the utility of the model. The results reveal a Pareto front of optimal solutions, highlighting that a 20% reduction in CO2 emissions from 928 to 740 kg/ton clinker is achievable with only a 24% cost increase. Optimal strategies include 10% fly ash and 30–50% alternative fuels, such as biomass, tire-derived fuel (TDF), and dynamic raw mix adjustments based on fuel ash contributions. Sensitivity analysis further illustrates how biomass cost and LSF targets affect clinker performance, emissions, and fuel shares. The GA-LP hybrid model is validated through process simulation and benchmarked against African case studies. Overall, the findings provide cement producers and policymakers with a robust decision-support tool to evaluate and adopt sustainable production strategies aligned with net-zero targets and emerging carbon regulations. Full article
Show Figures

Figure 1

31 pages, 4081 KiB  
Review
Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design
by Bingqing Chang, Xin Liu, Xianghai Song, Yangyang Yang, Jisheng Zhang, Weiqiang Zhou and Pengwei Huo
Catalysts 2025, 15(8), 782; https://doi.org/10.3390/catal15080782 (registering DOI) - 16 Aug 2025
Abstract
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly [...] Read more.
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly convert CO2 into high-value-added hydrocarbon fuels and to use solar energy, a clean energy source, to drive the reaction. However, traditional semiconductor catalysts generally suffer from insufficient activity and poor product selectivity in the actual reaction, which cannot meet the requirements of practical applications. In recent years, sulfur vacancy, as an effective material modulation strategy, has demonstrated a remarkable role in enhancing photocatalytic performance. This paper reviews a series of research reports on sulfur vacancies in recent years, introduces the methods of preparing sulfur vacancies, and summarizes the commonly used characterization methods of sulfur vacancies. Finally, the mechanism of introducing sulfur vacancies to promote CO2 reduction is discussed, which improves the photocatalytic activity and selectivity by enhancing light absorption, facilitating carrier separation, improving CO2 adsorption and activation, and promoting the stability of reaction intermediates. This review aims to provide theoretical support for an in-depth understanding of the role of sulfur vacancies in photocatalytic systems and to provide a view on the future direction and potential challenges of sulfur vacancies. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Figure 1

31 pages, 4735 KiB  
Article
Solving a Created MINLP Model for Electric Vehicle Charging Station Optimization Using Genetic Algorithms: Urban and Large-Scale Synthetic Case Studies
by Yunus Ardiçoğlu and Tufan Demirel
Appl. Sci. 2025, 15(16), 9029; https://doi.org/10.3390/app15169029 - 15 Aug 2025
Abstract
Electric vehicle (EV) charging stations play a pivotal role in the widespread adoption and integration of electric vehicles into mainstream transportation systems. While the effects of climate change and greenhouse gases are increasing worldwide, the transition to electric vehicles is of high importance [...] Read more.
Electric vehicle (EV) charging stations play a pivotal role in the widespread adoption and integration of electric vehicles into mainstream transportation systems. While the effects of climate change and greenhouse gases are increasing worldwide, the transition to electric vehicles is of high importance in terms of both ecological and sustainability. EV charging stations serve as the backbone of this transition, providing essential infrastructure to support the charging needs of EV owners and facilitate the transition to electric vehicles. In this study, a MINLP mathematical model is developed for the multi-objective optimization of EVCS. For implementation, Istanbul’s European side and a large-scale synthetic case are addressed considering both current demand and estimations for low, medium, and high EV numbers by the Energy Market Regulatory Authority (EMRA) for 2030 and 2035. The primary aim is to minimize station numbers, capacity, waiting time, and station idle time while meeting the demand. During the solvation of the mathematical model, both present demand and future EV usage forecasts are taken into consideration. This involves simulating different scenarios using EMRA’s 2030 and 2035 estimates and determining the optimal locations and capacities for charging stations for each demand level. Efficiencies in different scenarios were evaluated and the created mathematical model provides to optimize EV charging stations in multiple ways, there will be savings in total cost and labor force. The findings of the study will provide a valuable guide to the EV charging station infrastructure planning of the highways, regions, and urban areas to be selected in possible studies. The multi-directional optimization model addressed in this study will support decision-makers and industry experts in making informed decisions towards the sustainable and efficient development of EV charging infrastructure. Full article
20 pages, 457 KiB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 175
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

31 pages, 1639 KiB  
Review
Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review
by Zainulabdeen Kh. Al-Musawi, Viktória Vona and István Mihály Kulmány
Agronomy 2025, 15(8), 1966; https://doi.org/10.3390/agronomy15081966 - 14 Aug 2025
Viewed by 339
Abstract
Monoculture involves growing the same crop on the same land over at least two crop cycles. Continuous monoculture can increase the population density of pests and pathogens over time, thereby reducing agricultural yields and increasing dependence on chemical inputs. Crop rotation is an [...] Read more.
Monoculture involves growing the same crop on the same land over at least two crop cycles. Continuous monoculture can increase the population density of pests and pathogens over time, thereby reducing agricultural yields and increasing dependence on chemical inputs. Crop rotation is an agricultural practice that involves systematically and sequentially planting different crops in the same field over multiple growing seasons. This review explores the advantages of crop rotation and its contribution to promoting sustainable farming practices, such as legume integration and cover cropping. It is based on a thematic literature review of peer-reviewed studies published between 1984 and 2025. We found that crop rotation can significantly improve soil structure and organic matter content and enhance nutrient cycling. Furthermore, soil organic carbon increased by up to 18% when legumes were included in rotations compared to monoculture systems in Europe, while also mitigating greenhouse gas emissions, enhancing carbon sequestration, and decreasing nutrient leaching and pesticide runoff. Farmers can adopt several strategies to optimise crop rotation benefits, such as diversification of various crops, legume integration, cultivation of cover crops, and rotational grazing. These practices ensure agricultural sustainability and food security and support climate resilience. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

32 pages, 2613 KiB  
Article
Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy
by Abd Alrzak Aldaliee, Nurulafiqah Nadzirah Mansor, Hazlie Mokhlis, Agileswari K. Ramasamy and Lilik Jamilatul Awalin
Sustainability 2025, 17(16), 7364; https://doi.org/10.3390/su17167364 - 14 Aug 2025
Viewed by 118
Abstract
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for [...] Read more.
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for a household in Riyadh, Saudi Arabia. The framework aims to minimize the Cost of Energy (COE) and Loss of Power Supply Probability (LPSP) while maximizing the Renewable Energy Fraction (REF). Additionally, GHG emissions are evaluated as a result of these objectives. The EV operates in Vehicle-to-Home (V2H) mode, enhancing system flexibility and energy management. The optimization process employs two advanced metaheuristic techniques, Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Harris Hawks Optimization (MOHHO), to identify Pareto front solutions. Fuzzy logic is then applied to determine a balanced compromise among the economically optimal (minimum COE), renewable energy-oriented (maximum REF), and environmentally optimal (minimum GHG emissions) solutions. Simulation results show that the proposed system achieves a COE of USD 0.0554/kWh, a LPSP of 1.96%, and an REF of 92.55%. Although the COE is slightly higher than that of the grid, the system provides significant environmental and renewable energy benefits. This study highlights the potential of integrating dynamic EV management and advanced optimization techniques to enhance the performance of grid-connected systems. The findings demonstrate the effectiveness of combining Pareto-based optimization with fuzzy logic to achieve balanced solutions addressing economic, environmental, and renewable energy objectives, paving the way for sustainable energy systems in urban households. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

68 pages, 695 KiB  
Review
Organic Edible Insects—What Would It Take?
by Asia Zanzot, Emma Copelotti, Erminia Sezzi and Simone Mancini
Animals 2025, 15(16), 2393; https://doi.org/10.3390/ani15162393 - 14 Aug 2025
Viewed by 343
Abstract
Edible insect farming represents a promising sector focused on producing sustainable and nutritional food and feed. Compared to conventionally farmed animals, insects are more sustainable, thanks to lower greenhouse gas emissions, efficient bioconversion, and minimal space requirements. These characteristics make edible insect farming [...] Read more.
Edible insect farming represents a promising sector focused on producing sustainable and nutritional food and feed. Compared to conventionally farmed animals, insects are more sustainable, thanks to lower greenhouse gas emissions, efficient bioconversion, and minimal space requirements. These characteristics make edible insect farming remarkably eco-friendly: this concept aligns with the core principles of the organic supply chain. However, current organic regulations do not yet include insects. This review investigates various aspects of edible insect rearing to better understand how an “organic edible insect farm” could be established. Nine insect species that have been authorized as ingredients for the production of either food or feed were included, such as Hermetia illucens, Musca domestica, Tenebrio molitor, Alphitobius diaperinus, Locusta migratoria, Gryllodes sigillatus, Gryllus assimilis, Acheta domesticus, and Bombyx mori. Among the evaluated features of insect farming, insect welfare and the use of chemical substances (such as veterinary drugs and pesticides) are thoroughly examined in the literature review. These represent the most significant challenges given the scarce knowledge both on the well-being of insects, currently identified as non-sentient beings, and on the degradation and metabolism of drugs or pesticides that could harm the animals but also undermine consumer safety. Full article
22 pages, 4460 KiB  
Article
An Improved Soft Actor–Critic Framework for Cooperative Energy Management in the Building Cluster
by Wencheng Lu, Yan Gao, Zhi Sun and Qianning Mao
Appl. Sci. 2025, 15(16), 8966; https://doi.org/10.3390/app15168966 - 14 Aug 2025
Viewed by 77
Abstract
Buildings are significant contributors to global energy consumption and greenhouse gas emissions, with air conditioning systems representing a large share of this demand. Multi-building cooperative energy management is a promising solution for improving energy efficiency, but traditional control methods often struggle with dynamic [...] Read more.
Buildings are significant contributors to global energy consumption and greenhouse gas emissions, with air conditioning systems representing a large share of this demand. Multi-building cooperative energy management is a promising solution for improving energy efficiency, but traditional control methods often struggle with dynamic environments and complex interactions. This study proposes an enhanced Soft Actor–Critic (SAC) algorithm, termed ORAR-SAC, to address these challenges in building cluster energy management. The ORAR-SAC integrates an Ordered Reward-based Experience Replay mechanism to prioritize high-value samples, improving data utilization and accelerating policy convergence. Additionally, an adaptive temperature parameter regularization strategy is implemented to balance exploration and exploitation dynamically, enhancing training stability and policy robustness. Using the CityLearn simulation platform, the proposed method is evaluated on a cluster of three commercial buildings in Beijing under time-of-use electricity pricing. Results demonstrate that ORAR-SAC outperforms conventional rule-based and standard SAC strategies, achieving reductions of up to 11% in electricity costs, 7% in peak demand, and 3.5% in carbon emissions while smoothing load profiles and improving grid compatibility. These findings highlight the potential of ORAR-SAC to support intelligent, low-carbon building energy systems and advance sustainable urban energy management. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

33 pages, 2296 KiB  
Review
The Opportunities and Challenges of Biobased Packaging Solutions
by Ed de Jong, Ingrid Goumans, Roy (H. A.) Visser, Ángel Puente and Gert-Jan Gruter
Polymers 2025, 17(16), 2217; https://doi.org/10.3390/polym17162217 - 14 Aug 2025
Viewed by 189
Abstract
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse [...] Read more.
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse gas emissions, are often recyclable or biodegradable, and, in some cases, require less energy to produce. These characteristics position biobased plastics as a key solution to urgent environmental challenges, particularly those related to climate change and resource scarcity. Biobased plastics also demonstrate remarkable versatility. Their applications range from high-performance barrier layers in multilayer packaging to thermoformed containers, textile fibers, and lightweight plastic bags. Notably, all major fossil-based packaging applications can be substituted with biobased alternatives. This adaptability enhances their commercial viability across diverse sectors, including food and beverage, pharmaceutical, cosmetics, agriculture, textiles, and consumer goods. Several factors are accelerating growth in this sector. These include the increasing urgency of climate action, the innovation potential of biobased materials, and expanding government support through funding and regulatory initiatives. At the same time, consumer demand is shifting toward sustainable products, and companies are aligning their strategies with environmental, social, and governance (ESG) goals—further boosting market momentum. However, significant challenges remain. High production costs, limited economies of scale, and the capital-intensive nature of scaling biobased processes present economic hurdles. The absence of harmonized policies and standards across regions, along with underdeveloped end-of-life infrastructure, impedes effective waste management and recycling. Additionally, consumer confusion around the disposal of biobased plastics—particularly those labeled as biodegradable or compostable—can lead to contamination in recycling streams. Overcoming these barriers will require a coordinated, multifaceted approach. Key actions include investing in infrastructure, advancing technological innovation, supporting research and development, and establishing clear, consistent regulatory frameworks. Public procurement policies, eco-labeling schemes, and incentives for low-carbon products can also play a pivotal role in accelerating adoption. With the right support mechanisms in place, biobased plastics have the potential to become a cornerstone of a sustainable, circular economy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 4239 KiB  
Article
Melatonin-Producing Bacillus aerius EH2-5 Enhances Glycine max Plants Salinity Tolerance Through Physiological, Biochemical, and Molecular Modulation
by Eun-Hae Kwon, Suhaib Ahmad and In-Jung Lee
Int. J. Mol. Sci. 2025, 26(16), 7834; https://doi.org/10.3390/ijms26167834 - 13 Aug 2025
Viewed by 225
Abstract
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, [...] Read more.
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, the global population is projected to exceed 9 billion by 2050, demanding a 70% increase in food production (UN, 2019; FAO). Agriculture, responsible for 34% of global greenhouse gas emissions, urgently needs sustainable solutions. Microbial inoculants, known as “plant probiotics,” offer a promising eco-friendly alternative by enhancing crop resilience and reducing environmental impact. In this study, we evaluated the plant growth-promoting (PGP) traits and melatonin-producing capacity of Bacillus aerius EH2-5. To assess its efficacy under salt stress, soybean seedlings at the VC stage were inoculated with EH2-5 and subsequently subjected to salinity stress using 150 mM and 100 mM NaCl treatments. Plant growth parameters, the expression levels of salinity-related genes, and the activities of antioxidant enzymes were measured to determine the microbe’s role in promoting plant growth and mitigating salt-induced oxidative stress. Here, our study shows that the melatonin-synthesizing Bacillus aerius EH2-5 (7.48 ng/mL at 24 h after inoculation in Trp spiked LB media) significantly improved host plant (Glycine max L.) growth, biomass, and photosynthesis and reduced oxidative stress during salinity stress conditions than the non-inculcated control. Whole genome sequencing of Bacillus aerius EH2-5 identified key plant growth-promoting and salinity stress-related genes, including znuA, znuB, znuC, and zur (zinc uptake); ptsN, aspA, and nrgB (nitrogen metabolism); and phoH and pstS (phosphate transport). Genes involved in tryptophan biosynthesis and transport, such as trpA, trpB, trpP, and tspO, along with siderophore-related genes yusV, yfhA, and yfiY, were also detected. The presence of multiple stress-responsive genes, including dnaK, dps, treA, cspB, srkA, and copZ, suggests EH2-5′s genomic potential to enhance plant tolerance to salinity and other abiotic stresses. Inoculation with Bacillus aerius EH2-5 significantly enhanced soybean growth and reduced salt-induced damage, as evidenced by increased shoot biomass (29%, 41%), leaf numbers (12% and 13%), and chlorophyll content (40%, 21%) under 100 mM and 150 mM NaCl compared to non-inoculated plants. These results indicate EH2-5′s strong potential as a plant growth-promoting and salinity stress-alleviating rhizobacterium. The EH2-5 symbiosis significantly enhanced a key ABA biosynthesis enzyme-related gene NCED3, dehydration responsive transcription factors DREB2A and NAC29 salinity stresses (100 mM and 150 mM). Moreover, the reduced expression of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) by 16%, 29%, and 24%, respectively, and decreased levels of malondialdehyde (MDA) and hydroxy peroxidase (H2O2) by 12% and 23% were observed under 100 mM NaCl compared to non-inoculated plants. This study demonstrated that Bacillus aerius EH2-5, a melatonin-producing strain, not only functions effectively as a biofertilizer but also alleviates plant stress in a manner comparable to the application of exogenous melatonin. These findings highlight the potential of utilizing melatonin-producing microbes as a viable alternative to chemical treatments. Therefore, further research should focus on enhancing the melatonin biosynthetic capacity of EH2-5, improving its colonization efficiency in plants, and developing synergistic microbial consortia (SynComs) with melatonin-producing capabilities. Such efforts will contribute to the development and field application of EH2-5 as a promising plant biostimulant for sustainable agriculture. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

23 pages, 1776 KiB  
Article
Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study
by Fernando Nogueira Cardoso, João da Cruz Payão Filho, Margareth Nascimento de Souza Lira and Claudinei de Souza Guimarães
Recycling 2025, 10(4), 163; https://doi.org/10.3390/recycling10040163 - 13 Aug 2025
Viewed by 125
Abstract
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, [...] Read more.
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, and streamline stages while complying with the new environmental regulations. The main objective of this work was to carry out a cradle-to-gate Life Cycle Assessment (LCA), considering the raw material extraction, pre-processing, manufacturing, and post-processing stages, comparing two manufacturing methods for the same ER-90 metal flange part, conventional forging and wire and arc additive manufacturing (WAAM), all following the requirements and operations proposed by the ISO 14040/44 standard. WAAM is a Directed Energy Deposition (DED) technology that uses welding techniques to produce 3D objects with more complex geometries. Compared to the forging industry, which requires a lot of heat and kinetic energy in its metal part production stages, WAAM is a more sustainable and modern alternative because it does not require high temperatures and energy to produce the same parts. The environmental indicators compared in the process stages were energy consumption, greenhouse gas (GHG) emissions, and solid waste. The total energy consumption in AM was 18,846.61 MJ, the GHG emissions were 864.49 kgCO2-eq, and the solid waste generated was 142.34 kg, which were 63.8 %, 90.5%, and 31.6% lower than the environmental indicators calculated for CM, respectively. Full article
Show Figures

Graphical abstract

44 pages, 1541 KiB  
Review
Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective
by Sajad Ebrahimi, Jing Chen, Raj Bridgelall, Joseph Szmerekovsky and Jaideep Motwani
Sustainability 2025, 17(16), 7325; https://doi.org/10.3390/su17167325 - 13 Aug 2025
Viewed by 526
Abstract
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a [...] Read more.
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a suite of advanced technologies that can address these challenges and improve SAF operations across the supply chain. This study conducts an integrative literature review to identify and synthesize research on the application of Industry 4.0 technologies in the production and distribution of SAF. The findings highlight that technologies such as artificial intelligence (AI), Internet of Things (IoT), blockchain, digital twins, and 3D printing can enhance feedstock logistics, optimize conversion pathways, improve certification and compliance processes, and strengthen overall supply chain transparency and resilience. By mapping these applications to the six key workstreams of the SAF Grand Challenge, this study presents a practical framework linking technological innovation to both strategic and operational aspects of SAF commercialization. Integrating Industry 4.0 solutions into SAF production and supply chains contributes to reducing life cycle greenhouse gas (GHG) emissions, strengthens low-carbon energy systems, and supports the United Nations Sustainable Development Goal 13 (SDG 13). The findings from this research offer practical guidance to policymakers, industry practitioners, investors, and technology developers seeking to accelerate the global shift toward carbon neutrality in aviation. Full article
Show Figures

Figure 1

19 pages, 3431 KiB  
Article
Modeling the Effects of Different Water and Fertilizer Irrigation Systems on Greenhouse Gas Emissions Using the DNDC Model
by Bifeng Cui, Lansong Liu, Jianqin Ma, Yan Zhao, Xiuping Hao, Yu Ding, Yijian Chen and Jiaqi Han
Agronomy 2025, 15(8), 1951; https://doi.org/10.3390/agronomy15081951 - 13 Aug 2025
Viewed by 199
Abstract
Exploring the effects of different water and fertilizer irrigation systems on N2O and CO2 emissions is of great significance for promoting sustainable agricultural development. In this study, summer maize in Henan Province was selected as the research object, and field [...] Read more.
Exploring the effects of different water and fertilizer irrigation systems on N2O and CO2 emissions is of great significance for promoting sustainable agricultural development. In this study, summer maize in Henan Province was selected as the research object, and field experiments were carried out from 2023 to 2024. A total of 12 water and fertilizer treatments were set up. In situ field measurements of N2O and CO2 in farmland were carried out using static chamber gas chromatography to study the effects of different water and fertilizer irrigation systems on N2O and CO2 emissions from farmland and the simulation performance of the DNDC model. The results were as follows: (1) Irrigation and fertilization significantly interacted to affect N2O and CO2 emissions. (2) The summer maize yield under the B2 treatment was the highest, and the total N2O and CO2 emissions under the C3 treatment were the highest. (3) Under the DNDC simulation scenario, the summer maize yields under the real-time irrigation system in 2023 and 2024 increased by 4.43% and 4.38% compared with those under full irrigation. The total N2O emissions from farmland were reduced by 6.56% and 6.22%, while CO2 emissions decreased by 14.49% and 14.79%, respectively. The results show that real-time water and fertilizer irrigation systems can promote the yield of summer maize and reduce greenhouse gas emissions. The research results provide a theoretical basis for reducing greenhouse gas emissions from farmland and are significant for promoting sustainable agricultural development. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

51 pages, 4358 KiB  
Systematic Review
Decarbonizing Domestic and Short-Sea Shipping: A Systematic Review and Transdisciplinary Pathway for Emerging Maritime Regions
by Seyedvahid Vakili, Mustafa Insel, Sukhjit Singh and Aykut Ölçer
Sustainability 2025, 17(16), 7294; https://doi.org/10.3390/su17167294 - 12 Aug 2025
Viewed by 245
Abstract
Domestic and short-sea shipping play a crucial role in ensuring food and energy security, employment, and connectivity in Small Island Developing States (SIDSs) and Least Developed Countries (LDCs). Despite accounting for up to 26.2% of global maritime emissions by voyage activity, these sectors [...] Read more.
Domestic and short-sea shipping play a crucial role in ensuring food and energy security, employment, and connectivity in Small Island Developing States (SIDSs) and Least Developed Countries (LDCs). Despite accounting for up to 26.2% of global maritime emissions by voyage activity, these sectors remain underrepresented in policy and academic discussions on greenhouse gas (GHG) reduction. This study presents a structured and transdisciplinary assessment of decarbonization pathways tailored to the unique operational characteristics of domestic fleets. It reviews key operational, technical, and port-based strategies, identifying both opportunities and challenges in the transition to zero-emission shipping. Highlighted measures include the adoption of carbon-neutral fuels, advanced energy-efficiency technologies, and optimized vessel design. The paper emphasizes the pivotal role of ports as clean energy hubs and advocates for integrating domestic shipping into National Action Plans and Nationally Determined Contributions. Coordinated stakeholder engagement, targeted public investment, and supportive regulatory frameworks are essential to unlock decarbonization potential—contributing not only to climate mitigation, but also to sustainable development and energy resilience in emerging maritime regions. Full article
Show Figures

Figure 1

25 pages, 959 KiB  
Article
Analysis of Biodiesel from Algae Using the SWOT-AHP Method: Strategic Insights for a Green Energy Future
by Mladen Bošnjaković, Robert Santa, Antonija Vučić and Zoran Crnac
Clean Technol. 2025, 7(3), 69; https://doi.org/10.3390/cleantechnol7030069 - 12 Aug 2025
Viewed by 204
Abstract
Algal biodiesel is a promising renewable energy source due to its high lipid productivity and environmental benefits compared to conventional diesel fuels. This study presents a SWOT technique (strengths, weaknesses, opportunities, and threats) and an analytical hierarchy process (AHP) to assess the current [...] Read more.
Algal biodiesel is a promising renewable energy source due to its high lipid productivity and environmental benefits compared to conventional diesel fuels. This study presents a SWOT technique (strengths, weaknesses, opportunities, and threats) and an analytical hierarchy process (AHP) to assess the current status and future prospects of algae-based biodiesel production. Data from the last decade on algae production was analysed, highlighting significant technological improvements such as genetic engineering, novel extraction techniques, and integration with circular economy approaches. The results show that algal biodiesel can achieve a lipid content of up to 75% of dry biomass and reduce greenhouse gas emissions by up to 90% compared to fossil diesel. Key strengths include high biomass yield and effective CO2 sequestration, while challenges include scaling production and reducing capital costs. Opportunities lie in product diversification and policy support, while threats include competition from battery electric vehicles and regulatory barriers. The AHP analysis provides a quantitative framework for prioritising strategies to improve the economic viability and environmental sustainability of algae biodiesel. In the short term (by 2030), algae-based biodiesel is expected to be used mainly as a blend with fossil diesel and to gain traction in niche applications where electric vehicles face competitiveness challenges (marine and heavy road transport). In the long term (by 2050), algae-based biodiesel will play a role in certain sectors that are integrated into the circular economy. Full article
Show Figures

Figure 1

Back to TopTop