Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study
Abstract
1. Introduction
2. Results and Discussion
2.1. Energy Demand Calculation
2.1.1. From the Cradle to Factor’s Gate (Stage 1 and 2)
2.1.2. From Gate-to-Gate (Stages 3 to 7)
2.2. CO2 Equivalent Emissions Calculation (CO2-eq)
2.3. Solid Waste Generation Calculation
2.3.1. Solid Waste Generation from Cradle-to-Gate (Stages 1 and 2)
2.3.2. Solid Waste Generation from Gate-to-Gate (Stages 3 to 7)
3. Materials and Methods
3.1. Definition and Scope
3.2. System Boundaries
3.3. Data Quality and Collection
3.3.1. Material Extraction (Stage 1)
- EMCO2 = Intensity of global CO2 emissions (kg CO2-eq);
- BFCO2 = CO2 intensity of steel in the BOF (CO2-eq);
- PBOF = Share of steel in global BOF production (%);
- SpCO2 = Scrap CO2 intensity in the EAF (CO2-eq);
- PSP = Share of EAF steel scrap in global production (%);
- DRICO2 = CO2 intensity of recycled metal in the EAF (CO2-eq);
- PDRI = Share of recycled metal in EAF steel in global production (%).
3.3.2. Hot Rolling (Stage 2)
3.3.3. Conventional Manufacture
Forging (Stage 3)
Environmental Indicators Calculation
- R = Waste generated (kg);
- MF = Final mass (kg);
- MI = Initial mass (kg).
- EMMC = GHG emissions from conventional manufacturing (kgCO2-eq);
- X = GWP experiment value (kgCO2-eq/kg);
- n = Number of trials;
- M = Mass of metal to be manufactured (kg).
3.3.4. Additive Manufacturing Data
Wire Drawing (Stage 5)
Wire-Arc Directed Energy Deposition (DED) (Stage 6)
Environmental Indicators Calculation in Stage 6
- EWAAM = Primary energy from the WAAM process (MJ);
- N = Primary electrical energy conversion coefficient;
- Pstb = Standby energy from the WAAM process of the energy cell (robotic arm and the welder’s power source) (kW);
- tstb = Standby time and shutdown of the WAAM process component (h);
- SEC = Specific energy consumed during deposition (kWh/kg);
- Mwire = Mass of the wire and its material to be deposited (kg);
- Parc = Wire and arc process energy (kWh/kg);
- tarc = Operating time of the WAAM process component (h);
- Egas = Primary energy of the shielding gas (MJ/l);
- tgas = Protective gas flow time (h);
- qgas = Shielding gas flow rate (L/h).
- EWAAM = Primary energy of WAAM process (MJ);
- CES = Carbon footprint emission factor (kgCO2-eq/kWh);
- CFCO2 = Protective gas GHG emission factor (CO2-eq/kg).
3.3.5. Post-Processing of Data from Both Manufacturers
Post-Processing Environmental Indicator Calculations
- Pstb: Power consumption of the machine in standby mode (kW);
- Ts: Part preparation, clamping, and unloading time (h);
- SEC: Specific energy consumption during cutting (kWh/kg);
- MCi: Mass of material to be removed (kg);
- ttc: Time to change tools (h);
- tc: Cutting time (h);
- T: Tool lifespan (h).
- EMT: Energy demand (kWh);
- N: Coefficient of conversion of electrical energy to primary energy
- Etool: Embodied energy of the cutting tool (MJ);
- Elub: Embodied energy of the cutting fluid (MJ/kg);
- qL: Cutting fluid consumption rate (kg/h);tc: Cutting time (h).
- CES: Carbon footprint of the cutting fluid of the electrical grid system(kgCO2/kWh);
- CO2tool: Carbon footprint of the cutting tool (kgCO2);
- CO2lub: Carbon footprint of cutting fluid (kgCO2/kg).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huanga, K.; Wanga, K.; Leec, P.K.C.; Yeung, A.C.L. The impact of industry 4.0 on supply chain capability and supply chain resilience: A dynamic resource-based view. Int. J. Prod. Econ. 2023, 262, 108913. [Google Scholar] [CrossRef]
- Karmakera, C.L.; Al Aziza, R.; Ahmed, T.; Misbauddinc, S.M.; Moktadird, M.A. Impact of industry 4.0 technologies on sustainable supply chain performance: The mediating role of green supply chain management practices and circular economy. J. Clean. Prod. 2023, 419, 138249. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ghoshb, T.; Aurna, N.F.; Kaiser, M.S.; Anannya, M.; Hosend, A.S. Machine learning and internet of things in industry 4.0: A review. Meas. Sens. 2023, 28, 100822. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. An integrated outlook of Cyber–Physical Systems for Industry 4.0: Topical practices, architecture, and applications. Green Technol. Sustain. 2023, 1, 1000001. [Google Scholar] [CrossRef]
- Hajoarya, P.K. Industry 4.0 Maturity and Readiness—A case of a Steel Manufacturing Organization. Procedia Comput. Sci. 2023, 217, 614–619. [Google Scholar] [CrossRef]
- ASTM F42/ISO TC 261; Develops Additive Manufacturing Standards. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/COMMIT/F42_AMStandardsStructureAndPrimer.pdf (accessed on 13 June 2025).
- ASTM F2792-12a; Standard Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/f2792-12a.html (accessed on 16 June 2025).
- ASTM International. Committee F42 on Additive Manufacturing Technologies. 2021. Available online: https://www.astm.org/COMMITTEE/F42.htm (accessed on 12 June 2025).
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Xian, G.; Pan, J.; Li, Q. A Comparative Study of Two WAAM Patterns for Structures with Grid Fin Characteristics. Materials 2025, 18, 219. [Google Scholar] [CrossRef]
- Vimal, K.E.; Naveen Srinivas, M.; Rajak, S. Wire arc additive manufacturing of aluminium alloys: A review. Mater. Today Proc. 2020, 41, 1139–1145. [Google Scholar] [CrossRef]
- Kokare, S.; Oliveira, J.P.; Godina, R. A LCA and LCC analysis of pure subtractive manufacturing, wire arc additive manufacturing, and selective laser melting approaches. J. Manuf. Process 2023, 101, 67–85. [Google Scholar] [CrossRef]
- Pusateri, V.; Olsen, S.I. LCA and LCC of wire arc additively manufactured and repaired parts compared to conventional fabrication techniques. Procedia CIRP 2024, 122, 491–496. [Google Scholar] [CrossRef]
- Pusicha, J.; Stromberg, H.; Quanz, M.; Lohrengel, A. Towards an Automated Design Evaluation Method for Wire Arc Additive Manufacturing. Appl. Sci. 2025, 15, 938. [Google Scholar] [CrossRef]
- Sword, J.; Galloway, A.; Toumpis, A. Analysis of Environmental Impact and Mechanical Properties of Inconel 625 Produced Using Wire Arc Additive Manufacturing. Sustainability 2024, 16, 4178. [Google Scholar] [CrossRef]
- Wang, P.; Zeng, J.; Lou, D.; Zheng, W.; Zheng, S.; Chen, B.; Gao, Z. Nonlinear Ultrasonic Characterization of Processing Defects in Arc Additive Manufacturing 316L Stainless Steel. Materials 2025, 18, 805. [Google Scholar] [CrossRef]
- O’Neill, F.; McLaughlin, E.; Ermakova, A.; Mehmanparast, A. Influence of Overloading on Residual Stress Distribution in Surface-Treated Wire Arc Additive-Manufactured Steel Specimens. Materials 2025, 18, 1551. [Google Scholar] [CrossRef]
- Khanna, N.; Wadhwa, J.; Pitroda, A.; Shah, P.; Schoop, J.; Sarıkaya, M. Life cycle assessment of environmentally friendly initiatives for sustainable machining: A short review of current knowledge and a case study. Sustain. Mater. Technol. 2022, 32, e00413. [Google Scholar] [CrossRef]
- Ecoinvent.org. Available online: https://ecoinvent.org/ecoinvent-v3-10/ (accessed on 17 June 2025).
- Mohammed, R.K.; Farzaneh, H. Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design. Energies 2022, 16, 1545. [Google Scholar] [CrossRef]
- Meshalkin, V.P.; Zharov, V.P.; Leontiev, L.I.; Nzioka, A.M.; Belozersky, A.Y. Sustainable Environmental Impact Assessment Using Indicators for Sustainable Energy-Intensive Industrial Production. Energies 2023, 16, 3172. [Google Scholar] [CrossRef]
- Silva, M.P.; González, J.; Costa, B.B.F.; Garrido, C.; Soares, C.A.P.; Haddad, A.N. Environmental Impacts of Rainwater Harvesting Systems in Urban Areas Applying Life Cycle Assessment—LCA. Eng 2023, 4, 1127–1143. [Google Scholar] [CrossRef]
- Tasiopoulou, T.; Katsourinis, D.; Giannopoulos, D.; Founti, M. Production-Process Simulation and Life-Cycle Assessment of Metakaolin as Supplementary Cementitious Material. Eng 2023, 4, 761–779. [Google Scholar] [CrossRef]
- ISO 14044:2006-en; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO—International Organization Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en (accessed on 5 August 2025).
- Nuttah, M.M.; Roma, P.; Nigro, G.L.; Perrone, G. Understanding blockchain applications in Industry 4.0: From information technology to manufacturing and operations management. J. Ind. Inf. 2023, 33, 100456. [Google Scholar] [CrossRef]
- Segovia-Guerrero, L.; Baladés, N.; Gallardo-Galán, J.J.; Gil-Mena, A.J.; Sales, D.L. Additive vs. Subtractive Manufacturing: A Comparative Life Cycle and Cost Analyses of Steel Mill Spare Parts. J. Manuf. Mater. Process. 2025, 9, 138. [Google Scholar] [CrossRef]
- de Eicker, M.O.; Hischier, R.; Hurni, H.; Zah, R. Using non-local databases for the environmental assessment of industrial activities: The case of Latin America. Environ. Impact Assess. Rev. 2010, 30, 145–157. [Google Scholar] [CrossRef]
- Worldsteel.org. Available online: https://worldsteel.org/wp-content/uploads/Sustainability-indicators-report-2023.pdf (accessed on 22 January 2025).
- Guangjun, C. The problem and energy-saving of reheating furnace. Energy Metall. Industry 2008, 27, 32–35. [Google Scholar]
- Ke, H.L.; Dong, B.; Ye, B. Research and application of slab heating curve in reheating furnace. Metall. Ind. Autom. 2014, 38, 50–55. [Google Scholar]
- Sword, J.I.; Galloway, A.; Tompis, A. An environmental impact comparison between wire+ arc additive manufacture and forging for the production of a titanium component. Sustain. Mater. Technol. 2023, 36, e00600. [Google Scholar] [CrossRef]
- Yusuf, K.; Lajus, M.; Ahmad, A. Multiresponse Optimization and Environmental Analysis in Direct Recycling Hot Press Forging of Aluminium AA6061. Materials 2019, 12, 1918. [Google Scholar] [CrossRef]
- Priarone, P.C.; Campatelli, G.; Montevecchi, F.; Venturini, G.; Settineri, L. A modelling framework for comparing the environmental and economic performance of WAAM-based integrated manufacturing and machining. CIRP Ann. 2019, 68, 37–40. [Google Scholar] [CrossRef]
- O’brien, R.G. A general ANOVA method for robust tests of additive models for variances. J. Am. Stat. Assoc. 1979, 74, 877–880. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 18–264. [Google Scholar]
- Chen, M.; Zeng, Y.; Wang, H. PTFE foam coating ultrafine glass fibber composite filtration material with Ultra-Clean emissions. Sep. Purif. Technol. 2025, 352, 128219. [Google Scholar] [CrossRef]
- Bourtsalas, A.C.; Papadatos, P.E.; Kiskira, K.; Kalkanis, K.; Psomopoulos, C.S. Ecodesign for industrial furnaces and ovens: A review of the current environmental legislation. Sustainability 2023, 15, 9436. [Google Scholar] [CrossRef]
- Raj, M.P.; Kumar, M.; Pramanick, A.K. Yield improvement in hot forging of differential spider. Mater. Today Proc. 2020, 26, 3107–3115. [Google Scholar]
- Davis, J.R. (Ed.) ASM Specialty Handbook: Cast Irons; ASM International: Almere, The Netherlands, 1996. [Google Scholar]
- Bello, K.A.; Maladzhi, R.W. Innovative and Best Practices in Sustainable Strategies for Waste Reduction in Additive Manufacturing. Hybrid. Adv. 2025, 11, 100527. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Godina, R.; Carvalho, H. Waste valorisation through additive manufacturing in an industrial symbiosis setting. Sustainability 2020, 13, 234. [Google Scholar] [CrossRef]
- Kieback, B.; Neubrand, A.; Riedel, H. Processing techniques for functionally graded materials. Mater. Sci. Eng. A 2003, 362, 81–106. [Google Scholar] [CrossRef]
- Dass, A.l.; Moridi, A. State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings 2019, 9, 418. [Google Scholar] [CrossRef]
- ASTM A182/A182M-21; Standard Specification for Forged or Rolled Alloy and Stainless-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service. West Conshohocken, PA, USA: ASTM International, 2021.
- AWS A5.18/A5.18M Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding; An American National Society; American Welding Society: Miami, FL, USA, 2005; Available online: https://www.webstore.ansi.org/standards/aws/AWSa51818m2005 (accessed on 14 June 2025).
- Lincolnelectric.com. Available online: https://www.lincolnelectric.com/en/Products/er90sb3_gmaw (accessed on 15 June 2025).
- Odabasi, M.; Bayram, A.; Elbir, T.; Seyfioglu, R.; Dumanoglu, Y.; Bozlaker, A.; Demircioglu, H.; Altiok, H.; Yatkin, S.; Cetin, B. Electric arc furnaces for steel-making: Hot spots for persistent organic pollutants. Environ. Sci. Technol. 2009, 43, 5205–5211. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Y.; Wu, M.; Silaen, A.; Martinez, F.; Okosun, T.; Worl, B.; Low, J.; Zhou, C.; Johnson, K.; White, D. Oxygen enrichment combustion to reduce fossil energy consumption and emissions in hot rolling steel production. J. Clean. Prod. 2021, 320, 128–714. [Google Scholar] [CrossRef]
- Ettore, B.F.; Silva, I.B.; Batalha, G.F.; Button, S.T. Plastic Forming of Metals, 6th ed.; EPUSP: São Paulo, Brazil, 1997; pp. 77–87. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Binder jetting. In Additive Manufacturing Technologies, 2nd ed.; Springer: Cham, Switzerland, 2021; pp. 237–252. [Google Scholar]
- Jeswiet, J.; Kara, S. Carbon emissions and CESTM in manufacturing. CIRP Ann. 2008, 57, 17–20. [Google Scholar] [CrossRef]
- MCTI gov. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/relatorios-bienais-de-transparencia-btrs/BRA_BTR1_2024_ENG.pdf (accessed on 14 June 2025).
- ROMI. Available online: https://www.romi.com/produtos/tornos-cnc-romi-centur/ (accessed on 28 January 2025).
Chemical Element | AWS Percentage (Minimum) | AWS Percentage (Maximum) | Final Percentage |
---|---|---|---|
C (Carbon) | 0.07 | 0.12 | 0.10 |
Mn (Manganese) | 0.40 | 0.70 | 0.58 |
Si (Silicon) | 0.40 | 0.70 | 0.54 |
S (Sulphur) | - | 0.025 | 0.004 |
P (Phosphorous) | - | 0.025 | 0.005 |
Cr (Chrome) | 2.30 | 2.70 | 2.40 |
Ni (Nickel) | - | 0.20 | 0.04 |
Mo (Molybdenum) | 0.90 | 1.20 | 1.04 |
Cu (Copper) | - | 0.35 | 0.08 |
Total without iron | 4.07 | 6.02 | 4.789 |
Amount of iron | 95.93 | 93.98 | 95.211 |
Total with iron | 100 | 100 | 100 |
Parameters | Values |
---|---|
BFCO2 | 2.33 |
PBOF | 72 |
SpCO2 | 0.68 |
PSP | 21 |
DRICO2 | 1.37 |
PDRI | 7 |
Parameters | Values |
---|---|
Results from trial 1 (kgCO2-eq/kg) | 34.97 |
Results from trial 2 (kgCO2-eq/kg) | 36.21 |
Average of trials (kgCO2-eq/kg) | 35.59 |
Material mass at the CM stage (kg) | 227.0 |
Parameters Obtained | Values |
---|---|
N = The Energy Efficiency Network [51] | 0.34 |
Pstb = Standby energy WAAM | 0.0426 kW |
tstb = Standby time WAAM | 13.07 h |
SEC = Specific energy consumed | 1.3 kWh/kg |
Mwire = Mass of the wire and its material to be deposited | 126.7 |
Parc = Wire and arc process energy | 3.5 kg |
tarc = WAAM component operating time | 61.1 h |
Egas = Primary energy of the shielding gas | 0.0285 MJ/L |
tgas = Protective gas flow time | 61.1 h |
qgas = Shielding gas flow rate (15 L/min) | 900.0 L/h |
Volume used during deposition | 55,000.0 L |
Layer Gap in the Flange Thickening | Cables Per Layer | Waiting Time Per Cable (min) | Total Waiting Time Between Cables (min) |
---|---|---|---|
1–5 | 9 | 2 | 80 |
6–7 | 8 | 28 | |
8–9 | 7 | 24 | |
10–11 | 6 | 20 | |
12–13 | 5 | 16 | |
14–41 | 4 | 168 | |
Total waiting time between cables: | 336 | ||
Waiting time between layers: | 4.5 | ||
Number of layers: | 41 | ||
Total time spent waiting between layers: | 180 | ||
Number of layers in the deposition of the centre cylinder (1 layer = 1 cable): | 120 | ||
Waiting time between layers: | 2 | ||
Total time spent waiting between layers in the centre cylinder: | 238 | ||
Total time spent initialising and adjusting the WAAM: | 30 | ||
Total time spent with WAAM on standby: | 784 min/13.07 h |
Gas | Total Material Used (L) | Total Material Used (kg) | GHG Emission Factor in Production (CO2-eq/kg) | GHG Emissions (CO2-eq) |
---|---|---|---|---|
Argon | 253 | 78.56 | 0.88425 | 69.5 |
CO2 | 22 | 7.53 | 0.811 | 13.6 * |
Total CO2 emissions in shielding gas (CFCO2) | 90.6 | |||
Average annual carbon footprint emission (kg CO2-eq/kWh) | 0.0759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, F.N.; Filho, J.d.C.P.; Lira, M.N.d.S.; Guimarães, C.d.S. Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study. Recycling 2025, 10, 163. https://doi.org/10.3390/recycling10040163
Cardoso FN, Filho JdCP, Lira MNdS, Guimarães CdS. Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study. Recycling. 2025; 10(4):163. https://doi.org/10.3390/recycling10040163
Chicago/Turabian StyleCardoso, Fernando Nogueira, João da Cruz Payão Filho, Margareth Nascimento de Souza Lira, and Claudinei de Souza Guimarães. 2025. "Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study" Recycling 10, no. 4: 163. https://doi.org/10.3390/recycling10040163
APA StyleCardoso, F. N., Filho, J. d. C. P., Lira, M. N. d. S., & Guimarães, C. d. S. (2025). Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study. Recycling, 10(4), 163. https://doi.org/10.3390/recycling10040163