Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design
Abstract
1. Introduction
1.1. Mechanisms and Challenges of Photocatalytic Reduction of CO2
1.2. Vacancy Engineering (Sulfur Vacancy)
2. Different Types of Catalysts
2.1. Other Types of Catalysts
2.2. Sulfide Catalysts
2.2.1. Single-Component Sulfide Catalysts
2.2.2. Multicomponent Sulfide Catalysts
2.2.3. Sulfide Composite Catalysts
3. Methods for Introducing and Controlling Sulfur Vacancies
3.1. Hydrothermal Methods
3.2. Heteroatom Doping
3.3. Organic Treatment
3.4. Plasma Technology
3.5. Other Methods
4. Characterization of Sulfur Vacancies
4.1. Electron Paramagnetic Resonance (EPR)
4.2. Positron Annihilation Lifetime Spectrum (PALS)
4.3. X-Ray Photoelectron Spectroscopy (XPS)
4.4. Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS)
4.5. Synchrotron Radiation X-Ray Absorption Fine Structure (XAFS)
4.6. Photoluminescence (PL) Spectrum
4.7. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM)
4.8. Other Characterizations
5. Effect of Sulfur Vacancies on Photocatalytic Reduction of CO2
5.1. Effect of Sulfur Vacancy on CO2 Photoreduction Product Yield
5.1.1. Enhanced Light Absorption
5.1.2. Promoting Photogenerated Electron-Hole Separation
5.1.3. Providing Reactive Sites and Enhancing CO2 Adsorption
5.2. Influence of Sulfur Vacancy on the Selectivity of CO2 Photoreduction Products
5.2.1. C1 Products
5.2.2. C2+ Products
6. Conclusions and Outlook
6.1. Precise Control of Sulfur Vacancy Concentration and Position Is Still the Core Problem of Material Design
6.2. Means of Characterization of Sulfur Vacancies Need to Be Further Improved
6.3. The Role of Sulfur Vacancies Under Multifactorial Coupling Is Still Unclear
Author Contributions
Funding
Conflicts of Interest
References
- Munyai, S.; Hintsho-Mbita, N.C. Green derived metal sulphides as photocatalysts for waste water treatment. A review. Curr. Res. Green Sustain. Chem. 2021, 4, 100163. [Google Scholar] [CrossRef]
- Liu, H.; Meng, X.; Yang, W.; Zhao, G.; He, D.; Ye, J. Photo-thermal CO2 reduction with methane on group VIII metals: In situ reduced WO3 support for enhanced catalytic activity. Chin. J. Catal. 2021, 42, 1976–1982. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, R.; Ke, L.; Li, J.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Y.; Lin, Z.; Sun, Z.; Liu, Y. Fluorinated covalent organic frameworks enhanced CO2 adsorption for boosting photocatalytic CO2 reduction. Sep. Purif. Technol. 2025, 367, 132992. [Google Scholar] [CrossRef]
- Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; et al. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Adv. Mater. 2018, 30, 1705369. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Yu, F.; Cai, J.; Bai, J.; Xu, J.; Wang, H.; Lin, H.; Long, H. Preparation of sugarcane bagasse-derived Co/Ni/N/MPC nanocomposites and its application in H2O2 detection. Ind. Crops Prod. 2024, 211, 118218. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Feng, P.; Li, B.; Zhu, J.; Zhang, Y.; Zhang, Z.; Zhang, J.; Ding, Y. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies. Chin. J. Catal. 2025, 73, 242–251. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Song, D.; Guo, H.; Huang, K.; Zhang, H.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater. Today 2022, 54, 42–51. [Google Scholar] [CrossRef]
- Gao, D.; Li, W.; Wang, H.; Wang, G.; Cai, R. Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels. Trans. Tianjin Univ. 2022, 28, 245–264. [Google Scholar] [CrossRef]
- Xie, C.; Yan, D.; Chen, W.; Zou, Y.; Chen, R.; Zang, S.; Wang, Y.; Yao, X.; Wang, S. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68. [Google Scholar] [CrossRef]
- Feng, K.; Wang, S.; Zhang, D.; Wang, L.; Yu, Y.; Feng, K.; Li, Z.; Zhu, Z.; Li, C.; Cai, M.; et al. Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO2 Photocatalysis. Adv. Mater. 2020, 32, 2000014. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, E.; Yin, Y.; Yang, L.; Huang, Q.; Chen, S.; Ho, C.-T. Enhancing Activities of Salt-Tolerant Proteases Secreted by Aspergillus oryzae Using Atmospheric and Room-Temperature Plasma Mutagenesis. J. Agric. Food Chem. 2020, 68, 2757–2764. [Google Scholar] [CrossRef]
- Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS Energy Lett. 2022, 7, 778–815. [Google Scholar] [CrossRef]
- Fang, M.; Yang, Z.; Guo, Y.; Yuan, S.; Xia, X.; Pan, S. Synergy of sulfur vacancy and piezoelectric effect to tune charge migration in Sv-ZnIn2S4/UiO-66-NH2 for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 2024, 673, 160893. [Google Scholar] [CrossRef]
- Gong, C.; Meng, X.; Jin, C.; Yang, M.; Liu, J.; Sheng, K.; Pu, Y.; Ragauskas, A.; Ji, G.; Zhang, X. Green synthesis of cellulose formate and its efficient conversion into 5-hydroxymethylfurfural. Ind. Crops Prod. 2023, 192, 115985. [Google Scholar] [CrossRef]
- Chandra, M.; Pradhan, D. Engineered Sulfur Vacancies in Z-scheme ZnS/TiO2 Heterostructure for Dual Photocatalytic Functionality. ChemCatChem 2025, 17, e202500395. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, R.; Wang, H.; Liu, Y.; Bai, R.; Zhang, H.; Zhang, Y.; Hu, G.; Zhou, Y.; Zhao, X. Pomelo peel biomass derived highly active advanced-oxidation-process catalyst: Complete elimination of organic pollutants. J. Colloid Interface Sci. 2024, 670, 50–60. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, B.; Chen, Q.; Peng, X.; Yang, D.; Qiu, F. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Wang, J.; Wang, Q.; Meng, H.; Wang, Z. One-Step Core/Multishell Quantum Dots-Based Fluoroimmunoassay for Screening of Deoxynivalenol in Maize. Food Anal. Methods 2018, 11, 2569–2578. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Wang, T.; Ji, S.; Zhang, X.; Shen, T.; Huang, X.; Xiao, J.; Farag, M.A.; Shi, J.; et al. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13339. [Google Scholar] [CrossRef]
- Li, C.; Cheng, B.; Lu, H.; Ding, G.; Jiang, Z.; Liao, G. Kinetically and Thermodynamically Favorable Ni-Al Layered Double Hydroxide/Ni-Doped Zn0.5Cd0.5S S-Scheme Heterojunction Triggering Photocatalytic H2 Evolution. Inorg. Chem. 2023, 62, 6843–6850. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, P.; Yin, L.; Zuo, M.; Chen, Q.; El-Seedi, H.R.; Zou, X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022, 132, 108498. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, X.; Cao, J.; Zhu, Y.; Yuan, W.; Hu, Z.; Ao, Z.; Brudvig, G.W.; Tian, F.; Yu, J.C.; et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect. Appl. Catal. B Environ. 2022, 303, 120878. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Pan, X.; Wang, T.; Li, Y. Ultrathin Nickel-doped ZnIn2S4 Nanosheets with Sulfur Vacancies for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem 2021, 13, 5148–5155. [Google Scholar] [CrossRef]
- Jia, T.; Wang, L.; Zhu, Z.; Zhu, B.; Zhou, Y.; Zhu, G.; Zhu, M.; Tao, H. Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chin. Chem. Lett. 2024, 35, 108692. [Google Scholar] [CrossRef]
- Han, J.; Feng, H.; Wu, J.; Li, Y.; Zhou, Y.; Wang, L.; Luo, P.; Wang, Y. Construction of Multienzyme Co-immobilized Hybrid Nanoflowers for an Efficient Conversion of Cellulose into Glucose in a Cascade Reaction. J. Agric. Food Chem. 2021, 69, 7910–7921. [Google Scholar] [CrossRef] [PubMed]
- Florjan, D.M.; Radomski, P.; Szary, M.J. Toward enhanced combustion gas monitoring and capture: Sulfur vacancies as vectors for selective CO and CO2 intercalation in MoS2. J. Mater. Chem. A 2025, 13, 18571–18589. [Google Scholar] [CrossRef]
- Mamo, T.T.; Qorbani, M.; Hailemariam, A.G.; Putikam, R.; Chu, C.-M.; Ko, T.-R.; Sabbah, A.; Huang, C.-Y.; Kholimatussadiah, S.; Billo, T.; et al. Enhanced CO2 photoreduction to CH4 via *COOH and *CHO intermediates stabilization by synergistic effect of implanted P and S vacancy in thin-film SnS2. Nano Energy 2024, 128, 109863. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Deng, Y.; Zhang, Z.; Wang, H.; Wu, Y. Directed Inward Migration of S-Vacancy in Bi2S3 QDs for Selective Photocatalytic CO2 to CH3OH. Adv. Sci. 2025, 12, 2406925. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Wei, S.; Li, K.; Nawaz, H.; He, B.; Li, M.; Liu, R. Tuning the band gap energy of CuxInyS for superior photothermocatalytic CO2 conversion to C2H4. Ind. Chem. Mater. 2025, 3, 440–451. [Google Scholar] [CrossRef]
- Liu, S.; Fang, D.; Xing, F.; Jin, H.; Li, J. Auricularia-shaped MoS2 nanosheet arrays coated hierarchical multilayer MoS2/PPy/rGO composites for efficient microwave absorption. Chem. Eng. J. 2024, 479, 147613. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xie, Y.; Tao, Y.; Wu, J.; Wang, S.; Zhou, W. Surface domain potential difference-mediated efficient charge separation on a defective ZnIn2S4 microsphere photocatalyst. Mater. Today Chem. 2022, 23, 100714. [Google Scholar] [CrossRef]
- Huang, H.; Song, H.; Kou, J.; Lu, C.; Ye, J. Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. J. Energy Chem. 2022, 67, 309–341. [Google Scholar] [CrossRef]
- Tang, X.; Shen, W.; Li, D.; Li, B.; Wang, Y.; Song, X.; Zhu, Z.; Huo, P. Research on cobalt-doping sites in g-C3N4 framework and photocatalytic reduction CO2 mechanism insights. J. Alloys Compd. 2023, 954, 170044. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wan, Y.; Nazir, A.; Song, X.; Huo, P.; Wang, H. Fabrication of Zn vacancies-tunable ultrathin-g-C3N4@ZnIn2S4/SWNTs composites for enhancing photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 613, 155989. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Zhou, X.; Jin, X.; Li, B.; Liu, J.; Chen, G. Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 407, 127180. [Google Scholar] [CrossRef]
- Xu, G.; Hong, Q.-L.; Sun, Y.; Liu, M.; Zhang, H.-X.; Zhang, J. Anchoring metal ions in amine-functionalized boron imidazolate framework for photocatalytic reduction of CO2. Chin. Chem. Lett. 2022, 33, 2915–2918. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Chen, L.; Yarley, O.P.N.; Zhou, C. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Jian, H.; Deng, K.; Wang, T.; Huang, C.; Wu, F.; Huo, H.; Ouyang, B.; Liu, X.; Ma, J.; Kan, E.; et al. High-density triple-phase contact points for enhanced photocatalytic CO2 reduction to methanol. Chin. Chem. Lett. 2024, 35, 108651. [Google Scholar] [CrossRef]
- Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A.Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579. [Google Scholar] [CrossRef]
- Liao, C.; Wang, M.; Kang, X.; Lei, D.; Ma, T.; Liu, Y.; Guo, L. Tunable Oxygen Vacancies Enable Dynamic Infrared Response for Efficient CO2 Reduction on Plasmonic BiOX. ChemSusChem 2025, 18, e202501050. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, W.; Liu, S.; Haruna, S.A.; Zareef, M.; Ahmad, W.; Hassan, M.M.; Li, H.; Chen, Q. A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. J. Food Meas. Charact. 2022, 16, 2890–2898. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Wang, J.; Gan, L.; He, M.; Zhang, T.; Li, P.; Qiu, F. Preparation and application of Mg-Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Wan, Z.; Cao, H.; Zhang, S.; Zhou, Y.; Ye, X.; Liu, X.; Zhang, D. Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction. Chin. Chem. Lett. 2022, 33, 3835–3841. [Google Scholar] [CrossRef]
- Li, H.; Gao, C.; Yang, G.; Xia, L.; Jiang, W.; Wu, C.; Wang, K.; Zhou, Y.; Han, X. Enhanced photocatalytic CO2 reduction of Bi2WO6-BiOCl heterostructure with coherent interface for charge utilization. Chin. Chem. Lett. 2025, 36, 110547. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhao, H.; Song, S.; Liu, M.; Li, Z.; Zhou, W. MoS2@In2S3/Bi2S3 Core-shell dual Z-scheme tandem heterojunctions with Broad-spectrum response and enhanced Photothermal-photocatalytic performance. Chem. Eng. J. 2022, 431, 133355. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Zhu, Y.; Xu, D. High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9. Appl. Catal. B Environ. 2021, 294, 120236. [Google Scholar] [CrossRef]
- Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 Reduction to C2+ Products. ACS Catal. 2020, 10, 5734–5749. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, Y.; Cheng, Y.; Yu, Z.; Wei, B.; Liu, X.; Chen, Z.; Li, C.; Lu, Z. Rapid dissociation of high concentration excitons between [Bi2O2]2+ slabs with multifunctional N-Bi-O sites for selective photoconversion into CO. Appl. Catal. B Environ. 2023, 335, 122892. [Google Scholar] [CrossRef]
- Jiang, N.-J.; Wang, Y.-J.; Chu, J.; Kawasaki, S.; Tang, C.-S.; Cheng, L.; Du, Y.-J.; Shashank, B.S.; Singh, D.N.; Han, X.-L.; et al. Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications. Soil Use Manag. 2022, 38, 68–93. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, X.; Ma, Y.; Cho, H.S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, M.; Gao, J.; Yang, D.; Li, Z.; Liu, H.; Xie, Y.; Guo, L.; Zhou, W. Synergism of sulfur vacancy and Schottky junction in Ni/ZnIn2S4 nanosheet assembly for efficient charge separation and photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 628, 157385. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Zhong, K.; Li, Q.; Ding, P.; Feng, Z.; Yang, J.; Du, Y.; Song, Y.; Hua, Y.; et al. Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2−x heterojunction. Chem. Eng. J. 2022, 429, 132204. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Sun, X.; Wei, W.; Mu, X.; Ahmad, W.; Hassan, M.M.; Ouyang, Q.; Chen, Q. Fabricating a nano-bionic sensor for rapid detection of H2S during pork spoilage using Ru NPs modulated catalytic hydrogenation conversion. Meat Sci. 2021, 177, 108507. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, M.; Bu, M.; Tang, R.; Han, L.; Fu, X.; Zhang, Y.; Zhang, L.; Shen, M.; Qian, Y. Defect-Mediated Selectivity: Sulfur Vacancy Engineering in Tin Sulfide Boosts CO2. Chem. Mater. 2025, 37, 4393–4401. [Google Scholar] [CrossRef]
- Li, T.; Yin, W.; Zhang, P.; Zhao, X.; Wei, R.; Zhou, W.; Tu, X. Dual heterojunctions and sulfur vacancies of AgInS2/rGO/MoS2 co-induced photocatalytic degradation of tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Aspects 2023, 667, 131396. [Google Scholar] [CrossRef]
- Lan, H.; Shen, B.; Gao, S.; Jia, T.; Wang, H.; Song, L.; Nikolaevna, K.L.; Morkhova, Y.A.; Ismailovich, R.A.; Shi, D.; et al. Bismuth-induced oxygen vacancies on CuO/Cu2O nanospheres for selective and active electrchemical CO2 reduction to C2H4. Surf. Interfaces 2025, 60, 106074. [Google Scholar] [CrossRef]
- Gao, J.; Mu, W.; Chang, C. Acid modification on ZnIn2S4 with sulfur vacancy for highly efficient photocatalytic reduction of Cr(VI). J. Alloys Compd. 2024, 990, 174425. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Huang, X.; Wang, T.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. LWT-Food Sci. Technol. 2020, 132, 109873. [Google Scholar] [CrossRef]
- Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250. [Google Scholar] [CrossRef]
- Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Hollow flower-like polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects. Appl. Catal. B Environ. 2020, 272, 118978. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, G.; Guan, Z.; Zhao, Q.; Li, G.; Yang, J.; Li, Q.; Zou, Z. Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution. J. Energy Chem. 2021, 58, 408–414. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Li, Q.; Shi, Y.; Zhai, X.; Xu, Y.; Li, Z.; Huang, X.; Wang, X.; Shi, J.; et al. Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem. 2020, 320, 126623. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, G.; Jiang, Y.; Jia, J.; Cao, J. Design and synthesis of two dimensional-ZnIn2S4 nanosheets with sulfur vacancies for improving photocatalytic hydrogen production performance. Prog. Nat. Sci. Mater. Int. 2023, 33, 607–615. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Ho, W.; Han, S.; Wang, P.; Lee, S.; Zhang, Z. Modulation of sulfur vacancies at ZnIn2S4-δ/g-C3N4 heterojunction interface for successive C–H secession in photocatalytic gaseous formaldehyde complete oxidation. Appl. Catal. B Environ. 2023, 338, 123048. [Google Scholar] [CrossRef]
- Li, G.; Deng, X.; Chen, P.; Wang, X.; Ma, J.; Liu, F.; Yin, S.-F. Sulphur vacancies-VS2@C3N4 drived by in situ supramolecular self-assembly for synergistic photocatalytic degradation of real wastewater and H2 production: Vacancies taming interfacial compact heterojunction and carriers transfer. Chem. Eng. J. 2022, 433, 134505. [Google Scholar] [CrossRef]
- Lei, B.; Cui, W.; Chen, P.; Chen, L.; Li, J.; Dong, F. C-Doping Induced Oxygen-Vacancy in WO3 Nanosheets for CO2 Activation and Photoreduction. ACS Catal. 2022, 12, 9670–9678. [Google Scholar] [CrossRef]
- Hao, L.; Ding, M.; Song, S.; You, Y.; Li, X. 2D/2D CdS/1T-MoS2 heterojunctions with abundant interfacial sulfur vacancies for high-efficient photocatalytic amino acid synthesis from bio-based feedstocks. Appl. Catal. B Environ. Energy 2025, 374, 125371. [Google Scholar] [CrossRef]
- Liang, J.; Li, H.; Chen, L.; Ren, M.; Fakayode, O.A.; Han, J.; Zhou, C. Efficient hydrogen evolution reaction performance using lignin-assisted chestnut shell carbon-loaded molybdenum disulfide. Ind. Crops Prod. 2023, 193, 116214. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Z.; Wu, J.; Xu, J. Sulfur vacancies form charge transport channels on the S-type heterojunction engineered interface to enhance photocatalytic performance. Surf. Interfaces 2024, 53, 104947. [Google Scholar] [CrossRef]
- Bao, L.; Dai, C.; Liu, C.; Jia, Y.; Liu, X.; Ren, X.; Ali, S.; Bououdina, M.; Zeng, C. Fluorine lattice-doped ZnS with accompanying sulfur vacancies for high activity and selectivity of CO2 conversion to CO. Ceram. Int. 2024, 50 Pt B, 19769–19780. [Google Scholar] [CrossRef]
- Zhang, K.; Dan, M.; Yang, J.; Wu, F.; Wang, L.; Tang, H.; Liu, Z.-Q. Surface Energy Mediated Sulfur Vacancy of ZnIn2S4 Atomic Layers for Photocatalytic H2O2 Production. Adv. Funct. Mater. 2023, 33, 2302964. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Shi, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Non-destructive discrimination of homochromatic foreign materials in cut tobacco based on VIS-NIR hyperspectral imaging. J. Sci. Food Agric. 2023, 103, 4545–4552. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, J.; Zhao, Y.; Wei, X.; Jiang, D.; Zhu, L.; Asakura, Y.; Phung, Q.M.; Nam, H.N.; Hsu, H.-Y.; et al. An efficient improvement for photocatalytic hydrogen peroxide production: Sulfur vacancies in CaIn2S4. J. Colloid Interface Sci. 2025, 694, 137614. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Lei, R.; Huang, X.; Yuan, J.; Jiang, C.; Feng, W.; Zhang, L.; Liu, P. In situ etching growth of defective ZnS nanosheets anchored vertically on layered-double-hydroxide microflowers for accelerated photocatalytic activity. Appl. Catal. B Environ. 2021, 292, 120187. [Google Scholar] [CrossRef]
- Rezaei, M.; Nezamzadeh-Ejhieh, A.; Massah, A.R. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Photocatalytic Solar Water Splitting: Focus on Sulfur Vacancy. Energy Fuels 2024, 38, 7637–7664. [Google Scholar] [CrossRef]
- Hu, S.; Chen, X.; Li, Q.; Zhao, Y.; Mao, W. Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 2016, 6, 5884–5890. [Google Scholar] [CrossRef]
- Bu, Z.; Wang, M.; Wang, Z.; Chen, X.; Fu, Z.; Deng, Y. Sulfur vacancy engineering mediated preparation of ZnIn2S4 photocatalyst to boost photocatalytic degradation of atrazine. Mater. Sci. Semicond. Process. 2025, 195, 109628. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 248, 193–201. [Google Scholar] [CrossRef]
- Hu, K.; Ming, C.; Liu, Y.; Zheng, C.; Zhang, S.; Wang, D.; Zhao, W.; Huang, F. Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. Chin. Chem. Lett. 2020, 31, 2809–2813. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Yao, S.; He, J.; Gao, F.; Wang, H.; Lin, J.; Bai, Y.; Fang, J.; Zhu, F.; Huang, F.; Wang, M. Highly selective semiconductor photocatalysis for CO2 reduction. J. Mater. Chem. A 2023, 11, 12539–12558. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.; Kim, H.; In, S.-I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Powar, N.S.; Kim, H.; In, S.-I. Unlocking solar energy: Photocatalysts design for tuning the CO2 conversion into high-value (C2+) solar fuels. EnergyChem 2024, 6, 100130. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Powar, N.S.; Lee, J.; In, S.-I. Single-Atom Catalysts (SACs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small 2022, 18, 2201428. [Google Scholar] [CrossRef]
- Yan, C.; Xu, M.; Li, J.; Wang, H.; Huo, P. Fabricated ZnIn2S4/Cu2S S-scheme heterojunction with snowflake structure for boosting photocatalytic CO2 reduction in gas-solid reactor. Fuel 2024, 378, 132921. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, Y.; Fan, H.; Liu, X.; Wang, F.; Qu, X.; Yang, L.; Li, X.; Cao, J.; Wei, M. WO3 Nanosheet/ZnIn2S4 S-Scheme Heterojunctions for Enhanced CO2 Photoreduction. ACS Appl. Nano Mater. 2024, 7, 3488–3498. [Google Scholar] [CrossRef]
- Yu, B.; Wu, Y.; Meng, F.; Wang, Q.; Jia, X.; Wasim Khan, M.; Huang, C.; Zhang, S.; Yang, L.; Wu, H. Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem. Eng. J. 2022, 429, 132456. [Google Scholar] [CrossRef]
- Wang, K.; Qin, H.; Li, J.; Cheng, Q.; Zhu, Y.; Hu, H.; Peng, J.; Chen, S.; Wang, G.; Chou, S.; et al. Metallic AgInS2 nanocrystals with sulfur vacancies boost atmospheric CO2 photoreduction under near-infrared light illumination. Appl. Catal. B Environ. 2023, 332, 122763. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, J.; Huang, Y.; Huang, Y.; Waterhouse, G.I.N.; Wang, Z.; Mao, Y.; Liang, Z.; Luo, X. Rational design of spatial charge separation and targeted active site Cu for highly selective photocatalytic CO2 reduction to CH4. Chem. Eng. J. 2024, 495, 153310. [Google Scholar] [CrossRef]
- Shi, X.; Dai, W.; Dong, X.A.; Ren, Q.; Sheng, J.; Dong, F. Dual Cu and S vacancies boost CO2 photomethanation on Cu1.95S1−x: Vacancy-regulated selective photocatalysis. Appl. Catal. B Environ. 2023, 339, 123147. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zheng, S.; Liu, X.; Yao, S.; Jing, F.; Chen, G. Interfacial intimacy and internal electric field modulated S-scheme Sv-ZnS/ZnIn2S4 photocatalyst for efficient H2 evolution and CO2 reduction. J. Colloid Interface Sci. 2023, 635, 284–294. [Google Scholar] [CrossRef]
- Gao, X.; Li, L.; Zhao, Z.; Dappe, Y.J.; Jiang, Z.-J.; Song, P.; Wang, Y.; Zhu, J. Sulfur vacancy-rich ZnS on ordered microporous carbon frameworks for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. Energy 2025, 364, 124835. [Google Scholar] [CrossRef]
- Lai, K.; Sun, Y.; Li, N.; Gao, Y.; Li, H.; Ge, L.; Ma, T. Photocatalytic CO2-to-CH4 Conversion with Ultrahigh Selectivity of 95.93% on S-Vacancy Modulated Spatial In2S3/In2O3 Heterojunction. Adv. Funct. Mater. 2024, 34, 1409031. [Google Scholar] [CrossRef]
- Xing, F.; Li, Q.; Li, J.; Xiong, Z.; Wang, C.; Li, N.; Jin, H.; Su, Y.; Feng, C.; Li, J. Cu doping induced asymmetric Cu-Vs-In active sites in In2S3 for efficient photocatalytic C2H4 conversion from CO2. J. Colloid Interface Sci. 2025, 691, 137388. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Nie, Y.; Mei, J.-H.; Tan, X.; Hu, Z.; Ye, J.; Yu, T. Regulating the Electron Distribution to Accelerate the Photocatalytic Reduction of CO2 to C2H4. ACS Nano 2025, 19, 15912–15923. [Google Scholar] [CrossRef]
- Guo, B.; Liu, L.; Li, A.; Li, X.; Chang, Y.; Jiao, Z.; Han, M. Insights into the effect of Ni doping on In2S3 for enhanced activity and selectivity of photocatalytic CO2 reduction. J. Alloys Compd. 2024, 995, 174741. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Liu, P.; Zhao, K.; Ye, S.; Liang, G. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Bai, J.; Li, C. Sulfur vacancy and CdS phase transition synergistically boosting one-dimensional CdS/Cu2S/SiO2 hollow tube for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 15908–15920. [Google Scholar] [CrossRef]
- Bao, L.; Jia, Y.; Ren, X.; Liu, X.; Dai, C.; Ali, S.; Bououdina, M.; Lu, Z.; Zeng, C. Cr dopants and S vacancies in ZnS to trigger efficient photocatalytic H2 evolution and CO2 reduction. J. Mater. Sci. Technol. 2024, 199, 75–85. [Google Scholar] [CrossRef]
- Xia, W.; Liu, X.; Huang, H.; Zhangkai, L.; Zeng, X. Piezocatalytic activity in highly oriented hexagonal SnS2 nanosheets for efficient photocatalytic CO2 reduction. J. Environ. Chem. Eng. 2025, 13, 116850. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, H.; Zhong, D.; Lu, T. Enhancing photocatalytic performance of metal-organic frameworks for CO2 reduction by a bimetallic strategy. Chin. Chem. Lett. 2022, 33, 2065–2068. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; You, T.; Wang, K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 8035–8044. [Google Scholar] [CrossRef]
- Si, S.; Shou, H.; Mao, Y.; Bao, X.; Zhai, G.; Song, K.; Wang, Z.; Wang, P.; Liu, Y.; Zheng, Z.; et al. Low-Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. Angew. Chem. Int. Ed. 2022, 61, e202209446. [Google Scholar] [CrossRef]
- Tan, Y.-X.; Chai, Z.-M.; Wang, B.-H.; Tian, S.; Deng, X.-X.; Bai, Z.-J.; Chen, L.; Shen, S.; Guo, J.-K.; Cai, M.-Q.; et al. Boosted Photocatalytic Oxidation of Toluene into Benzaldehyde on CdIn2S4-CdS: Synergetic Effect of Compact Heterojunction and S-Vacancy. ACS Catal. 2021, 11, 2492–2503. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Yang, B.; Wang, F.; Zhang, C.; Chen, Q.; Dou, X. Molecular-solution printing of Cu2ZnSnS4 (CZTS) thin film. Ceram. Int. 2020, 46, 26660–26667. [Google Scholar] [CrossRef]
- Sun, B.; Bu, J.; Du, Y.; Chen, X.; Li, Z.; Zhou, W. O, S-Dual-Vacancy Defects Mediated Efficient Charge Separation in ZnIn2S4/Black TiO2 Heterojunction Hollow Spheres for Boosting Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2021, 13, 37545–37552. [Google Scholar] [CrossRef]
- Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Chen, P.; Zhu, Q.; Zhou, W. Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2−x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. J. Hazard. Mater. 2019, 364, 117–124. [Google Scholar] [CrossRef]
- Qin, C.; Guo, W.; Liu, Y.; Liu, Z.; Qiu, J.; Peng, J. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles-Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Cheng, K.; Hua, J.; Zhang, J.; Shao, C.; Dawson, G.; Liu, Q.; Yin, D.; Dai, K. Fluorinated-TiO2/Mn0.2Cd0.8S S-Scheme Heterojunction with Rich Sulfur Vacancies for Photocatalytic Hydrogen Production. ACS Appl. Nano Mater. 2024, 7, 7978–7988. [Google Scholar] [CrossRef]
- Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Venkatakrishnan Shankar, M.; Krishnan, V. Interplay between Mesocrystals of CaTiO3 and Edge Sulfur Atom Enriched MoS2 on Reduced Graphene Oxide Nanosheets: Enhanced Photocatalytic Performance under Sunlight Irradiation. ChemPhotoChem 2020, 4, 427–444. [Google Scholar] [CrossRef]
- Tai, Z.G.; Sun, G.T.; Zhang, X.H.; Yang, X.B.; Wang, T.; Fang, Z.Y.; Ye, Q.; Jia, L.C.; Wang, H.Q. Embedding laser-generated CdTe nanocrystals into ultrathin ZnIn2S4 nanosheets with sulfur vacancies for boosted photocatalytic H2 evolution. J. Mater. Sci. Technol. 2023, 166, 113–122. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Zhang, F.; Li, W.; Li, Y.; Yu, H.; Wang, M.; Yu, H. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chem. Eng. J. 2022, 428, 131218. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, X.; Zhang, C.; Yin, H.; Wang, A.; Wang, C. Functional characterization of bimetallic CuPdx nanoparticles in hydrothermal conversion of glycerol to lactic acid. J. Food Biochem. 2019, 43, e12931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Liang, X.; Liu, Q.; Chen, Q.; Chen, M. Sulfur Vacancies-Engineered Ni3S4−x Hollow Microspheres with Optimized Anionic Adsorption Energy for High-Performance Supercapacitor. Small 2022, 18, 2106074. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wu, X.; Li, Y.; Xiong, J.; Tang, Z.; Wei, Y.; Zhao, Z.; Zhang, X.; Liu, J. Z-scheme heterojunction of SnS2-decorated 3DOM-SrTiO3 for selectively photocatalytic CO2 reduction into CH4. Chin. Chem. Lett. 2020, 31, 2774–2778. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Jiyong, S.; Mariod, A.A.; Wiliam, T. Rapid Determination of Antioxidant Compounds and Antioxidant Activity of Sudanese Karkade (Hibiscus sabdariffa L.) Using Near Infrared Spectroscopy. Food Anal. Methods 2016, 9, 1228–1236. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, P.; Song, C.; Zhang, T.; Zhan, S.; Li, Y. Enhanced Interfacial Electron Transfer by Asymmetric Cu-Ov-In Sites on In2O3 for Efficient Peroxymonosulfate Activation. Angew. Chem. Int. Ed. 2023, 62, e202216403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, H.; Bai, L.; Hao, L.; Ma, T.; Huang, H. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J.B.; Mousavi, M.; Yu, J. S-scheme heterojunction photocatalysts for CO2 reduction. Matter 2022, 5, 4187–4211. [Google Scholar] [CrossRef]
- Deng, X.; Ke, Y.; Ding, J.; Zhou, Y.; Huang, H.; Liang, Q.; Kang, Z. Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chin. Chem. Lett. 2024, 35, 109064. [Google Scholar] [CrossRef]
- Hiramatsu, W.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Kawada, Y.; Hiraiwa, C.; Hirai, T. Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction. J. Am. Chem. Soc. 2025, 147, 1968–1979. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhang, M.; Zheng, S.; Wu, J.; Zheng, T.; Jiang, G.; Li, Z. In Situ Constructed Perovskite-Chalcogenide Heterojunction for Photocatalytic CO2 Reduction. Small 2023, 19, 2300841. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, J.; Li, X.; Zou, Z.; Kong, M.; Xu, J.; Turkevich, V.; Lin, H.; Li, Y.; Wang, L. Vacancy engineering of single-layer lateral heterojunction for efficient Z-scheme photocatalytic water reduction. J. Colloid Interface Sci. 2025, 695, 137773. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Sultana, T.; Xun, S.; Jabbar, S.; Riaz Rajoka, M.S.; Albahi, A.; Abid, M.; Ranjha, M.M.A.N.; El-Seedi, H.R.; Xie, F.; et al. Advances in the application of functional nanomaterial and cold plasma for the fresh-keeping active packaging of meat. Food Sci. Nutr. 2023, 11, 5753–5772. [Google Scholar] [CrossRef]
- Jing, X.; Lu, N.; Huang, J.; Zhang, P.; Zhang, Z. One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. J. Energy Chem. 2021, 58, 397–407. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Chen, G.; Yao, S.; Cong, B. Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance. Appl. Catal. B Environ. 2022, 301, 120792. [Google Scholar] [CrossRef]
- Fang, Z.; Weng, S.; Ye, X.; Feng, W.; Zheng, Z.; Lu, M.; Lin, S.; Fu, X.; Liu, P. Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H2 Evolution. ACS Appl. Mater. Interfaces 2015, 7, 13915–13924. [Google Scholar] [CrossRef]
- Hu, J.; Gong, Y.; Niu, L.; Li, C.; Liu, X. Sulfur Vacancy-Rich CuS for Improved Surface-Enhanced Raman Spectroscopy and Full-Spectrum Photocatalysis. Nanomaterials 2022, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, X.; Yu, Q.; Zhou, G.; Li, Q.; Wang, C.; Hua, Y.; She, Y.; Xu, H.; Li, H. Plasma-induced defect engineering: Boosted the reverse water gas shift reaction performance with electron trap. J. Colloid Interface Sci. 2020, 580, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jia, X.; Sun, M.; Liu, X.; Wang, C.; Yu, X.; Xing, Y. Synergistic manipulation of sulfur vacancies and palladium doping of In2S3 for enhanced photocatalytic H2 production. J. Colloid Interface Sci. 2025, 677, 425–434. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Si, Y.; Li, B.; Deng, F.; Yang, L.; Liu, X.; Dai, W.; Luo, S. Gradient Hydrogen Migration Modulated with Self-Adapting S Vacancy in Copper-Doped ZnIn2S4 Nanosheet for Photocatalytic Hydrogen Evolution. ACS Nano 2021, 15, 15238–15248. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crops Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, N.; Jana, S.; Rout, S.K.; Dey, R.K.; Singh, G.P. Surface polar charge induced Ni loaded CdS heterostructure nanorod for efficient photo-catalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 16373–16386. [Google Scholar] [CrossRef]
- Cao, H.; Xue, J.; Wang, Z.; Dong, J.; Li, W.; Wang, R.; Sun, S.; Gao, C.; Tan, Y.; Zhu, X.; et al. Construction of atomically dispersed Cu sites and S vacancies on CdS for enhanced photocatalytic CO2reduction. J. Mater. Chem. A 2021, 9, 16339–16344. [Google Scholar] [CrossRef]
- Qiang, T.; Xia, Y. Facile-controllable synthesis of SnS2 with sulfur vacancy for boosted Cr(VI) photoreduction performance. J. Alloys Compd. 2020, 845, 156155. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Cong, B.; Yao, S.; Chen, G. Sulphur vacancies modified Cd0.5Zn0.5S/Bi2S3: Engineering localized surface plasma resonance enhanced visible-light-driven hydrogen evolution. Chem. Eng. J. 2021, 415, 128868. [Google Scholar] [CrossRef]
- Yang, J.; Du, H.; Yu, Q.; Zhang, W.; Zhang, Y.; Ge, J.; Li, H.; Liu, J.; Li, H.; Xu, H. Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. J. Colloid Interface Sci. 2022, 606, 793–799. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, R.; Zhang, C.; Xi, S.; Jones, M.W.M.; Tesfamichael, T.; Du, A.; Gui, K.; Ostrikov, K.; Wang, H. Plasma-induced on-surface sulfur vacancies in NiCo2S4 enhance the energy storage performance of supercapatteries. J. Mater. Chem. A 2020, 8, 9278–9291. [Google Scholar] [CrossRef]
- Xiao, B.; Lv, T.; Zhao, J.; Rong, Q.; Zhang, H.; Wei, H.; He, J.; Zhang, J.; Zhang, Y.; Peng, Y.; et al. Synergistic Effect of the Surface Vacancy Defects for Promoting Photocatalytic Stability and Activity of ZnS Nanoparticles. ACS Catal. 2021, 11, 13255–13265. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Zheng, Y.; Liu, Y.; Tian, Z.; Shi, Y.; Wang, Z.; Ma, J.; Zheng, W. Synergistic Effects of Tungsten Doping and Sulfur Vacancies in MoS2 on Enhancement of Hydrogen Evolution. J. Phys. Chem. C 2021, 125, 11369–11379. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 277, 119254. [Google Scholar] [CrossRef]
- Salah Hamza Hamid, M.A.; Zengin, Y.; Boz, I. CdxZn1-xS with bulk-twinned homojunctions and rich sulfur vacancies for efficient photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024, 52, 103–114. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, Y.; Li, Y.; Li, Z.; Zhang, W.; Zou, X.; Shi, J.; Huang, X.; Liu, C.; et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Xu, Y.; Pan, K.; Yu, C.; Wu, J.; Li, M.; Yang, F.; Qu, Y.; Zhou, W. Engineering surface oxygen vacancy of mesoporous CeO2 nanosheets assembled microspheres for boosting solar-driven photocatalytic performance. Chin. Chem. Lett. 2022, 33, 378–384. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Cai, X.; Zhao, Y.; Gu, X.; Mao, L. Sulfur vacancy-rich ZnIn2S4 nanosheet arrays for visible-light-driven water splitting. Mater. Sci. Semicond. Process. 2022, 143, 106547. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, Y.; Chen, R.; Ling, G.; Wang, X.; Shen, Y.; Hao, C. Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: An environmentally friendly supercapacitor with high energy and power density. Ind. Crops Prod. 2024, 222, 119676. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiang, Y.; Liu, J.; He, H.; Jian, X.; Zhang, H.; Zeng, T.; Liu, M.; Cao, R.; Hu, Y.; et al. Coordination engineering of the interfacial chemical bond and sulfur vacancies modulated S-scheme charge transfer for efficient photocatalytic CO2 reduction. Sep. Purif. Technol. 2024, 343, 127114. [Google Scholar] [CrossRef]
- Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, J.; Yan, Y.; Wang, W.; Xiao, H. Electropositive carbon sites and sulfur vacancies in SnS2/g-C3N4 for achieving adsorption and photocatalytic degradation of As(III) in stages by pH regulation. J. Alloys Compd. 2021, 877, 160292. [Google Scholar] [CrossRef]
- Qiang, T.; Chen, L.; Xia, Y.; Qin, X. Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation. J. Clean. Prod. 2021, 291, 125213. [Google Scholar] [CrossRef]
- Pang, S.; Chen, C.; Li, C.; Jia, R.; Shi, Z.; Feng, S. Single-atom Mo anchored on sulfur vacancies Co9S8 for lithium-sulfur battery. J. Energy Storage 2024, 101, 113684. [Google Scholar] [CrossRef]
- Peng, Y.; Geng, M.; Yu, J.; Zhang, Y.; Tian, F.; Guo, Y.N.; Zhang, D.; Yang, X.; Li, Z.; Li, Z.; et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 298, 120570. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, W.; Yue, X.; Wang, Z.; Zhang, Z.; Wang, K.; Dai, W.; Fu, X. Synergistic effect between sulfur vacancies and S-scheme heterojunctions in WO3/VS-Zn3In2S6 for enhanced photocatalytic CO2 reduction in H2O vapor. J. Colloid Interface Sci. 2025, 678, 233–245. [Google Scholar] [CrossRef]
- Khan, S.S.; Steffy, J.P.; Swetha, S.; Syed, A.; Elgorban, A.M.; Alfagham, A.T.; Verma, M.; Wong, L.S. Sulfur vacancies engineered self-supported CdCr2S4 as cascade nanoreactor for efficient photocatalytic degradation of rifampicin. J. Water Process Eng. 2025, 69, 106619. [Google Scholar] [CrossRef]
- Yan, K.; Wu, D.; Wang, T.; Chen, C.; Liu, S.; Hu, Y.; Gao, C.; Chen, H.; Li, B. Highly Selective Ethylene Production from Solar-Driven CO2 Reduction on the Bi2S3@In2S3 Catalyst with In-SV-Bi Active Sites. ACS Catal. 2023, 13, 2302–2312. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Sharma, S.K.; Durgadevi, E.; Navaneethan, M.; Binitha, H.S.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y.; Kim, D.Y. Surfactant free synthesis of CdS nanospheres, microstructural analysis, chemical bonding, optical properties and photocatalytic activities. Micro Nanostruct. 2017, 104, 247–257. [Google Scholar] [CrossRef]
- Gong, F.; Ye, S.; Liu, M.; Zhang, J.; Gong, L.; Zeng, G.; Meng, E.; Su, P.; Xie, K.; Zhang, Y.; et al. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284. [Google Scholar] [CrossRef]
- Deng, W.; Shao, Y.; Hao, X.; Li, P.; Jin, Z. Metallic-like WN as electron harvester decorated on sulfur vacancy rich CdS single crystal for boosting photocatalytic hydrogen production. Renew. Energy 2025, 254, 123689. [Google Scholar] [CrossRef]
- Zhu, Y.; Lim, J.; Zhang, Z.; Wang, Y.; Sarkar, S.; Ramsden, H.; Li, Y.; Yan, H.; Phuyal, D.; Gauriot, N.; et al. Room-Temperature Photoluminescence Mediated by Sulfur Vacancies in 2D Molybdenum Disulfide. ACS Nano 2023, 17, 13545–13553. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, N.; Liu, Z.; Du, C. Synthesis of Zn0.1Sn0.1Cd0.8Sx Solid Solutions for Photocatalytic Reduction of Cr(VI): Bandgap Structure and Sulfur Vacancy Regulation. Chem. Asian J. 2023, 18, e202300089. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Song, M.; Liu, F.; Peng, H.; Zhao, T.; Yin, S.-F.; Chen, P. Interfacial chemical bond regulating the electronic coupling of ZnIn2S4−x-WO3−x for enhancing the photocatalytic pollutions degradation coupled with hydrogen evolution. Appl. Catal. B Environ. 2024, 342, 123436. [Google Scholar] [CrossRef]
- Xie, G.; Liao, L.; Wang, J.; Zhang, P.; Xu, B.; Xie, X.; Chen, C.; Anasori, B.; Zhang, N. Strong support effect induced by MXene for the synthesis of metal sulfides nanosheet arrays with sulfur vacancies towards selective CO2-to-CO photoreduction. Science Bulletin 2024, 69, 3247–3259. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, M.; Xu, Y.; Li, X.; Zhou, X.; Hong, L.; Jiang, L.; Lin, W.-F. S vacancy modulated ZnxCd1−xS/CoP quantum dots for efficient H2 evolution from water splitting under visible light. J. Energy Chem. 2021, 61, 210–218. [Google Scholar] [CrossRef]
- Xu, T.; Su, X.; Zhu, Y.; Khan, S.; Chen, D.-L.; Guo, C.; Ning, J.; Zhong, Y.; Hu, Y. One-pot solvothermal synthesis of flower-like Fe-doped In2S3/Fe3S4 S-scheme hetero-microspheres with enhanced interfacial electric field and boosted visible-light-driven CO2 reduction. J. Colloid Interface Sci. 2023, 629, 1027–1038. [Google Scholar] [CrossRef]
- Yang, D.; Liang, J.; Luo, L.; Deng, R.; Li, G.; He, Q.; Chen, Y. Facile defect engineering in ZnIn2S4 coupled with carbon dots for rapid diclofenac degradation. Chin. Chem. Lett. 2021, 32, 2534–2538. [Google Scholar] [CrossRef]
- Du, J.; Shi, H.; Wu, J.; Li, K.; Song, C.; Guo, X. Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity. ACS Sustain. Chem. Eng. 2023, 11, 2531–2540. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Ali, S.; Li, H.; Ouyang, Q.; Chen, Q. Self-Cleaning-Mediated SERS Chip Coupled Chemometric Algorithms for Detection and Photocatalytic Degradation of Pesticides in Food. J. Agric. Food Chem. 2021, 69, 1667–1674. [Google Scholar] [CrossRef]
- Li, L.; Qin, Z.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D.; et al. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. ACS Nano 2019, 13, 6824–6834. [Google Scholar] [CrossRef]
- Luo, L.; Luo, Y.; Xiong, Y.; Wang, F.; Dai, Y.; Ma, Y.; Xie, Y.; Zhang, J. V-doped ZnIn2S4 induces S vacancy modulation to enhance photocatalytic hydrogen production under visible light. Sep. Purif. Technol. 2025, 364. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Mao, L.; Cai, X.; Geng, Z.; Zhang, H.; Zhang, J.; Tan, X.; Ye, J.; Yu, T. Regulating the Metallic Cu-Ga Bond by S Vacancy for Improved Photocatalytic CO2 Reduction to C2H4. Adv. Funct. Mater. 2023, 33, 2213901. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, B.; Wang, Z. Electron-assisted synthesis of g-C3N4/MoS2 composite with dual defects for enhanced visible-light-driven photocatalysis. RSC Adv. 2020, 11, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, J.; Liu, R. Defect engineering of zeolite imidazole framework derived ZnS nanosheets towards enhanced visible light driven photocatalytic hydrogen production. Appl. Catal. B Environ. 2020, 278, 119265. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, W.; Anjum, U.; Kosari, M.; Xi, S.; Kozlov, S.M.; Zeng, H.C. Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nat. Commun. 2023, 14, 5872. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Verifying the Charge-Transfer Mechanism in S-scheme Heterojunctions Using Femtosecond Transient Absorption Spectroscopy. Angew. Chem. Int. Ed. 2023, 62, e202218688. [Google Scholar] [CrossRef]
- Zhu, Q.; Gu, Y.; Wang, X.; Gu, Y.; Ma, J. The Synergistic Effect between Metal and Sulfur Vacancy to Boost CO2 Reduction Efficiency: A Study on Descriptor Transferability and Activity Prediction. JACS Au 2024, 4, 125–138. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Y.; Zhang, T.; Lu, J.; Turkevich, V.; Yu, Y.; Xu, J.; Lin, H.; Li, Y.; Wang, L. Hollow p-n heterostructures with vacancy engineering to enhance Z-scheme photocatalytic CO2 reduction. Chem. Eng. J. 2025, 520, 165595. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Q.; Wu, S.; Zhang, L.; Feng, L.; Wang, Y.; Xie, Y.; Li, Y.; Zou, J.-P.; Luo, S.-L. Covalent coupling promoting charge transport of CdSeTe/UiO-66 for boosting photocatalytic CO2 reduction. Chin. Chem. Lett. 2023, 34, 107903. [Google Scholar] [CrossRef]
- Luo, N.; Chen, C.; Yang, D.; Hu, W.; Dong, F. S defect-rich ultrathin 2D MoS2: The role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis. Appl. Catal. B Environ. 2021, 299, 120664. [Google Scholar] [CrossRef]
- Liu, S.; Chen, L.; Liu, T.; Cai, S.; Zou, X.; Jiang, J.; Mei, Z.; Gao, Z.; Guo, H. Rich S vacant g-C3N4@CuIn5S8 hollow heterojunction for highly efficient selective photocatalytic CO2 reduction. Chem. Eng. J. 2021, 424, 130325. [Google Scholar] [CrossRef]
- Lin, J.; He, J.; Huang, Q.; Zhang, Y.; Li, W.; Hu, J.; Zhou, G.; Yang, Z. Rich Sulfur Vacancies and Reduced Schottky Barrier Height Synergistically Enable Au/ZnIn2S4 with Enhanced Photocatalytic CO2 Reduction into CO. Inorg. Chem. 2024, 63, 13117–13126. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, R.; Li, X.; Liu, T.; Shaheer, A.R.M.; Cao, R. The effects of local environment towards yield and selectivity on photocatalytic CO2 reduction catalyzed by metal-organic framework. Chin. Chem. Lett. 2023, 34, 108517. [Google Scholar] [CrossRef]
Photocatalyst | Solution | Light Source | Product | Yield (μmol·g−1 h−1) | Ref. |
---|---|---|---|---|---|
Cu2S | H2O | 300 W xenon lamp | CO | 1.25 | [90] |
ZnIn2S4 | H2O | 300 W xenon lamp | CO | 2.97 | [91] |
BMO/IS-1 | H2O | 300 W xenon lamp (λ ≥ 420 nm) | CO | 7.16 | [92] |
Vs-AgInS2 | H2O | 300 W xenon lamp (λ ≥ 780 nm) | CO | 8.04 | [93] |
2Cu-ZISF | Na2SO4 (pH = 7) | 300 W xenon lamp with 400 nm cut-off filter | CH4 | 22.27 | [94] |
Cu2S1−x | H2O | 300 W xenon lamp with an AM 1.5 G filter | CO | 13.63 | [95] |
Sv-ZnS/ZIS | TEOA a aqueous solution (10 vol%, v/v) | 300 W xenon lamp (λ ≥ 420 nm) | CO | 793.3 | [96] |
Vs-ZnS/OMNC | TEOA and a mixture of H2O/acetonitrile | 300 W xenon lamp (λ ≥ 420 nm) | CO | 712.1 | [97] |
WZ-2 | H2O | 300 W xenon lamp | CO | 11.03 | [91] |
60ISIO-1h | H2O | 300 W xenon lamp with 420 nm cut-off filter | CH4 | 16.52 | [98] |
Cu-In2S3 | TEOA and a mixture of H2O/acetonitrile | 300 W xenon lamp with an AM 1.5 G filter | C2H4 C2H6 | 6.5 0.4 | [99] |
Ca-CoS2 | H2O | 300 W xenon lamp (λ ≥ 420 nm) | CO C2H4 | 10.01 12.45 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, B.; Liu, X.; Song, X.; Yang, Y.; Zhang, J.; Zhou, W.; Huo, P. Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design. Catalysts 2025, 15, 782. https://doi.org/10.3390/catal15080782
Chang B, Liu X, Song X, Yang Y, Zhang J, Zhou W, Huo P. Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design. Catalysts. 2025; 15(8):782. https://doi.org/10.3390/catal15080782
Chicago/Turabian StyleChang, Bingqing, Xin Liu, Xianghai Song, Yangyang Yang, Jisheng Zhang, Weiqiang Zhou, and Pengwei Huo. 2025. "Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design" Catalysts 15, no. 8: 782. https://doi.org/10.3390/catal15080782
APA StyleChang, B., Liu, X., Song, X., Yang, Y., Zhang, J., Zhou, W., & Huo, P. (2025). Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design. Catalysts, 15(8), 782. https://doi.org/10.3390/catal15080782