Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective
Abstract
1. Introduction
2. Background
2.1. Sustainable Aviation Roadmaps
2.2. Industry 4.0
2.2.1. Blockchains
2.2.2. AI
2.2.3. Internet of Things (IoT)
2.2.4. 3D Printing
2.2.5. Simulations (Digital Twins/AR/VR)
3. Research Methods
- Keywords referring to blockchain: “Distributed Ledger technology (DLT)”, “Smart contract”, “Tokenization”.
- Keywords referring to AI: “machine learning (ML)”, “natural language processing (NLP)”, “computer vision”, “robotic process automation (RPA)”, and “generative AI (GAI)”.
- Other keywords: “Internet of Things (IoT)”, “cloud computing”, “edge computing”, “3D printing”, “additive manufacturing,” “simulations”, “Digital Twins (DT)”, “AR/VR”.
- Feedstock innovation: Resource market and availability analysis; increase sustainable lipid supply; boost biomass production and waste collection; improve feedstock supply logistics; improve feedstock handling reliability; enhance sustainability of biomass supply.
- Conversion technology: Decarbonize and scale fermentation-based fuels; enhance ASTM pathways; develop bio-intermediates; reduce risk and scale up; develop innovative pathways.
- Building supply chains: Establish regional coalitions; model SAF supply chains; demonstrate regional supply chains; develop production infrastructure.
- Policy and valuation: Improve environmental data and models; techno-economic feasibility analysis; contribute to SAF policy development.
- Enabling end use: Support evaluation and testing; adopt high-percentage SAF blends; explore synthetic jet fuels; adapt infrastructure.
- Communicating progress: Engage stakeholders; assess benefits and influence; track SAF Grand Challenge; share positive impacts.
4. Discussion and Implications
4.1. Feedstock Innovation
4.1.1. Recourse Market and Availability Analysis
4.1.2. Increase Sustainable Lipid Supply
4.1.3. Boost Biomass Production and Waste Collection
4.1.4. Improve Feedstock Supply Logistics
4.1.5. Improve Feedstock Handling System Reliability
4.1.6. Enhance Sustainability of Biomass and Waste Supply Systems
4.2. Conversion Technology
4.2.1. Decarbonize, Diversify, and Scale the Current Fermentation-Based Fuel Industry
4.2.2. Enhance Production and Reduce Carbon Intensity of Existing ASTM-Approved Pathways
4.2.3. Develop Bio-Intermediates and Pathways Compatible with Existing Capital Assets
4.2.4. Reduce Risk During Operations and Scale-Up
4.2.5. Develop Innovative Unit Operations and Pathways
4.3. Building Supply Chains
4.3.1. Establish Regional Stakeholder Coalitions
4.3.2. Model SAF Supply Chains
4.3.3. Demonstration of Regional SAF Supply Chains
4.3.4. Develop a Production Infrastructure to Support SAF Deployment in the Industry
4.4. Policy and Valuation
4.4.1. Improve the Environmental Data and Models for SAF
4.4.2. Conduct Techno-Economic and Production Feasibility Analysis
4.4.3. Contribute to SAF Policy Development
4.5. Enabling End Use
4.5.1. Support SAF Evaluation, Testing, Qualification, and Specification
4.5.2. Facilitate the Adoption of Unblended and High-Percentage SAF Blends, Including up to 100% SAF
4.5.3. Explore Synthetic Jet Fuels That Enhance Operational Performance and Productivity
4.5.4. Adapt Fuel Infrastructure to Support the Distribution and Use of SAF
4.6. Communicating Progress and Building Support
4.6.1. Engage Stakeholders to Promote Awareness and Collaboration on Sustainable Feedstock Practices
4.6.2. Carry out a Comprehensive Assessment of the Benefits and Influence of the SAF Grand Challenge
4.6.3. Track the Advancement of the SAF Grand Challenge Objectives
4.6.4. Share the Positive Impacts of the SAF Grand Challenge with the Broader Community
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chireshe, F.; Petersen, A.M.; Ravinath, A.; Mnyakeni, L.; Ellis, G.; Viljoen, H.; Vienings, E.; Wessels, C.; Stafford, W.H.L.; Bole-Rentel, T.; et al. Cost-Effective Sustainable Aviation Fuel: Insights from a Techno-Economic and Logistics Analysis. Renew. Sustain. Energy Rev. 2025, 210, 115157. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R.H. Aviation CO2 Emissions Reductions from the Use of Alternative Jet Fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- World Economic Forum Aviation’s Flight Path to a Net-Zero Future. Available online: https://www.weforum.org/stories/2021/09/aviation-flight-path-to-net-zero-future/ (accessed on 27 May 2025).
- Williams, D. 2021 United States Aviation Climate Action Plan; The Federal Aviation Administration: Washington, DC, USA, 2021. [Google Scholar]
- Cui, Q.; Chen, B. Cost-Benefit Analysis of Using Sustainable Aviation Fuels in South America. J. Clean. Prod. 2024, 435, 140556. [Google Scholar] [CrossRef]
- Khazaei, M.; Gholian-Jouybari, F.; Davari Dolatabadi, M.; Pourebrahimi Alamdari, A.; Eskandari, H.; Hajiaghaei-Keshteli, M. Renewable Energy Portfolio in Mexico for Industry 5.0 and SDGs: Hydrogen, Wind, or Solar? Renew. Sustain. Energy Rev. 2025, 213, 115420. [Google Scholar] [CrossRef]
- United Nations THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 8 August 2025).
- Biancardi, A.; Califano, F.; D’Adamo, I.; Gastaldi, M.; Kostakis, I. A Distributed and Sustainable Model for Future Cities: A Profitability Analysis of Integrated Photovoltaic Systems with Storage under Different Incentive Policies. Energy Policy 2025, 205, 114691. [Google Scholar] [CrossRef]
- Basilico, P.; Biancardi, A.; D’Adamo, I.; Gastaldi, M.; Stornelli, V. Socioeconomic Dimensions of Renewable Energy Communities: Pathways to Collective Well-Being. Util. Policy 2025, 96, 102000. [Google Scholar] [CrossRef]
- Louman, B.; Keenan, R.J.; Kleinschmit, D.; Atmadja, S.; Sitoe, A.A.; Nhantumbo, I.; Velozo, R.d.C.; Morales, J.P. SDG 13: Climate Action–Impacts on Forests and People. In Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, UK, 2019; pp. 419–444. ISBN 978-1-108-48699-6. [Google Scholar]
- Church, J.A.; White, N.J. A 20th Century Acceleration in Global Sea-Level Rise. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Beier, G.; Niehoff, S.; Hoffmann, M. Industry 4.0: A Step towards Achieving the SDGs? A Critical Literature Review. Discov. Sustain. 2021, 2, 22. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Hossain, M.J.; Alam, M.M. Machine Learning Scopes on Microgrid Predictive Maintenance: Potential Frameworks, Challenges, and Prospects. Renew. Sustain. Energy Rev. 2024, 190, 114088. [Google Scholar] [CrossRef]
- Bhagwan, N.; Evans, M. A Review of Industry 4.0 Technologies Used in the Production of Energy in China, Germany, and South Africa. Renew. Sustain. Energy Rev. 2023, 173, 113075. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Fathi, M.; Rejeb, A.; Foroughi, B.; Nikbin, D. Beyond Industry 4.0: A Systematic Review of Industry 5.0 Technologies and Implications for Social, Environmental and Economic Sustainability. Asia Pac. J. Bus. Adm. 2024. [Google Scholar] [CrossRef]
- Ivanov, D. The Industry 5.0 Framework: Viability-Based Integration of the Resilience, Sustainability, and Human-Centricity Perspectives. Int. J. Prod. Res. 2023, 61, 1683–1695. [Google Scholar] [CrossRef]
- Olsen, T.L.; Tomlin, B. Industry 4.0: Opportunities and Challenges for Operations Management. Manuf. Serv. Oper. Manag. 2019, 22, 1–222. [Google Scholar] [CrossRef]
- Sharma, M.; Sehrawat, R.; Luthra, S.; Daim, T.; Bakry, D. Moving Towards Industry 5.0 in the Pharmaceutical Manufacturing Sector: Challenges and Solutions for Germany. IEEE Trans. Eng. Manag. 2024, 71, 13757–13774. [Google Scholar] [CrossRef]
- He, X.; Wang, N.; Zhou, Q.; Huang, J.; Ramakrishna, S.; Li, F. Smart Aviation Biofuel Energy System Coupling with Machine Learning Technology. Renew. Sustain. Energy Rev. 2024, 189, 113914. [Google Scholar] [CrossRef]
- Hariyani, D.; Hariyani, P.; Mishra, S. Digital Technologies for the Sustainable Development Goals. Green. Technol. Sustain. 2025, 3, 100202. [Google Scholar] [CrossRef]
- Varriale, V.; Camilleri, M.A.; Cammarano, A.; Michelino, F.; Müller, J.; Strazzullo, S. Unleashing Digital Transformation to Achieve the Sustainable Development Goals across Multiple Sectors. Sustain. Dev. 2025, 33, 565–579. [Google Scholar] [CrossRef]
- Raman, R.; Kautish, P.; Siddiqui, A.; Siddiqui, M.; Nedungadi, P. The Role of Metaverse Technologies in Energy Systems towards Sustainable Development Goals. Energy Rep. 2025, 13, 4459–4476. [Google Scholar] [CrossRef]
- Magazzino, C.; Zoundi, Z. Enhancing Climate Action Evaluation Using Artificial Neural Networks: An Analysis of SDG 13. Sustain. Futures 2025, 9, 100439. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Magazzino, C. Evaluating Financial Implications of Renewable Energy for Climate Action and Sustainable Development Goals. Renew. Sustain. Energy Rev. 2025, 212, 115390. [Google Scholar] [CrossRef]
- Kartal, M.T.; Mukhtarov, S.; Depren, Ö.; Ayhan, F.; Ulussever, T. How Can SDG-13 Be Achieved by Energy, Environment, and Economy-Related Policies? Evidence From Five Leading Emerging Countries. Sustain. Dev. 2025, 33, 5110–5133. [Google Scholar] [CrossRef]
- He, X.; Khan, S.; Ozturk, I.; Murshed, M. The Role of Renewable Energy Investment in Tackling Climate Change Concerns: Environmental Policies for Achieving SDG-13. Sustain. Dev. 2023, 31, 1888–1901. [Google Scholar] [CrossRef]
- DOE; USDA; DOT; EPA. Sustainable Aviation Fuel Grand Challenge Roadmap: Flight Plan for Sustainable Aviation Fuel Report; 2022. Available online: https://biomassboard.gov/sustainable-aviation-fuel-grand-challenge-roadmap (accessed on 10 August 2025).
- CFR Clean Fuel Regulations. Available online: https://gazette.gc.ca/rp-pr/p2/2022/2022-07-06/html/sor-dors140-eng.html (accessed on 5 July 2025).
- SkyNRG. Sustainable Aviation Fuel Arke Outlook; SkyNRG: Amsterdam, The Netherlands, 2024. [Google Scholar]
- MBIE. SAF Consortium Roadmap; New Zealand’s Ministry of Business, Innovation & Employment: Wellington, New Zealand, 2021. [Google Scholar]
- MOEI. National Sustainable Aviation Fuel Roadmap of the United Arab Emirates; GCAA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- CSIRO. Sustainable Aviation Fuel Roadmap; Australia’s National Science Agency: Black Mountain, ACT, Australia, 2023. [Google Scholar]
- CASS. Singapore Sustainable Air Hub Blueprint; Civil Aviation Authority of Singapore: Singapore, 2024. [Google Scholar]
- D’Adamo, I.; Gastaldi, M.; Nallapaneni, M.K. Europe Moves toward Pragmatic Sustainability: A More Human and Fraternal Approach. Sustainability 2024, 16, 6161. [Google Scholar] [CrossRef]
- Grim, R.G.; Tao, L.; Abdullah, Z.; Cortright, R.; Oakleaf, B. The Challenge Ahead: A Critical Perspective on Meeting U.S. Growth Targets for Sustainable Aviation Fuel; National Renewable Energy Laboratory: Applewood, CO, USA, 2024. [Google Scholar]
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation Biofuel from Renewable Resources: Routes, Opportunities and Challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Watson, M.J.; Machado, P.G.; Da Silva, A.V.; Saltar, Y.; Ribeiro, C.O.; Nascimento, C.A.O.; Dowling, A.W. Sustainable Aviation Fuel Technologies, Costs, Emissions, Policies, and Markets: A Critical Review. J. Clean. Prod. 2024, 449, 141472. [Google Scholar] [CrossRef]
- Sharno, M.A.; Hiloidhari, M. Social Sustainability of Biojet Fuel for Net Zero Aviation. Energy Sustain. Dev. 2024, 79, 101419. [Google Scholar] [CrossRef]
- Inan, I.; Orhan, I.; Ekici, S. Fuel Savings Strategies for Sustainable Aviation in Accordance with United Nations Sustainable Development Goals (UN SDGs). Energy 2025, 320, 135159. [Google Scholar] [CrossRef]
- ICAO. Aviation Benefits Report-2019; ICAO: Montreal, QC, Canada, 2019. [Google Scholar]
- ASTM Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. Available online: https://store.astm.org/d7566-22.html (accessed on 5 July 2025).
- IATA. Sustainable Aviation Fuel: Technical Certification; IATA: Montreal, QC, Canada, 2020. [Google Scholar]
- ICAO. Environmental Report 2013 Aviation and Climate Change; ICAO: Montreal, QC, Canada, 2013. [Google Scholar]
- ICAO. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA); ICAO: Montreal, QC, Canada, 2016. [Google Scholar]
- European Parliament ReFuelEU Aviation-Sustainable Aviation Fuels|Legislative Train Schedule. Available online: https://www.europarl.europa.eu/legislative-train/spotlight-JD21/file-refueleu-aviation?sid=5201 (accessed on 5 July 2025).
- Alaska Airlines Commits to Carbon, Waste and Water Goals for 2025, Announces Path to Net Zero by 2040. Alaska Airlines News, 21 April 2021.
- Bergero, C.; Gosnell, G.; Gielen, D.; Kang, S.; Bazilian, M.; Davis, S.J. Pathways to Net-Zero Emissions from Aviation. Nat. Sustain. 2023, 6, 404–414. [Google Scholar] [CrossRef]
- Chauhan, C.; Singh, A. A Review of Industry 4.0 in Supply Chain Management Studies. J. Manuf. Technol. Manag. 2019, 31, 863–886. [Google Scholar] [CrossRef]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Martínez-Jurado, P.J. Information and Digital Technologies of Industry 4.0 and Lean Supply Chain Management: A Systematic Literature Review. Int. J. Prod. Res. 2020, 58, 5034–5061. [Google Scholar] [CrossRef]
- Weyer, S.; Schmitt, M.; Ohmer, M.; Gorecky, D. Towards Industry 4.0-Standardization as the Crucial Challenge for Highly Modular, Multi-Vendor Production Systems. IFAC-Pap. 2015, 48, 579–584. [Google Scholar] [CrossRef]
- Choi, T.; Kumar, S.; Yue, X.; Chan, H. Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond. Prod. Oper. Manag. 2022, 31, 9–31. [Google Scholar] [CrossRef]
- Oriekhoe, O.I.; Oyeyemi, O.P.; Bello, B.G.; Omotoye, G.B.; Daraojimba, A.I.; Adefemi, A.; Oriekhoe, O.I.; Oyeyemi, O.P.; Bello, B.G.; Omotoye, G.B.; et al. Blockchain in Supply Chain Management: A Review of Efficiency, Transparency, and Innovation. Int. J. Sci. Res. Arch. 2024, 11, 173–181. [Google Scholar] [CrossRef]
- Pattison, I. 4 Characteristics That Set Blockchain Apart|Architecting the Cloud. Available online: https://architectingthecloud.com/2017/04/27/4-characteristics-that-set-blockchain-apart/ (accessed on 26 June 2025).
- Sharabati, A.-A.A.; Jreisat, E.R. Blockchain Technology Implementation in Supply Chain Management: A Literature Review. Sustainability 2024, 16, 2823. [Google Scholar] [CrossRef]
- Park, A.; Li, H. The Effect of Blockchain Technology on Supply Chain Sustainability Performances. Sustainability 2021, 13, 1726. [Google Scholar] [CrossRef]
- Rauchs, M.; Glidden, A.; Gordon, B.; Pieters, G.C.; Recanatini, M.; Rostand, F.; Vagneur, K.; Zhang, B.Z. Distributed Ledger Technology Systems: A Conceptual Framework; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Kamble, S.; Gunasekaran, A.; Arha, H. Understanding the Blockchain Technology Adoption in Supply Chains-Indian Context. Int. J. Prod. Res. 2019, 57, 2009–2033. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Sharma, P.; Bora, B.J.; Dizge, N. Harnessing Biomass Energy: Advancements through Machine Learning and AI Applications for Sustainability and Efficiency. Process Saf. Environ. Prot. 2024, 191, 193–205. [Google Scholar] [CrossRef]
- Roeck, D.; Sternberg, H.; Hofmann, E. Distributed Ledger Technology in Supply Chains: A Transaction Cost Perspective. Int. J. Prod. Res. 2020, 58, 2124–2141. [Google Scholar] [CrossRef]
- Morgan, T.R.; Richey, R.G., Jr.; Ellinger, A.E. Supplier Transparency: Scale Development and Validation. Int. J. Logist. Manag. 2018, 29, 959–984. [Google Scholar] [CrossRef]
- Brody, P. How blockchain is revolutionizing supply chain management. Digitalist Magazine, 6 September 2017. Available online: https://cryptocenternews.com/pdf/_FILE/ey-blockchain-and-the-supply-chain-three.pdf (accessed on 5 July 2025).
- Tönnissen, S.; Teuteberg, F. Analysing the Impact of Blockchain-Technology for Operations and Supply Chain Management: An Explanatory Model Drawn from Multiple Case Studies. Int. J. Inf. Manag. 2020, 52, 101953. [Google Scholar] [CrossRef]
- Cai, Y.-J.; Choi, T.-M.; Zhang, J. Platform Supported Supply Chain Operations in the Blockchain Era: Supply Contracting and Moral Hazards. Decis. Sci. 2021, 52, 866–892. [Google Scholar] [CrossRef]
- Ethereum Solidity—Solidity 0.8.31 Documentation. Available online: https://docs.soliditylang.org/en/latest/ (accessed on 26 June 2025).
- Treleaven, P.; Gendal Brown, R.; Yang, D. Blockchain Technology in Finance. Computer 2017, 50, 14–17. [Google Scholar] [CrossRef]
- Magazzeni, D.; McBurney, P.; Nash, W. Validation and Verification of Smart Contracts: A Research Agenda. Computer 2017, 50, 50–57. [Google Scholar] [CrossRef]
- Chang, Y.; Iakovou, E.; Shi, W. Blockchain in Global Supply Chains and Cross Border Trade: A Critical Synthesis of the State-of-the-Art, Challenges and Opportunities. Int. J. Prod. Res. 2020, 58, 2082–2099. [Google Scholar] [CrossRef]
- Chang, S.E.; Chen, Y.-C.; Lu, M.-F. Supply Chain Re-Engineering Using Blockchain Technology: A Case of Smart Contract Based Tracking Process. Technol. Forecast. Soc. Change 2019, 144, 1–11. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, C. Blockchain Application and Outlook in the Banking Industry. Financ. Innov. 2016, 2, 24. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Sarkis, J. Blockchain Characteristics and Green Supply Chain Advancement. In Global Perspectives on Green Business Administration and Sustainable Supply Chain Management; IGI Global Scientific Publishing: Hershey, PA, USA, 2020; pp. 93–109. ISBN 978-1-7998-2173-1. [Google Scholar]
- Eyo-Udo, N.L.; Agho, M.O.; Onukwulu, E.C.; Sule, A.K.; Azubuike, C. Advances in Blockchain Solutions for Secure and Efficient Cross-Border Payment Systems. Int. J. Res. Innov. Appl. Sci. 2025, IX, 536–563. [Google Scholar] [CrossRef]
- Rachana Harish, A.; Liu, X.L.; Zhong, R.Y.; Huang, G.Q. Log-Flock: A Blockchain-Enabled Platform for Digital Asset Valuation and Risk Assessment in E-Commerce Logistics Financing. Comput. Ind. Eng. 2021, 151, 107001. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Im, S.; Choi, D. Competitiveness of E Commerce Firms through ESG Logistics. Sustainability 2021, 13, 11548. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, W.M.; Guo, H.; Barenji, A.V.; Li, Z.; Huang, G.Q. Industrial Blockchain Based Framework for Product Lifecycle Management in Industry 4.0. Robot. Comput.-Integr. Manuf. 2020, 63, 101897. [Google Scholar] [CrossRef]
- Rachana Harish, A.; Liu, X.L.; Li, M.; Zhong, R.Y.; Huang, G.Q. Blockchain-Enabled Digital Assets Tokenization for Cyber-Physical Traceability in E-Commerce Logistics Financing. Comput. Ind. 2023, 150, 103956. [Google Scholar] [CrossRef]
- Hofmann, E.; Strewe, U.M.; Bosia, N. Supply Chain Finance and Blockchain Technology; SpringerBriefs in Finance; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-62370-2. [Google Scholar]
- Yu, Y.; Huang, G.; Guo, X. Financing Strategy Analysis for a Multi-Sided Platform with Blockchain Technology. Int. J. Prod. Res. 2021, 59, 4513–4532. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Joshi, A. Assessing the Viability of Blockchain Technology for Enhancing Court Operations. Int. J. Law Manag. 2023, 65, 425–439. [Google Scholar] [CrossRef]
- Ali, S.M.; Rahman, A.U.; Kabir, G.; Paul, S.K. Artificial Intelligence Approach to Predict Supply Chain Performance: Implications for Sustainability. Sustainability 2024, 16, 2373. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial Intelligence for Decision Making in the Era of Big Data–Evolution, Challenges and Research Agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Mcafee, A.N.D.R.E.W. The business of artificial intelligence. Harvard Bus. Rev. 2017, 7, 1–2. [Google Scholar]
- Harikrishnakumar, R.; Dand, A.; Nannapaneni, S.; Krishnan, K. Supervised Machine Learning Approach for Effective Supplier Classification. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 240–245. [Google Scholar]
- Bastani, H.; Zhang, D.J.; Zhang, H. Applied Machine Learning in Operations Management. In Innovative Technology at the Interface of Finance and Operations: Volume I; Babich, V., Birge, J.R., Hilary, G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 189–222. ISBN 978-3-030-75729-8. [Google Scholar]
- Yang, Y.; Fu, Z.-Y.; Zhan, D.-C.; Liu, Z.-B.; Jiang, Y. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. IEEE Trans. Knowl. Data Eng. 2021, 33, 696–709. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Sadeghi, S.; Mooseloo, F.M.; Vandchali, H.R.; Aeini, S. Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas. Math. Probl. Eng. 2021, 2021, 1476043. [Google Scholar] [CrossRef]
- Syafrudin, M.; Alfian, G.; Fitriyani, N.L.; Anshari, M. Applied Artificial Intelligence for Sustainability. Sustainability 2024, 16, 2469. [Google Scholar] [CrossRef]
- Baptista, M.; Gordon, M.; Herrmann, C.; Pratt, A. With Artificial Intelligence, Find New Suppliers in Days, Not Months; McKinsey&Company: Chicago, IL, USA, 2021; Available online: https://www.mckinsey.com/capabilities/operations/our-insights/with-artificial-intelligence-find-new-suppliers-in-days-not-months (accessed on 10 August 2025).
- Moshebah, O.Y.; Rodríguez-González, S.; González, A.D. A Max–Min Fairness-Inspired Approach to Enhance the Performance of Multimodal Transportation Networks. Sustainability 2024, 16, 4914. [Google Scholar] [CrossRef]
- Painuly, S.; Sharma, S. Natural Language Processing Techniques for E-Healthcare Supply Chain Management System. In Proceedings of the 2024 International Conference on Emerging Systems and Intelligent Computing (ESIC), Bhubaneswar, India, 9–10 February 2024; pp. 11–16. [Google Scholar]
- Serna, A.; Soroa, A.; Agerri, R. Applying Deep Learning Techniques for Sentiment Analysis to Assess Sustainable Transport. Sustainability 2021, 13, 2397. [Google Scholar] [CrossRef]
- Aejas, B.; Belhi, A.; Bouras, A. Using AI to Ensure Reliable Supply Chains: Legal Relation Extraction for Sustainable and Transparent Contract Automation. Sustainability 2025, 17, 4215. [Google Scholar] [CrossRef]
- Aslam, F.; Calghan, J. Using NLP to Enhance Supply Chain Management Systems. J. Eng. Res. Rep. 2023, 25, 211–219. [Google Scholar] [CrossRef]
- D Kulkarni Saurav, N. Revolutionizing Manufacturing: The Integral Role of AI and Computer Vision in Shaping Future Industries. Int. J. Soc. Robot. 2024, 13, 1183–1188. [Google Scholar] [CrossRef]
- Tienin, B.W.; Cui, G.; Ukwuoma, C.C.; Nana, Y.A.T.; Esidang, R.M.; Moniz Moreira, E.Z. MS3Net: A Deep Ensemble Learning Approach for Ship Classification in Heterogeneous Remote Sensing Data. Int. J. Remote Sens. 2024, 45, 748–771. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Navarro, A.M.; Sanchez-Viteri, S. Optimization of Inventory Management through Computer Vision and Machine Learning Technologies. Intell. Syst. Appl. 2024, 24, 200438. [Google Scholar] [CrossRef]
- Chavan, C.; Hembade, S.; Jadhav, G.; Komalwad, P.; Rawat, P. Computer Vision Application Analysis Based on Object Detection. Int. J. Sci. Res. Eng. Manag. 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Loce, R.P.; Bernal, E.A.; Wu, W.; Bala, R. Computer Vision in Roadway Transportation Systems: A Survey. Just Enough Items 2013, 22, 041121. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Konz, N. Computer Vision Techniques in Manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 105–117. [Google Scholar] [CrossRef]
- Dilek, E.; Dener, M. Computer Vision Applications in Intelligent Transportation Systems: A Survey. Sensors 2023, 23, 2938. [Google Scholar] [CrossRef]
- Stevens, W. Robotic Process Automation in Supply Chain. Eur. J. Supply Chain Manag. 2023, 1, 1–10. [Google Scholar]
- Mahey, H. Robotic Process Automation with Automation Anywhere: Techniques to Fuel Business Productivity and Intelligent Automation Using RPA; Packt: Birmingham, UK, 2020; ISBN 978-1-83921-656-5. [Google Scholar]
- Banur, O.M.; Patle, B.K.; Pawar, S. Integration of Robotics and Automation in Supply Chain: A Comprehensive Review-Extrica. Available online: https://www.extrica.com/article/23349 (accessed on 26 June 2025).
- Fitzgerald, J.; Quasney, E. Using autonomous robots to drive supply chain innovation. Deloitte Perspectives 2017. Available online: https://www.deloitte.com/us/en/Industries/industrial-construction/articles/autonomous-robots-supply-chain-innovation.html (accessed on 10 August 2025).
- Chauhan, A.; Brouwer, B.; Westra, E. Robotics for a Quality-Driven Post-Harvest Supply Chain. Curr. Robot. Rep. 2022, 3, 39–48. [Google Scholar] [CrossRef]
- Ribeiro, J.; Lima, R.; Eckhardt, T.; Paiva, S. Robotic Process Automation and Artificial Intelligence in Industry 4.0–A Literature Review. Procedia Comput. Sci. 2021, 181, 51–58. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Li, D.; Raymond, L. Generative AI at Work*. Q. J. Econ. 2025, 140, 889–942. [Google Scholar] [CrossRef]
- Jackson, I.; Ivanov, D.; Dolgui, A.; Namdar, J. Generative Artificial Intelligence in Supply Chain and Operations Management: A Capability-Based Framework for Analysis and Implementation. Int. J. Prod. Res. 2024, 62, 6120–6145. [Google Scholar] [CrossRef]
- Van Hoek, R.; DeWitt, M.; Lacity, M.; Johnson, T. How Walmart Automated Supplier Negotiations. Harv. Bus. Rev. 2022, 8, 2022. [Google Scholar]
- MIT Technology Review Procurement in the Age of AI. Available online: https://www.technologyreview.com/2023/11/28/1083628/procurement-in-the-age-of-ai/ (accessed on 26 June 2025).
- Richey, R.G.; Chowdhury, S.; Davis-Sramek, B.; Giannakis, M.; Dwivedi, Y.K. Artificial Intelligence in Logistics and Supply Chain Management: A Primer and Roadmap for Research. J. Bus. Logist. 2023, 44, 532–549. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Klumpp, M.; Ruiner, C. Artificial Intelligence, Robotics, and Logistics Employment: The Human Factor in Digital Logistics.|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.1111%2Fjbl.12314?sid=ebsco:plink:crawler&id=ebsco:doi:10.1111%2Fjbl.12314 (accessed on 26 June 2025).
- Ashok, M.; Madan, R.; Joha, A.; Sivarajah, U. Ethical Framework for Artificial Intelligence and Digital Technologies. Int. J. Inf. Manag. 2022, 62, 102433. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Pandey, N.; Currie, W.; Micu, A. Leveraging ChatGPT and Other Generative Artificial Intelligence (AI)-Based Applications in the Hospitality and Tourism Industry: Practices, Challenges and Research Agenda. Int. J. Contemp. Hosp. Manag. 2023, 36, 1–12. [Google Scholar] [CrossRef]
- Pan, S.L.; Nishant, R. Artificial Intelligence for Digital Sustainability: An Insight into Domain-Specific Research and Future Directions. Int. J. Inf. Manag. 2023, 72, 102668. [Google Scholar] [CrossRef]
- von Krogh, G.; Roberson, Q.; Gruber, M. Recognizing and Utilizing Novel Research Opportunities with Artificial Intelligence. Acad. Manag. J. 2023, 66, 367–373. [Google Scholar] [CrossRef]
- Hassini, E. Supply Chain Optimization: Current Practices and Overview of Emerging Research Opportunities. INFOR Inf. Syst. Oper. Res. 2008, 46, 93–96. [Google Scholar] [CrossRef]
- Khan, Y.; Su’ud, M.B.M.; Alam, M.M.; Ahmad, S.F.; Ahmad (Ayassrah), A.Y.A.B.; Khan, N. Application of Internet of Things (IoT) in Sustainable Supply Chain Management. Sustainability 2023, 15, 694. [Google Scholar] [CrossRef]
- Sallam, K.; Mohamed, M.; Mohamed, A.W. Internet of Things (IoT) in Supply Chain Management: Challenges, Opportunities, and Best Practices. Sustain. Mach. Intell. J. 2023, 2, 1–32. [Google Scholar] [CrossRef]
- Al-Qaseemi, S.A.; Almulhim, H.A.; Almulhim, M.F.; Chaudhry, S.R. IoT Architecture Challenges and Issues: Lack of Standardization. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 731–738. [Google Scholar]
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Rayes, A.; Salam, S. The Things in IoT: Sensors and Actuators. In Internet of Things from Hype to Reality: The Road to Digitization; Rayes, A., Salam, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 63–82. ISBN 978-3-030-90158-5. [Google Scholar]
- Gao, Q.; Guo, S.; Liu, X.; Manogaran, G.; Chilamkurti, N.; Kadry, S. Simulation Analysis of Supply Chain Risk Management System Based on IoT Information Platform. Enterp. Inf. Syst. 2020, 14, 1354–1378. [Google Scholar] [CrossRef]
- Subramanian, G.; Thampy, A.S. Implementation of Hybrid Blockchain in a Pre-Owned Electric Vehicle Supply Chain. IEEE Access 2021, 9, 82435–82454. [Google Scholar] [CrossRef]
- Subramanian, G.; Thampy, A.S.; Ugwuoke, N.V.; Ramnani, B. Crypto Pharmacy–Digital Medicine: A Mobile Application Integrated With Hybrid Blockchain to Tackle the Issues in Pharma Supply Chain. IEEE Open J. Comput. Soc. 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Bhargava, A.; Bhargava, D.; Kumar, P.N.; Sajja, G.S.; Ray, S. Industrial IoT and AI Implementation in Vehicular Logistics and Supply Chain Management for Vehicle Mediated Transportation Systems. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 673–680. [Google Scholar] [CrossRef]
- Alkhader, W.; Alkaabi, N.; Salah, K.; Jayaraman, R.; Arshad, J.; Omar, M. Blockchain-Based Traceability and Management for Additive Manufacturing. IEEE Access 2020, 8, 188363–188377. [Google Scholar] [CrossRef]
- Maiti, A.; Raza, A.; Kang, B.H.; Hardy, L. Estimating Service Quality in Industrial Internet-of-Things Monitoring Applications With Blockchain. IEEE Access 2019, 7, 155489–155503. [Google Scholar] [CrossRef]
- Verdouw, C.N.; Robbemond, R.M.; Verwaart, T.; Wolfert, J.; Beulens, A.J.M. A Reference Architecture for IoT-Based Logistic Information Systems in Agri-Food Supply Chains. Enterp. Inf. Syst. 2018, 12, 755–779. [Google Scholar] [CrossRef]
- Al-Rakhami, M.S.; Al-Mashari, M. A Blockchain-Based Trust Model for the Internet of Things Supply Chain Management. Sensors 2021, 21, 1759. [Google Scholar] [CrossRef]
- Andriulo, F.C.; Fiore, M.; Mongiello, M.; Traversa, E.; Zizzo, V. Edge Computing and Cloud Computing for Internet of Things: A Review. Informatics 2024, 11, 71. [Google Scholar] [CrossRef]
- Alyahya, S.; Wang, Q.; Bennett, N. Application and Integration of an RFID-Enabled Warehousing Management System–a Feasibility Study. J. Ind. Inf. Integr. 2016, 4, 15–25. [Google Scholar] [CrossRef]
- Rayes, A.; Salam, S. Internet of Things From Hype to Reality; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-44858-9. [Google Scholar]
- Borgia, E. The Internet of Things Vision: Key Features, Applications and Open Issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Taj, S.; Imran, A.S.; Kastrati, Z.; Daudpota, S.M.; Memon, R.A.; Ahmed, J. IoT-based supply chain management: A systematic literature review. Internet Things 2023, 24, 100982. [Google Scholar] [CrossRef]
- Choi, S.; Kim, B.H.; Do Noh, S. A diagnosis and evaluation method for strategic planning and systematic design of a virtual factory in smart manufacturing systems. Int. J. Precis. Eng. Manuf. 2015, 16, 1107–1115. [Google Scholar] [CrossRef]
- O’Donovan, P.; Leahy, K.; Bruton, K.; O’Sullivan, D.T. An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. J. Big Data 2015, 2, 25. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Direct Digital Manufacturing. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Gibson, I., Rosen, D., Stucker, B., Eds.; Springer: New York, NY, USA, 2015; pp. 375–397. ISBN 978-1-4939-2113-3. [Google Scholar]
- Rogers, H.; Baricz, N.; Pawar, K.S. 3D Printing Services: Classification, Supply Chain Implications and Research Agenda. Int. J. Phys. Distrib. Amp; Logist. Manag. 2016, 46, 886–907. [Google Scholar] [CrossRef]
- Petrick, I.J.; Simpson, T.W. 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition. Res. -Technol. Manag. 2013, 56, 12–16. [Google Scholar] [CrossRef]
- Kietzmann, J.; Pitt, L.; Berthon, P. Disruptions, Decisions, and Destinations: Enter the Age of 3-D Printing and Additive Manufacturing. Bus. Horiz. 2015, 58, 209–215. [Google Scholar] [CrossRef]
- Holmström, J.; Partanen, J. Digital Manufacturing-Driven Transformations of Service Supply Chains for Complex Products. Supply Chain Manag. Int. J. 2014, 19, 421–430. [Google Scholar] [CrossRef]
- Mohr, S.; Khan, O. 3D Printing and Its Disruptive Impacts on Supply Chains of the Future. Technol. Innov. Manag. Rev. 2015, 5, 20–25. [Google Scholar] [CrossRef]
- Gress, D.R.; Kalafsky, R.V. Geographies of Production in 3D: Theoretical and Research Implications Stemming from Additive Manufacturing. Geoforum 2015, 60, 43–52. [Google Scholar] [CrossRef]
- Despeisse, M.; Baumers, M.; Brown, P.; Charnley, F.; Ford, S.J.; Garmulewicz, A.; Knowles, S.; Minshall, T.H.W.; Mortara, L.; Reed-Tsochas, F.P.; et al. Unlocking Value for a Circular Economy through 3D Printing: A Research Agenda. Technol. Forecast. Soc. Change 2017, 115, 75–84. [Google Scholar] [CrossRef]
- Birtchnell, T.; Urry, J.; Cook, C.; Curry, A. Freight Miles: The Impacts of 3D Printing on Transport and Society; ES/J007455/1; ESRC Project: Swindon, UK, 2012. [Google Scholar]
- Chan, H.K.; Griffin, J.; Lim, J.J.; Zeng, F.; Chiu, A.S.F. The Impact of 3D Printing Technology on the Supply Chain: Manufacturing and Legal Perspectives. Int. J. Prod. Econ. 2018, 205, 156–162. [Google Scholar] [CrossRef]
- Tatham, P.; Loy, J.; Peretti, U. Three Dimensional Printing–a Key Tool for the Humanitarian Logistician? J. Humanit. Logist. Supply Chain Manag. 2015, 5, 188–208. [Google Scholar] [CrossRef]
- Nyman, H.J.; Sarlin, P. From Bits to Atoms: 3D Printing in the Context of Supply Chain Strategies. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6 January 2014; pp. 4190–4199. [Google Scholar]
- Corsini, L.; Aranda-Jan, C.B.; Moultrie, J. The Impact of 3D Printing on the Humanitarian Supply Chain. Prod. Plan. Control 2022, 33, 692–704. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive Manufacturing and Its Societal Impact: A Literature Review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. A Digital Supply Chain Twin for Managing the Disruption Risks and Resilience in the Era of Industry 4.0. Prod. Plan. Control 2021, 32, 775–788. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Digital Twin Integrated Reinforced Learning in Supply Chain and Logistics. Logistics 2021, 5, 84. [Google Scholar] [CrossRef]
- Židek, K.; Piteľ, J.; Adámek, M.; Lazorík, P.; Hošovský, A. Digital Twin of Experimental Smart Manufacturing Assembly System for Industry 4.0 Concept. Sustainability 2020, 12, 3658. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Qazi, A.M.; Mahmood, S.H.; Haleem, A.; Bahl, S.; Javaid, M.; Gopal, K. The Impact of Smart Materials, Digital Twins (DTs) and Internet of Things (IoT) in an Industry 4.0 Integrated Automation Industry. Mater. Today: Proc. 2022, 62, 18–25. [Google Scholar] [CrossRef]
- Akbari, M.; Ha, N.; Kok, S. A Systematic Review of AR/VR in Operations and Supply Chain Management: Maturity, Current Trends and Future Directions. J. Glob. Oper. Strateg. Sourc. 2022, 15, 534–565. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Viola, J.; Chen, Y. Digital Twin Enabled Smart Control Engineering as an Industrial AI: A New Framework and Case Study. In Proceedings of the 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–25 October 2020; pp. 1–6. [Google Scholar]
- Halenar, I.; Juhas, M.; Juhasova, B.; Borkin, D. Virtualization of Production Using Digital Twin Technology. In Proceedings of the 2019 20th International Carpathian Control Conference (ICCC), Wieliczka, Poland, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Khan, S. A Review of Blockchain Technology Applications for Financial Services. BenchCouncil Trans. Benchmarks Stand. Eval. 2022, 2, 100073. [Google Scholar] [CrossRef]
- Joseph, A.J.; Kruger, K.; Basson, A.H. An Aggregated Digital Twin Solution for Human-Robot Collaboration in Industry 4.0 Environments. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future; Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Lamouri, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 135–147. [Google Scholar]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci. 2021, 11, 2767. [Google Scholar] [CrossRef]
- Roy, R.B.; Mishra, D.; Pal, S.K.; Chakravarty, T.; Panda, S.; Chandra, M.G.; Pal, A.; Misra, P.; Chakravarty, D.; Misra, S. Digital Twin: Current Scenario and a Case Study on a Manufacturing Process. Int. J. Adv. Manuf. Technol. 2020, 107, 3691–3714. [Google Scholar] [CrossRef]
- Santos, C.H.D.; De Queiroz, J.A.; Leal, F.; Montevechi, J.A.B. Use of Simulation in the Industry 4.0 Context: Creation of a Digital Twin to Optimise Decision Making on Non-Automated Process. J. Simul. 2022, 16, 284–297. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Wamba, S.F.; Treiblmaier, H. The Potentials of Augmented Reality in Supply Chain Management: A State-of-the-Art Review. Manag. Rev. Q. 2021, 71, 819–856. [Google Scholar] [CrossRef]
- WEF Innovations in Sustainability: XR in Business and Climate Strategies. Available online: https://www.weforum.org/stories/2024/09/xr-technologies-redefining-business-climate-strategies-innovation/ (accessed on 7 July 2025).
- Whittemore, R.; Knafl, K. The Integrative Review: Updated Methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing Integrative Literature Reviews: Guidelines and Examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- MacInnis, D.J. A Framework for Conceptual Contributions in Marketing. J. Mark. 2011, 75, 136–154. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Hum. Resour. Dev. Rev. 2016, 15, 404–428. [Google Scholar] [CrossRef]
- Pansare, R.; Yadav, G.; Nagare, M.R. Reconfigurable Manufacturing System: A Systematic Bibliometric Analysis and Future Research Agenda. J. Manuf. Technol. Manag. 2021, 33, 543–574. [Google Scholar] [CrossRef]
- Kohtala, C. Addressing Sustainability in Research on Distributed Production: An Integrated Literature Review. J. Clean. Prod. 2015, 106, 654–668. [Google Scholar] [CrossRef]
- Flick, U. An Introduction to Qualitative Research, 5th ed.; Sage: Los Angeles, CA, USA, 2014; ISBN 978-1-4462-6778-3. [Google Scholar]
- Nkoana, E.M.; Verbruggen, A.; Hugé, J. Climate Change Adaptation Tools at the Community Level: An Integrated Literature Review. Sustainability 2018, 10, 796. [Google Scholar] [CrossRef]
- Martinez-Valencia, L.; Garcia-Perez, M.; Wolcott, M.P. Supply Chain Configuration of Sustainable Aviation Fuel: Review, Challenges, and Pathways for Including Environmental and Social Benefits. Renew. Sustain. Energy Rev. 2021, 152, 111680. [Google Scholar] [CrossRef]
- Liao, M.; Yao, Y. Applications of Artificial Intelligence-Based Modeling for Bioenergy Systems: A Review. GCB Bioenergy 2021, 13, 774–802. [Google Scholar] [CrossRef]
- Jahin, M.A.; Shovon, M.S.H.; Shin, J.; Ridoy, I.A.; Mridha, M.F. Big Data—Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques. Arch. Comput. Methods Eng. 2024, 31, 3619–3645. [Google Scholar] [CrossRef]
- Xu, J.; Pero, M.E.P.; Ciccullo, F.; Sianesi, A. On Relating Big Data Analytics to Supply Chain Planning: Towards a Research Agenda. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 656–682. [Google Scholar] [CrossRef]
- Zamani, E.D.; Smyth, C.; Gupta, S.; Dennehy, D. Artificial Intelligence and Big Data Analytics for Supply Chain Resilience: A Systematic Literature Review. Ann. Oper. Res. 2023, 327, 605–632. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Y.; Tao, L. Machine Learning-Enabled Techno-Economic Uncertainty Analysis of Sustainable Aviation Fuel Production Pathways. Chem. Eng. J. Adv. 2024, 20, 100650. [Google Scholar] [CrossRef]
- World Economic Forum How Can AI Make Aviation More Sustainable? Available online: https://www.weforum.org/stories/2023/11/3-ways-ai-can-revolutionize-sustainable-aviation/ (accessed on 7 June 2025).
- Ronaghi, M.H. A Blockchain Maturity Model in Agricultural Supply Chain. Inf. Process. Agric. 2021, 8, 398–408. [Google Scholar] [CrossRef]
- Yi, H. A Traceability Method of Biofuel Production and Utilization Based on Blockchain. Fuel 2022, 310, 122350. [Google Scholar] [CrossRef]
- Kennedy, H.T. Advanced BioFuels USA–Fighting Fraud with Tech–RSB, Bioledger Build up Blockchain for Biofuels Traceability. Available online: https://advancedbiofuelsusa.info/fighting-fraud-with-tech-rsb-bioledger-build-up-blockchain-for-biofuels-traceability (accessed on 7 June 2025).
- Ivanov, D.; Dolgui, A.; Sokolov, B. Cloud Supply Chain: Integrating Industry 4. 0 and Digital Platforms in the “Supply Chain-as-a-Service.” Transp. Res. Part E: Logist. Transp. Rev. 2022, 160, 102676. [Google Scholar] [CrossRef]
- Moyer, P. Market Data Distribution & Consumption Through Cloud & AI. Available online: https://cloud.google.com/blog/topics/financial-services/market-data-distribution--consumption-through-cloud--ai (accessed on 29 March 2025).
- Imubit. AI Applications for Renewable Fuel Producers. Available online: https://imubit.com/ai-applications-for-renewable-fuel-producers/ (accessed on 10 August 2025).
- Mana, A.A.; Allouhi, A.; Hamrani, A.; Rehman, S.; El Jamaoui, I.; Jayachandran, K. Sustainable AI-Based Production Agriculture: Exploring AI Applications and Implications in Agricultural Practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Obi Reddy, G.P.; Dwivedi, B.S.; Ravindra Chary, G. Applications of Geospatial and Big Data Technologies in Smart Farming. In Smart Agriculture for Developing Nations: Status, Perspectives and Challenges; Pakeerathan, K., Ed.; Springer Nature: Singapore, 2023; pp. 15–31. ISBN 978-981-19-8738-0. [Google Scholar]
- Gong, Y.; Zhang, H.; Morris, T.; Zhang, C.; Alharithi, M. Waste Cooking Oil Recycling and the Potential Use of Blockchain Technology in the UK. Sustainability 2024, 16, 6197. [Google Scholar] [CrossRef]
- RSB. Blockchain Database for Sustainable Biofuels: A Case Study. 2021. Available online: https://rsb.org/wp-content/uploads/2021/03/Blockchain-Database-for-Sustainable-Biofuels-A-Case-Study-March-2021.pdf (accessed on 10 August 2025).
- Yan, G.; Yang, X.; Shaban, M.; Abed, A.M.; Abdullaev, S.; Alhomayani, F.M.; Khan, M.N.; Alkhalaf, S.; Alturise, F.; Albalawi, H. Artificial Intelligence-Powered Study of a Waste-to-Energy System through Optimization by Regression-Centered Machine Learning Algorithms. Energy 2025, 320, 135142. [Google Scholar] [CrossRef]
- Lakhouit, A. Revolutionizing Urban Solid Waste Management with AI and IoT: A Review of Smart Solutions for Waste Collection, Sorting, and Recycling. Results Eng. 2025, 25, 104018. [Google Scholar] [CrossRef]
- Banerjee, N. Biomass to Energy—An Analysis of Current Technologies, Prospects, and Challenges. Bioenerg. Res. 2023, 16, 683–716. [Google Scholar] [CrossRef]
- Chávez, M.M.M.; Sarache, W.; Costa, Y. Towards a Comprehensive Model of a Biofuel Supply Chain Optimization from Coffee Crop Residues. Transp. Res. Part. E Logist. Transp. Rev. 2018, 116, 136–162. [Google Scholar] [CrossRef]
- Csedő, Z.; Magyari, J.; Zavarkó, M. Biofuel Supply Chain Planning and Circular Business Model Innovation at Wastewater Treatment Plants: The Case of Biomethane Production. Clean. Logist. Supply Chain 2024, 11, 100158. [Google Scholar] [CrossRef]
- Fang, B.; Yu, J.; Chen, Z.; Osman, A.I.; Farghali, M.; Ihara, I.; Hamza, E.H.; Rooney, D.W.; Yap, P.-S. Artificial Intelligence for Waste Management in Smart Cities: A Review. Environ. Chem. Lett. 2023, 21, 1959–1989. [Google Scholar] [CrossRef] [PubMed]
- Koskinopoulou, M.; Raptopoulos, F.; Papadopoulos, G.; Mavrakis, N.; Maniadakis, M. Robotic Waste Sorting Technology: Toward a Vision-Based Categorization System for the Industrial Robotic Separation of Recyclable Waste. IEEE Robot. Autom. Mag. 2021, 28, 50–60. [Google Scholar] [CrossRef]
- Olawade, D.B.; Fapohunda, O.; Wada, O.Z.; Usman, S.O.; Ige, A.O.; Ajisafe, O.; Oladapo, B.I. Smart Waste Management: A Paradigm Shift Enabled by Artificial Intelligence. Waste Manag. Bull. 2024, 2, 244–263. [Google Scholar] [CrossRef]
- Alam, A.; Dwivedi, P. Modeling Site Suitability and Production Potential of Carinata-Based Sustainable Jet Fuel in the Southeastern United States. J. Clean. Prod. 2019, 239, 117817. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Haji Esmaeili, S.A.; Sobhani, A.; Szmerekovsky, J. Renewable Jet Fuel Supply Chain Network Design: Application of Direct Monetary Incentives. Appl. Energy 2022, 310, 118569. [Google Scholar] [CrossRef]
- Shah, M.; Wever, M.; Espig, M. A Framework for Assessing the Potential of Artificial Intelligence in the Circular Bioeconomy. Sustainability 2025, 17, 3535. [Google Scholar] [CrossRef]
- FuelCab India Overcoming Biofuel Supply Chain Challenges: How FuelCab Can Drive Solutions? Available online: https://www.linkedin.com/pulse/overcoming-biofuel-supply-chain-challenges-how-fuelcab-can-drive-e0exc/ (accessed on 12 June 2025).
- Bastos, T.; Teixeira, L.C.; Nunes, L.J.R. Forest 4.0: Technologies and Digitalization to Create the Residual Biomass Supply Chain of the Future. J. Clean. Prod. 2024, 467, 143041. [Google Scholar] [CrossRef]
- Flak, J. Technologies for Sustainable Biomass Supply—Overview of Market Offering. Agronomy 2020, 10, 798. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Shiwakoti, N.; Stasinopoulos, P. Agricultural Biomass Supply Chain Resilience: COVID-19 Outbreak vs. Sustainability Compliance, Technological Change, Uncertainties, and Policies. Clean. Logist. Supply Chain 2022, 4, 100049. [Google Scholar] [CrossRef]
- Andiappan, V.; How, B.S.; Ngan, S.L. A Perspective on Post-Pandemic Biomass Supply Chains: Opportunities and Challenges for the New Norm. Process Integr. Optim. Sustain. 2021, 5, 1003–1010. [Google Scholar] [CrossRef]
- Palander, T.; Tokola, T.; Borz, S.A.; Rauch, P. Forest Supply Chains During Digitalization: Current Implementations and Prospects in Near Future. Curr. For. Rep. 2024, 10, 223–238. [Google Scholar] [CrossRef]
- National Agricultural Library Digital Twins for the Optimization of Agrifood Value Chain Processes and the Supply of Quality Biomass for Bio-Processing|National Agricultural Library. Available online: https://www.nal.usda.gov/research-tools/food-safety-research-projects/digital-twins-optimization-agrifood-value-chain (accessed on 8 March 2025).
- Karkaria, V.; Tsai, Y.-K.; Chen, Y.-P.; Chen, W. An Optimization-Centric Review on Integrating Artificial Intelligence and Digital Twin Technologies in Manufacturing. Eng. Optim. 2025, 57, 161–207. [Google Scholar] [CrossRef]
- Ikbarieh, A.; Jin, W.; Zhao, Y.; Saha, N.; Klinger, J.L.; Xia, Y.; Dai, S. Machine Learning Assisted Cross-Scale Hopper Design for Flowing Biomass Granular Materials. ACS Sustain. Chem. Eng. 2025, 13, 5838–5851. [Google Scholar] [CrossRef]
- Khan, M.R.; Amin, J.M.; Hosen, M.M. Digital Twin-Driven Optimization of Bioenergy Production from Waste Materials. SSRN 2024. [Google Scholar] [CrossRef]
- Shi, Z.; Ferrari, G.; Ai, P.; Marinello, F.; Pezzuolo, A. Artificial Intelligence for Biomass Detection, Production and Energy Usage in Rural Areas: A Review of Technologies and Applications. Sustain. Energy Technol. Assess. 2023, 60, 103548. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, G.; Huang, D.; Zhang, X.; Ye, D.; Weng, H. Edge Computing-Based Machine Vision for Non-Invasive and Rapid Soft Sensing of Mushroom Liquid Strain Biomass. Agronomy 2025, 15, 242. [Google Scholar] [CrossRef]
- Bioenergy Insight US Energy Secretary Heralds $15m Biomass Facility Upgrade. Available online: https://www.bioenergy-news.com/news/us-energy-secretary-heralds-15m-biomass-facility-upgrade/ (accessed on 13 June 2025).
- Guo, G.; He, Y.; Jin, F.; Mašek, O.; Huang, Q. Application of Life Cycle Assessment and Machine Learning for the Production and Environmental Sustainability Assessment of Hydrothermal Bio-Oil. Bioresour. Technol. 2023, 379, 129027. [Google Scholar] [CrossRef] [PubMed]
- Romeiko, X.X.; Zhang, X.; Pang, Y.; Gao, F.; Xu, M.; Lin, S.; Babbitt, C. A Review of Machine Learning Applications in Life Cycle Assessment Studies. Sci. Total Environ. 2024, 912, 168969. [Google Scholar] [CrossRef] [PubMed]
- Ghoroghi, A.; Rezgui, Y.; Petri, I.; Beach, T. Advances in Application of Machine Learning to Life Cycle Assessment: A Literature Review. Int. J. Life Cycle Assess. 2022, 27, 433–456. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.R.; Raut, R.D.; Mangla, S.K.; Luthra, S.; Kumar, A. Exploring the Application of Industry 4.0 Technologies in the Agricultural Food Supply Chain: A Systematic Literature Review. Comput. Ind. Eng. 2022, 169, 108304. [Google Scholar] [CrossRef]
- Insights, L. New Blockchain Registry for Sustainable Aviation Fuel Backed by McKinsey, JP Morgan, Meta. 2022. Ledger Insights-blockchain for Enterprise. Available online: https://www.ledgerinsights.com/blockchain-registry-for-sustainable-aviation-fuel-backed-by-mckinsey-jp-morgan-meta/ (accessed on 10 August 2025).
- Fay, C.D.; Corcoran, B.; Diamond, D. Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks. Sensors 2024, 24, 162. [Google Scholar] [CrossRef]
- Lim, H.R.; Khoo, K.S.; Chew, K.W.; Teo, M.Y.M.; Ling, T.C.; Alharthi, S.; Alsanie, W.F.; Show, P.L. Evaluation of Real-Time Monitoring on the Growth of Spirulina Microalgae: Internet of Things and Microalgae Technologies. IEEE Internet Things J. 2024, 11, 3274–3281. [Google Scholar] [CrossRef]
- Dryad Ultra Early Wildfire Detection|Dryad Networks. Available online: https://www.dryad.net (accessed on 15 June 2025).
- Borrill, E.; Koh, S.C.L.; Yuan, R. Review of Technological Developments and LCA Applications on Biobased SAF Conversion Processes. Front. Fuels 2024, 2, 1397962. [Google Scholar] [CrossRef]
- da Costa, M.A.V.F.; Normey-Rico, J.E. Modeling, Control and Optimization of Ethanol Fermentation Process. IFAC Proc. Vol. 2011, 44, 10609–10614. [Google Scholar] [CrossRef]
- Naveed, M.H.; Khan, M.N.A.; Mukarram, M.; Naqvi, S.R.; Abdullah, A.; Haq, Z.U.; Ullah, H.; Mohamadi, H.A. Cellulosic Biomass Fermentation for Biofuel Production: Review of Artificial Intelligence Approaches. Renew. Sustain. Energy Rev. 2024, 189, 113906. [Google Scholar] [CrossRef]
- Petre, E.; Selişteanu, D.; Roman, M. Advanced Nonlinear Control Strategies for a Fermentation Bioreactor Used for Ethanol Production. Bioresour. Technol. 2021, 328, 124836. [Google Scholar] [CrossRef]
- Owusu, W.A.; Marfo, S.A. Artificial Intelligence Application in Bioethanol Production. Int. J. Energy Res. 2023, 2023, 7844835. [Google Scholar] [CrossRef]
- Adeleke, I.; Nwulu, N.; Adebo, O.A. Internet of Things (IoT) in the Food Fermentation Process: A Bibliometric Review. J. Food Process Eng. 2023, 46, e14321. [Google Scholar] [CrossRef]
- Islam, M.R.; Oliullah, K.; Kabir, M.M.; Alom, M.; Mridha, M.F. Machine Learning Enabled IoT System for Soil Nutrients Monitoring and Crop Recommendation. J. Agric. Food Res. 2023, 14, 100880. [Google Scholar] [CrossRef]
- Baicu, L.M.; Andrei, M.; Ifrim, G.A.; Dimitrievici, L.T. Embedded IoT Design for Bioreactor Sensor Integration. Sensors 2024, 24, 6587. [Google Scholar] [CrossRef]
- O’Grady, M.J.; Langton, D.; O’Hare, G.M.P. Edge Computing: A Tractable Model for Smart Agriculture? Artif. Intell. Agric. 2019, 3, 42–51. [Google Scholar] [CrossRef]
- Luman, R. Blockchain Driven Supply Chain Transparency in Saf Production: Enhancing Traceability and Regulatory Compliance. Int. J. Adv. Res. Comput. Sci. 2024, 15, 89–98. [Google Scholar] [CrossRef]
- Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Ghenai, C.; Husein, L.A.; Al Nahlawi, M.; Hamid, A.K.; Bettayeb, M. Recent Trends of Digital Twin Technologies in the Energy Sector: A Comprehensive Review. Sustain. Energy Technol. Assess. 2022, 54, 102837. [Google Scholar] [CrossRef]
- Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy Digital Twin Technology for Industrial Energy Management: Classification, Challenges and Future. Renew. Sustain. Energy Rev. 2022, 161, 112407. [Google Scholar] [CrossRef]
- H2-View ORLEN and Yokogawa Sign MoU to Develop SAF Production Technology. Available online: https://www.h2-view.com/story/orlen-and-yokogawa-sign-mou-to-develop-saf-production-technology/2099400.article/ (accessed on 16 June 2025).
- Metzger, D.F.; Klahn, C.; Dittmeyer, R. Downsizing Sustainable Aviation Fuel Production with Additive Manufacturing—An Experimental Study on a 3D Printed Reactor for Fischer-Tropsch Synthesis. Energies 2023, 16, 6798. [Google Scholar] [CrossRef]
- RMI. RMI Partners with Energy Web Foundation to Build Sustainable Aviation Fuel Certificate Registry, as Part of Ongoing Decarbonization Work with the Sustainable Aviation Buyers Alliance. Available online: https://rmi.org/press-release/rmi-partners-with-energy-web-foundation-to-build-sustainable-aviation-fuel-certificate-registry/ (accessed on 10 August 2025).
- COSCO. COSCO SHIPPING Lines Introduces Traceable and Verifiable Green Certificates with GSBN Empowered by Blockchain Technology. Available online: https://en.coscoshipping.com/col/col6923/art/2024/art_3b7a182117d8421194ba7e9d2c24a98e.html (accessed on 16 June 2025).
- Meena, M.; Shubham, S.; Paritosh, K.; Pareek, N.; Vivekanand, V. Production of Biofuels from Biomass: Predicting the Energy Employing Artificial Intelligence Modelling. Bioresour. Technol. 2021, 340, 125642. [Google Scholar] [CrossRef]
- Tanzil, A.H.; Brandt, K.; Zhang, X.; Wolcott, M.; Stockle, C.; Garcia-Perez, M. Production of Sustainable Aviation Fuels in Petroleum Refineries: Evaluation of New Bio-Refinery Concepts. Front. Energy Res. 2021, 9, 735661. [Google Scholar] [CrossRef]
- Comesana, A.E.; Huntington, T.T.; Scown, C.D.; Niemeyer, K.E.; Rapp, V.H. A Systematic Method for Selecting Molecular Descriptors as Features When Training Models for Predicting Physiochemical Properties. Fuel 2022, 321, 123836. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. How Could Artificial Intelligence Be Used to Increase the Potential of Biorefineries in the near Future? A Review. Environ. Technol. Innov. 2023, 32, 103277. [Google Scholar] [CrossRef]
- IEA Biofuel Production Using Petroleum Refining Technologies–Analysis. Available online: https://www.iea.org/articles/biofuel-production-using-petroleum-refining-technologies (accessed on 16 June 2025).
- Sans, V. Emerging Trends in Flow Chemistry Enabled by 3D Printing: Robust Reactors, Biocatalysis and Electrochemistry. Curr. Opin. Green Sustain. Chem. 2020, 25, 100367. [Google Scholar] [CrossRef]
- Schmieg, B.; Döbber, J.; Kirschhöfer, F.; Pohl, M.; Franzreb, M. Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis. Front. Bioeng. Biotechnol. 2019, 6, 211. [Google Scholar] [CrossRef]
- Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive Maintenance in the Industry 4.0: A Systematic Literature Review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Velthuis, N.K. The Shell Journey towards Global Predictive Maintenance. Shell TechXplorer Digest, 2021. Available online: https://www.shell.com/what-we-do/technology-and-innovation/shell-techxplorer-digest/shell-techxplorer-digest-2020/_jcr_content/root/main/section/list_copy_copy_copy/list_item_copy_98181_819446707/links/item0.stream/1669888451651/dabc9c17a2c9a00d39cb4f442e75d667920c8562/the-shell-journey-towards-global-predictive-maintenance-velthuis.pdf (accessed on 10 August 2025).
- Akhator, P.; Oboirien, B. Digitilising the Energy Sector: A Comprehensive Digital Twin Framework for Biomass Gasification Power Plant with CO2 Capture. Clean. Energy Syst. 2025, 10, 100175. [Google Scholar] [CrossRef]
- Sierla, S.; Sorsamäki, L.; Azangoo, M.; Villberg, A.; Hytönen, E.; Vyatkin, V. Towards Semi-Automatic Generation of a Steady State Digital Twin of a Brownfield Process Plant. Appl. Sci. 2020, 10, 6959. [Google Scholar] [CrossRef]
- Shell Creating Integrated Digital Ecosystems|Shell Global. Available online: https://www.shell.com/what-we-do/digitalisation/digitalisation-in-action/creating-integrated-digital-ecosystems.html (accessed on 16 June 2025).
- Park, J.; Kang, D. Artificial Intelligence and Smart Technologies in Safety Management: A Comprehensive Analysis Across Multiple Industries. Appl. Sci. 2024, 14, 11934. [Google Scholar] [CrossRef]
- McKinsey Securing a Sustainable Fuel Supply: Airline Strategies|McKinsey. Available online: https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/how-the-aviation-industry-could-help-scale-sustainable-fuel-production? (accessed on 19 May 2025).
- Emerson and Neste Engineering Solutions to Optimize Fintoil Biorefinery Operations for More Efficient, Sustainable Production|Emerson US. Available online: https://www.emerson.com/en-us/news/automation/22-6-digital-technologies-optimize-biorefinery-operations (accessed on 16 June 2025).
- Jessen, J. Shell’s Blockchain Solution to Scaling SAF. Available online: https://climatetechdigital.com/tech-and-ai/shells-blockchain-solution-to-scaling-saf (accessed on 18 June 2025).
- Wang, B.; Ting, Z.J.; Zhao, M. Sustainable Aviation Fuels: Key Opportunities and Challenges in Lowering Carbon Emissions for Aviation Industry. Carbon Capture Sci. Technol. 2024, 13, 100263. [Google Scholar] [CrossRef]
- Jessen, J. SAF: Helping Microsoft & DB Schenker Cut Supply Chain Carbon. Available online: https://sustainabilitymag.com/articles/db-schenker-microsoft-sustainable-logistics (accessed on 19 June 2025).
- Norazmi, A. SAF Accounting Based on Robust Chain-of-Custody Approaches. 2023. Available online: https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/saf-accounting-policy-paper_20230905_final.pdf (accessed on 10 August 2025).
- Okolie, J.A. Introduction of Machine Learning and Artificial Intelligence in Biofuel Technology. Curr. Opin. Green Sustain. Chem. 2024, 47, 100928. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.-C.; Madyira, D.M. Optimizing Renewable Energy Systems through Artificial Intelligence: Review and Future Prospects. Energy Environ. 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Duc, D.N.; Nananukul, N. An Integrated Methodology Based on Machine-Learning Algorithms for Biomass Supply Chain Optimisation. Int. J. Logist. Syst. Manag. 2023, 46, 47–75. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Liu, Y.; Ren, S.; Yang, H. Digital Twin and Big Data-Driven Sustainable Smart Manufacturing Based on Information Management Systems for Energy-Intensive Industries. Appl. Energy 2022, 326, 119986. [Google Scholar] [CrossRef]
- Osman, E. Edge Computing for the Aviation Sector; Zsah: London, UK, 2023. [Google Scholar]
- DOE Data, Modeling, and Analysis Program. Available online: https://www.energy.gov/eere/bioenergy/data-modeling-and-analysis-program (accessed on 21 June 2025).
- Wang, H.; Chaffart, D.; Ricardez-Sandoval, L.A. Modelling and Optimization of a Pilot-Scale Entrained-Flow Gasifier Using Artificial Neural Networks. Energy 2019, 188, 116076. [Google Scholar] [CrossRef]
- Haseltalab, V.; Dutta, A.; Yang, S. On the 3D Printed Catalyst for Biomass-Bio-Oil Conversion: Key Technologies and Challenges. J. Catal. 2023, 417, 286–300. [Google Scholar] [CrossRef]
- Borges, M.E.; Hernández, L.; Ruiz-Morales, J.C.; Martín-Zarza, P.F.; Fierro, J.L.G.; Esparza, P. Use of 3D Printing for Biofuel Production: Efficient Catalyst for Sustainable Biodiesel Production from Wastes. Clean Techn Environ. Policy 2017, 19, 2113–2127. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Chen, C.-W.; Sun, P.-P.; Nargotra, P.; Dong, C.-D. Advances in Machine Learning Technology for Sustainable Biofuel Production Systems in Lignocellulosic Biorefineries. Sci. Total Environ. 2023, 886, 163972. [Google Scholar] [CrossRef]
- Honeywell Honeywell And USA Bioenergy To Partner On Automation At New Sustainable Aviation Fuel Refinery. Available online: https://www.honeywell.com/us/en/press/2024/09/honeywell-and-usa-bioenergy-to-partner-on-automation (accessed on 20 June 2025).
- Asghar, A.; Sairash, S.; Hussain, N.; Baqar, Z.; Sumrin, A.; Bilal, M. Current Challenges of Biomass Refinery and Prospects of Emerging Technologies for Sustainable Bioproducts and Bioeconomy. Biofuels Bioprod. Biorefining 2022, 16, 1478–1494. [Google Scholar] [CrossRef]
- Emerson Fuel Blending|Emerson, US. Available online: https://www.emerson.com/en-us/industries/automation/downstream-hydrocarbons/refining/fuel-blending (accessed on 20 June 2025).
- Ucar, A.; Karakose, M.; Kırımça, N. Artificial Intelligence for Predictive Maintenance Applications: Key Components, Trustworthiness, and Future Trends. Appl. Sci. 2024, 14, 898. [Google Scholar] [CrossRef]
- Arinze, C.A.; Izionworu; Onuegbu, V.; Isong, D.; Daudu, C.D.; Adefemi, A. Predictive Maintenance in Oil and Gas Facilities, Leveraging Ai for Asset Integrity Management. Int. J. Front. Eng. Technol. Res. 2024, 6, 016–026. [Google Scholar] [CrossRef]
- Patro, P.K.; Jayaraman, R.; Acquaye, A.; Salah, K.; Musamih, A. Blockchain-Based Solution to Enhance Carbon Footprint Traceability, Accounting, and Offsetting in the Passenger Aviation Industry. Int. J. Prod. Res. 2024, 1–34. [Google Scholar] [CrossRef]
- Sipthorpe, A.; Brink, S.; Van Leeuwen, T.; Staffell, I. Blockchain Solutions for Carbon Markets Are Nearing Maturity. One Earth 2022, 5, 779–791. [Google Scholar] [CrossRef]
- Popowicz, M.; Katzer, N.J.; Kettele, M.; Schöggl, J.-P.; Baumgartner, R.J. Digital Technologies for Life Cycle Assessment: A Review and Integrated Combination Framework. Int. J. Life Cycle Assess 2025, 30, 405–428. [Google Scholar] [CrossRef]
- Ma, C.; Zhou, Y.; Yan, W.; He, W.; Liu, Q.; Li, Z.; Wang, H.; Li, G.; Yang, Y.; Han, W.; et al. Predominant Catalytic Performance of Nickel Nanoparticles Embedded into Nitrogen-Doped Carbon Quantum Dot-Based Nanosheets for the Nitroreduction of Halogenated Nitrobenzene. ACS Sustain. Chem. Eng. 2022, 10, 8162–8171. [Google Scholar] [CrossRef]
- Biran, O.; Feder, O.; Moatti, Y.; Kiourtis, A.; Kyriazis, D.; Manias, G.; Mavrogiorgou, A.; Sgouros, N.M.; Barata, M.T.; Oldani, I.; et al. PolicyCLOUD: A Prototype of a Cloud Serverless Ecosystem for Policy Analytics. Data Policy 2022, 4, e44. [Google Scholar] [CrossRef]
- NREL Engage Energy Modeling Tool|State, Local, and Tribal Governments|NREL. Available online: https://www.nrel.gov/state-local-tribal/engage-energy-modeling-tool (accessed on 21 June 2025).
- Huynh, T.A.; Zondervan, E. Process Intensification and Digital Twin–the Potential for the Energy Transition in Process Industries. In Process Systems Engineering: For a Smooth Energy Transition; Zondervan, E., Ed.; De Gruyter: Berlin, Germany, 2022; pp. 131–150. ISBN 978-3-11-070520-1. [Google Scholar]
- Sheik, A.G.; Kumar, A.; Ansari, F.A.; Raj, V.; Peleato, N.M.; Patan, A.K.; Kumari, S.; Bux, F. Reinvigorating Algal Cultivation for Biomass Production with Digital Twin Technology-a Smart Sustainable Infrastructure. Algal Res. 2024, 84, 103779. [Google Scholar] [CrossRef]
- Muldbak, M.; Gargalo, C.; Krühne, U.; Udugama, I.; Gernaey, K.V. Digital Twin of a Pilot-Scale Bio-Production Setup: 14th International Symposium on Process Systems Engineering (PSE 2021+). Proc. Int. Symp. Process Syst. Eng. 2022, 49, 1417–1422. [Google Scholar] [CrossRef]
- Ficili, I.; Giacobbe, M.; Tricomi, G.; Puliafito, A. From Sensors to Data Intelligence: Leveraging IoT, Cloud, and Edge Computing with AI. Sensors 2025, 25, 1763. [Google Scholar] [CrossRef]
- Raman, R.; Gunasekar, S.; Dávid, L.D.; Rahmat, A.F.; Nedungadi, P. Aligning Sustainable Aviation Fuel Research with Sustainable Development Goals: Trends and Thematic Analysis. Energy Rep. 2024, 12, 2642–2652. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H. A Thematic Review of AI and ML in Sustainable Energy Policies for Developing Nations. Energies 2025, 18, 2239. [Google Scholar] [CrossRef]
- Yar, M.A.; Hamdan, M.; Anshari, M.; Fitriyani, N.L.; Syafrudin, M. Governing with Intelligence: The Impact of Artificial Intelligence on Policy Development. Information 2024, 15, 556. [Google Scholar] [CrossRef]
- Woo, J.; Fatima, R.; Kibert, C.J.; Newman, R.E.; Tian, Y.; Srinivasan, R.S. Applying Blockchain Technology for Building Energy Performance Measurement, Reporting, and Verification (MRV) and the Carbon Credit Market: A Review of the Literature. Build. Environ. 2021, 205, 108199. [Google Scholar] [CrossRef]
- Fu, S.; Tan, Y.; Xu, Z. Blockchain-Based Renewable Energy Certificate Trade for Low-Carbon Community of Active Energy Agents. Sustainability 2023, 15, 16300. [Google Scholar] [CrossRef]
- Merlo, A.L.C.; Mendonça, D.S.; Santos, J.; Carvalho, S.T.; Guerra, R.; Brandão, D. Blockchain for the Carbon Market: A Literature Review. Discov. Environ. 2025, 3, 68. [Google Scholar] [CrossRef]
- Swinkels, L. Trading Carbon Credit Tokens on the Blockchain. Int. Rev. Econ. Financ. 2024, 91, 720–733. [Google Scholar] [CrossRef]
- Lennard, Z. FEDECOM: Enabling Cross-Border Energy Exchange by Federating Energy Communities. Open Res. Eur. 2025, 4, 269. [Google Scholar] [CrossRef]
- Ai, W.; Cho, H.M. Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review. Energies 2024, 17, 4805. [Google Scholar] [CrossRef]
- Baumann, S.; Klingauf, U. Modeling of Aircraft Fuel Consumption Using Machine Learning Algorithms. CEAS Aeronaut. J. 2020, 11, 277–287. [Google Scholar] [CrossRef]
- Sadeq, A.M.; Homod, R.Z.; Hasan, H.A.; Alhasnawi, B.N.; Hussein, A.K.; Jahangiri, A.; Togun, H.; Dehghani-Soufi, M.; Abbas, S. Advancements in combustion technologies: A review of innovations, methodologies, and practical applications. Energy Convers. Manag. X 2025, 26, 100964. [Google Scholar] [CrossRef]
- Airbus Digital Twins: Accelerating Aerospace Innovation from Design to Operations|Airbus. Available online: https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations (accessed on 21 June 2025).
- Risse, H. Lab of the Future: Automated Robotic Analysis of Petroleum Products. 2024. Available online: https://www.metrohm.com/en/discover/blog/2024/robotic-analysis-petro.html (accessed on 10 August 2025).
- Jameel, A.; Gani, A. A Case Study on Integrating an AI System into the Fuel Blending Process in a Chemical Refinery. ChemEngineering 2025, 9, 4. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X. Insight of Low Flammability Limit on Sustainable Aviation Fuel Blend and Prediction by ANN Model. Energy AI 2024, 18, 100423. [Google Scholar] [CrossRef]
- Yang, Z.; Boehm, R.C.; Bell, D.C.; Heyne, J.S. Maximizing Sustainable Aviation Fuel Usage through Optimization of Distillation Cut Points and Blending. Fuel 2023, 353, 129136. [Google Scholar] [CrossRef]
- NREL On the Ground in Colorado, NREL Is Simulating Sustainable Aviation Fuel Combustion During Flight. Available online: https://www.nrel.gov/news/features/2024/on-the-ground-in-colorado-nrel-is-simulating-sustainable-aviation-fuel-combustion-during-flight.html (accessed on 9 March 2025).
- Airbus This Chase Aircraft Is Tracking 100% SAF’s Emissions Performance|Airbus. Available online: https://www.airbus.com/en/newsroom/stories/2021-11-this-chase-aircraft-is-tracking-100-safs-emissions-performance (accessed on 21 June 2025).
- Kuzhagaliyeva, N.; Horváth, S.; Williams, J.; Nicolle, A.; Sarathy, S.M. Artificial Intelligence-Driven Design of Fuel Mixtures. Commun. Chem. 2022, 5, 111. [Google Scholar] [CrossRef] [PubMed]
- Ali Ijaz Malik, M.; Kalam, M.A.; Mujtaba Abbas, M.; Susan Silitonga, A.; Ikram, A. Recent Advancements, Applications, and Technical Challenges in Fuel Additives-Assisted Engine Operations. Energy Convers. Manag. 2024, 313, 118643. [Google Scholar] [CrossRef]
- GE’s Catalyst Can Help Hybrid Planes Take Flight By Generating Up To 1 Megawatt|GE Aerospace News. Available online: https://www.geaerospace.com/news/articles/product-technology/ges-catalyst-can-help-hybrid-planes-take-flight-generating-1-megawatt (accessed on 21 June 2025).
- Miller, J.H.; Tifft, S.M.; Wiatrowski, M.R.; Benavides, P.T.; Huq, N.A.; Christensen, E.D.; Alleman, T.; Hays, C.; Luecke, J.; Kneucker, C.M.; et al. Screening and Evaluation of Biomass Upgrading Strategies for Sustainable Transportation Fuel Production with Biomass-Derived Volatile Fatty Acids. iScience 2022, 25, 105384. [Google Scholar] [CrossRef] [PubMed]
- Pidatala, V.R.; Lei, M.; Choudhary, H.; Petzold, C.J.; Martin, H.G.; Simmons, B.A.; Gladden, J.M.; Rodriguez, A. A Miniaturized Feedstocks-to-Fuels Pipeline for Screening the Efficiency of Deconstruction and Microbial Conversion of Lignocellulosic Biomass. PLoS ONE 2024, 19, e0305336. [Google Scholar] [CrossRef] [PubMed]
- Abu Talib, M.; Nasir, Q.; Dakalbab, F.; Saud, H. Future Aviation Jobs: The Role of Technology in Shaping Skills and Competencies. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100517. [Google Scholar] [CrossRef]
- Hu, J.-L.; Li, Y.; Chew, J.-C. Industry 5.0 and Human-Centered Energy System: A Comprehensive Review with Socio-Economic Viewpoints. Energies 2025, 18, 2345. [Google Scholar] [CrossRef]
- Ahmed, W. Artificial Intelligence in Aviation: A Review of Machine Learning and Deep Learning Applications for Enhanced Safety and Security. Prem. J. Artif. Intell. 2025, 3, 100013. [Google Scholar] [CrossRef]
- Parhamfar, M. Towards Green Airports: Factors Influencing Greenhouse Gas Emissions and Sustainability through Renewable Energy. Next Res. 2024, 1, 100060. [Google Scholar] [CrossRef]
- Thepchalerm, T.; Pinsuwan, S. CEO Voices on Sustainable Aviation: An Analysis of Environmental Communication in the Airline Industry. Green Technol. Sustain. 2025, 3, 100194. [Google Scholar] [CrossRef]
- Thanasi-Boçe, M.; Hoxha, J. Blockchain for Sustainable Development: A Systematic Review. Sustainability 2025, 17, 4848. [Google Scholar] [CrossRef]
- LanzaJet. Announces Investment from Microsoft’s Climate Innovation. Available online: https://www.lanzajet.com/news-insights/lanzajet-announces-investment-from-microsofts-climate-innovation-fund-supporting-continued-company-growth (accessed on 22 June 2025).
- Chen, C.-H.; Chen, G.; He, J.; Kannan, D. Big Data for Logistics Decarbonization. Ann. Oper. Res. 2024, 343, 923–925. [Google Scholar] [CrossRef]
- Chen, Z.; vom Lehn, F.; Pitsch, H.; Cai, L. Design of Novel High-Performance Fuels with Artificial Intelligence: Case Study for Spark-Ignition Engine Applications. Appl. Energy Combust. Sci. 2025, 23, 100341. [Google Scholar] [CrossRef]
- Okolie, J.A.; Moradi, K.; Rogachuk, B.E.; Narra, B.N.; Ogbaga, C.C.; Okoye, P.U.; Adeleke, A.A. Data-Driven Framework for the Techno-Economic Assessment of Sustainable Aviation Fuel from Pyrolysis. Bioenerg. Res. 2024, 18, 6. [Google Scholar] [CrossRef]
- Enderle, B.; Rauch, B.; Hall, C.; Bauder, U. A Proposed Digital Twin Concept for the Smart Utilization of Sustainable Aviation Fuels. In AIAA SCITECH 2022 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- MarketsandMarkets Overcoming AI Challenges in Aviation Fuel Market. Available online: https://www.marketsandmarkets.com/ResearchInsight/ai-impact-analysis-on-aviation-fuel-industry.asp (accessed on 23 June 2025).
- Hapsari, A.W.; Prastowo, H.; Pitana, T. Real-Time Fuel Consumption Monitoring System Integrated With Internet Of Things (IOT). Kapal: J. Ilmu Pengetah. Dan. Teknol. Kelaut. 2021, 18, 88–100. [Google Scholar] [CrossRef]
- Velarde, C. Sustainable Aviation Fuel ‘Monitoring System’; European Union Aviation Safety Agency: Cologne, Germany, 2019. [Google Scholar]
- Bocca, R.; Espinoza, N.; Jamison, S. Unleashing the Full Potential of Industrial Clusters: Infrastructure Solutions for Clean Energies. Available online: https://initiatives.weforum.org/transitioning-industrial-clusters/case-study-details/avelia,-the-blockchain-powered-book-and-claim-solution-for-scaling-saf-demand/aJYTG0000000UkT4AU (accessed on 23 June 2025).
- Brett, D. New Blockchain Platform Launched for SAF Usage Tracking in Cargo. Available online: https://www.aircargonews.net/new-blockchain-platform-launched-for-saf-usage-tracking-in-cargo/1079016.article (accessed on 23 June 2025).
- Boeing. Launches SAF Dashboard to Track and Project Sustainable Aviation Fuel Production. Available online: https://investors.boeing.com/investors/news/press-release-details/2023/Boeing-Launches-SAF-Dashboard-to-Track-and-Project-Sustainable-Aviation-Fuel-Production/default.aspx (accessed on 23 June 2025).
- Wheelock, C. The Business Case for AI-Powered Sustainability; Canopy Edge: Lakewood, CO, USA, 2025. [Google Scholar]
- Rogachuk, B.E.; Prigmore, S.M.; Ogbaga, C.C.; Okolie, J.A. Public Perception and Awareness of Sustainable Aviation Fuel in South Central United States. Sustainability 2025, 17, 4019. [Google Scholar] [CrossRef]
- Alahmari, N.; Mehmood, R.; Alzahrani, A.; Yigitcanlar, T.; Corchado, J.M. Autonomous and Sustainable Service Economies: Data-Driven Optimization of Design and Operations through Discovery of Multi-Perspective Parameters. Sustainability 2023, 15, 16003. [Google Scholar] [CrossRef]
Year | Initiative/Program | Country/Org | Objective | Reference |
---|---|---|---|---|
2021 | SAF Grand Challenge Roadmap | US (DOE, DOT, USDA, EPA) |
| [28] |
2021 | Canada Clean Fuel Regulations | Canada |
| [29] |
2021 | Japan SAF Roadmap | Japan |
| [30] |
2021 | SAF Consortium Roadmap | New Zealand |
| [31] |
2022 | National Sustainable Aviation Fuel Roadmap | United Arab Emirates |
| [32] |
2023 | Sustainable Aviation Fuel Roadmap | Australia |
| [33] |
2024 | Singapore Sustainable Air Hub Blueprint | Singapore |
| [34] |
Technology | Definition | Applications |
---|---|---|
Distributed ledger technology (DLT) |
|
|
Smart contract |
|
|
Tokenization |
|
Technology | Definition | Application |
---|---|---|
ML |
|
|
NLP |
|
|
Computer vision |
|
|
Robotic Process Automation (RPA) |
|
|
Generative AI (GAI) |
|
|
IoT Layers and Their Features | Applications |
---|---|
| |
|
Key Features | Applications |
---|---|
Mass customization |
|
Material efficiency |
|
Manufacturing decentralization |
|
Inventory and logistics costs reduction |
Features | Applications |
---|---|
Virtual representation |
|
Real time visibility |
|
Continuous monitoring |
|
Immersive training simulations |
|
Remote collaboration and stakeholder engagement |
|
Step 1: Identify disruptive technologies in industry 4.0 Criteria: Q1: Does the selected paper provide a literature review of various technologies in industry 4.0? Q2: Is the selected resource from a reputable journal with high impact factor or citation as indicated in Google scholar? | |
|
|
Step 2: Disruptive technologies in supply chain and their applications Criteria: Q1: Does the selected article provide reviews that enhance understanding of Industry 4.0 and its representative technologies? Q2: Does the selected article provide knowledge that stresses the applications of Industry 4.0 in supply chain management? | |
|
|
Step 3: Industry 4.0 disruptive technologies in SAF Grand Challenge Criteria: Q1: Does the selected article discuss the application of Industry 4.0 technologies in at least one of the following SAF Grand Challenge workstreams: “Feedstock Innovation”, “Conversion Technology”, “Building Supply Chains”, “Policy and Valuation”, “Enabling End Use” or “Communicating Progress”? Q2: Does the selected article discuss at least one key action areas under Grand Challenge workstreams in relation to disruptive technologies in Industry 4.0? | |
|
|
Inclusion criteria:
|
Workstreams | Key Action Areas | Industry 4.0 Technologies | Applications |
---|---|---|---|
Feedstock Innovation | Resource Market and Availability Analysis | AI, Big Data, Blockchain, Cloud Computing | Forecasting, traceability, market optimization, resource allocation |
Increase Sustainable Lipid Supply | AI, ML, Blockchain, IoT | Precision agriculture, lipid recovery, waste tracking, IoT monitoring | |
Boost Biomass Production and Waste Collection | IoT, AI, Autonomous Robots | Biomass monitoring, waste sorting, collection optimization, autonomous handling | |
Improve Feedstock Supply Logistics | AI, IoT, Blockchain, Edge Computing | Route optimization, real-time tracking, smart contracts, local analytics | |
Improve Feedstock Handling Reliability | AI, Digital Twins, Robotics, Edge Computing | Predictive maintenance, handling simulation, automated preprocessing, on-site analytics | |
Enhance Sustainability of Biomass Supply | AI, Blockchain, IoT | Life cycle assessment, sustainability tracking, environmental monitoring | |
Conversion Technology | Decarbonize and Scale Fermentation-Based Fuels | AI, ML, IoT, Blockchain, Edge Computing | Process optimization, fermentation control, emission tracking, real-time data |
Enhance ASTM Pathways | Digital Twins, AI, Blockchain, 3D Printing | Process simulation, rapid prototyping, compliance tracking, virtual testing | |
Develop Bio-Intermediates | AI, Cyber-physical Systems, 3D Printing | Molecule screening, automated conversion, prototype catalysts | |
Reduce Risk and Scale Up | AI, Digital Twins, Blockchain | Predictive maintenance, scale-up simulation, supply chain transparency | |
Develop Innovative Pathways | AI, IoT, Automation | Reaction modeling, process automation, real-time monitoring | |
Building Supply Chains | Establish Regional Coalitions | Blockchain, Cloud, Smart Contracts | Stakeholder collaboration, secure data sharing, automated agreements |
Model SAF Supply Chains | AI, Big Data, IoT, Edge Computing | Demand forecasting, route optimization, real-time analytics | |
Demonstrate Regional Supply Chains | AI, Digital Twins, 3D Printing | Pilot simulation, component prototyping, performance optimization | |
Develop Production Infrastructure | AI, Robotics, Automation, Blockchain | Automated operations, infrastructure monitoring, transparent build-out | |
Policy and Valuation | Improve Environmental Data and Models | AI, Big Data, Blockchain, Cloud Computing | Data aggregation, LCA modeling, emission verification |
Techno-Economic Feasibility Analysis | AI, Digital Twins, Edge Computing | Cost modeling, scenario analysis, real-time feasibility | |
Contribute to SAF Policy Development | AI, Blockchain, Cloud Computing | Policy modeling, transparent reporting, incentive tracking | |
Enabling End Use | Support Evaluation and Testing | AI, Digital Twins, Blockchain, Automation | Performance simulation, test automation, data logging |
Adopt High-Percentage SAF Blends | AI, Cyber-Physical Systems, Sensors | Blend optimization, engine monitoring, real-time adjustment | |
Explore Synthetic Jet Fuels | AI, 3D Printing, Automation | Molecule design, catalyst development, experimental validation | |
Adapt Infrastructure | IoT, Blockchain, AI | Flow tracking, infrastructure readiness, compliance monitoring | |
Communicating Progress | Engage Stakeholders | AI, Blockchain, Cloud Computing | Secure communication, trust building, multi-party data sharing |
Assess Benefits and Influence | AI, Digital Twins, Cloud Computing | Impact quantification, visualization, scenario simulation | |
Track SAF Grand Challenge | IoT, Blockchain, AI, Cloud Computing | KPI monitoring, automated reporting, real-time dashboards | |
Share Positive Impacts | AI, AR/VR, Blockchain, Sentiment Analysis | Immersive visualization, public engagement, verified impact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, S.; Chen, J.; Bridgelall, R.; Szmerekovsky, J.; Motwani, J. Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective. Sustainability 2025, 17, 7325. https://doi.org/10.3390/su17167325
Ebrahimi S, Chen J, Bridgelall R, Szmerekovsky J, Motwani J. Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective. Sustainability. 2025; 17(16):7325. https://doi.org/10.3390/su17167325
Chicago/Turabian StyleEbrahimi, Sajad, Jing Chen, Raj Bridgelall, Joseph Szmerekovsky, and Jaideep Motwani. 2025. "Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective" Sustainability 17, no. 16: 7325. https://doi.org/10.3390/su17167325
APA StyleEbrahimi, S., Chen, J., Bridgelall, R., Szmerekovsky, J., & Motwani, J. (2025). Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective. Sustainability, 17(16), 7325. https://doi.org/10.3390/su17167325