Organic Edible Insects—What Would It Take?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Insects’ Welfare
Order | Specie | Stress | Evaluation | Stage | Effects | Reference |
---|---|---|---|---|---|---|
Dip | Hi | F L | Volatile organic compounds (VOCs) | L | Changes in VOCs emission (no statistical differences) | [130] |
Col | Adi | F T | Metabolic responses | A | >survival at low t° during starvation Non-F beetles: <water content at 12–16 °C 12 °C: <triglycerides and glycogen in non-F beetles <triglycerides, glucose, glycogen and protein; >glycerol in F beetles 16–20 °C: <triglycerides, glycogen, glycerol, glucose, protein in F beetles | [131] |
Col | Adi | F T | Survival O2 consumption | A | Fed beetles: >O2 consumption >t°, >O2 consumption | [89] |
Col | Adi | F T | Survival ratio Free amino acid levels | A | Longer survival for females >free amino acids with C | [84] |
Ort | Ado | W | Hydration state Growth | A | >hydration, dry mass and length with 24 h water availability | [139] |
Ort | Ado | F | Shelter use | A | >shelter use with longer F <grooming behaviour with longer F | [138] |
Ort | Ado | F L | Haemocyte count Protein content Body weight | A | 16 L:8 D, >haemocytes in males 12 L:12 D, >haemocytes in females <haemocytes in females with F 16 L:8 D, <protein content in haemolymph | [128] |
Ort | Gs | F | Offspring fitness | A O | F in female crickets: >eclosion time of O <O survival to sexual maturity <body weight of O | [135] |
Ort | Gs | F | Asymmetry (FA) Reproductive performances | A | <food quality, >FA, <reproductive performances | [136] |
Lep | Bm | F T | Thermal tolerance Chill Coma recovery time (CCRT) | L | F, <CCRT F + Heat shock, minimum CCTR | [106] |
Order | Specie | Stress | Evaluation | Stage | Effects | Reference |
---|---|---|---|---|---|---|
Mechanical stress | ||||||
Col | Tm | Mechanical irritation Disturbance of gas exchanges | Calorimetric investigations | P | >exothermic peaks with disturbance of CO2 exchanges and mechanic pulsations | [141] |
Ort | Lm | Experimental handling | Octopamine level in haemolymph and lipid content in haemolymph | A | >octopamine levels and lipids in haemolymph | [140] |
Ort | Ga | Manipulation Implantation | Survival Oviposition rate Ovarian mass and egg number Area and length of laid eggs Hatching vigour Food consumption | A N | Implanted crickets: >mortality, <oviposition rate <E area from implanted crickets and <E length <vigour in implanted N <consumption in implanted females | [107] |
Density | ||||||
Dip | Md | D H | Locomotor activity | A | >D, <activity >t°, <activity | [118] |
Col | Adi | D | Overall larval biomass Development time Larval growth Feed consumption metrics | L | High D, >overall biomass High D, >development time, <larval growth High D, <feed consumption metrics | [148] |
Ort | Ado | D | Growth Survival Starvation resistance | N | >D, >non matured crickets, >growth rate in females >mass in females at <densities after F >days of survival in males at <D | [147] |
Lep | Bm | Solitary living | Body weight Ingestion | L | Solitary living: <excretion, <ingestion, <body weight, >agility | [146] |
Chemical stress | ||||||
Col | Adi | Ch T | Recovery time Active Larvae | A | Recovery time based on population and duration of exposure to extreme t° <number of active L with insecticide <probability of recovery with insecticide | [132] |
Col | Tm | Metal | Anti-Freeze Proteins (AFPs) production | A | <AFPs production | [150] |
Ort | Gs | Microplastic ingestion | Growth rates | A | <size/weight in females with >concentration of polyethylene terephthalate microfibers | [154] |
Lep | Bm | Ag nanoparticles ingestion (AgNPs) | Body weight Fat body protein spots | L | Ag nanoparticles ingestion, >body weight >concentration AgNPs = death Differences in fat body protein spots | [153] |
Lep | Bm | Polystyrene nanoparticles | Locomotor activity Development | L | Erratic movements Interference with feeding initiation | [119] |
Lep | Bm | Chromium (Cr) exposure | Gene expression Survival rates | L | >exposure, <survival Different gene expression >cellular stress and toxicity mechanisms and >defence against oxidative stress Downregulation of the folate biosynthesis pathway with high Cr exposure | [152] |
Gas stress | ||||||
Dip | Md | T RH G | Calorespirometric investigations | P | >t°, <development | [124] |
Col | Tm | Mechanical irritation Disturbance of gas exchanges | Calorimetric investigations | P | >exothermic peaks with disturbance of CO2 exchanges and mechanic pulsations | [141] |
Col | Tm | G | Growth rate Larval size N° of moults Sex ratio of pupae Mortality Development abnormalities | L | <O2, >moults >development time at <O2 <O2, <growth rate <O2, >mortality <O2, >A abnormalities <O2, >surviving females | [145] |
Ort | Ado | Anoxia CO2 | Mortality Feeding Growth Metabolism Water balance Blood composition | N | >exposure time, >mortality, >extension of instars, >weight loss >drinking inhibition at any exposure level <food consumption, >metabolic rate reduction >weight loss, <blood volume, >lipid in blood, <blood pH | [144] |
4. Veterinary Drugs
5. Pesticides
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nation. What Is Climate Change? Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on 6 April 2025).
- European Commission. European Union Organics at a Glance. Available online: https://agriculture.ec.europa.eu/farming/organic-farming/organics-glance_en (accessed on 6 April 2025).
- European Commission. The European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_it (accessed on 27 April 2025).
- European Commission. Organic Action Plan. Available online: https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en (accessed on 27 April 2025).
- Willer, H.; Trávníček, J.; Schlatter, B. (Eds.) The World of Organic Agriculture 2024; FiBL and IFOAM Organics International: Frick, Switzerland, 2024. [Google Scholar]
- IFOAM. Organic in Europe—Production and Consumption Moving Beyond a Niche. Available online: https://www.organicseurope.bio/about-us/organic-in-europe/ (accessed on 26 June 2025).
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural Productivity and Food Supply to Meet Increased Demands. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 539–553. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and Opportunities of Increasing Yields in Organic Farming. A Review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- IFOAM. Principles of Organic Agriculture; IFOAM: Bonn, Germany, 2015. [Google Scholar]
- Tallaksen, J.; Johnston, L.; Gesch, R.; Forcella, F.; Li, Y. Organic Camelina Meal as a Replacement for Soybean Meal in Swine Finishing Diets: A Life Cycle Analysis Perspective. Sustainability 2025, 17, 1443. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Parliament and of the Council: Brussels, Belgium, 2018. [Google Scholar]
- van Krimpen, M.M.; Leenstra, F.; Maurer, V.; Bestman, M. How to Fulfill EU Requirements to Feed Organic Laying Hens 100% Organic Ingredients. J. Appl. Poult. Res. 2016, 25, 129–138. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Tibaldi, C.; Oliveira, S.; Dinelli, G.; Marotti, I.; Raymundo, A. Nutritional Features of Organic Peas (Pisum sativum L.) Cultivated in Different Italian Environments and Rheological Profile of Pea-enriched Crackers. J. Sci. Food Agric. 2025, 105, 3606–3619. [Google Scholar] [CrossRef]
- Jönsson, L.; Elwinger, K. Mussel Meal as a Replacement for Fish Meal in Feeds for Organic Poultry—A Pilot Short-Term Study. Acta Agric. Scand. A Anim. Sci. 2009, 59, 22–27. [Google Scholar] [CrossRef]
- van Huis, A. Edible Insects: Challenges and Prospects. Entomol. Res. 2022, 52, 161–177. [Google Scholar] [CrossRef]
- IPIFF. The Insect Sector Milestones Towards Sustainable Food Supply Chains; IPIFF: Brussels, Belgium, 2020. [Google Scholar]
- van Huis, A. Edible Insects Are the Future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Eurogroup for Animals. High Standards for a Forward-Looking Organic Certification of Industrial Insect Production Position Paper; Eurogroup for Animals: Brussels, Belgium, 2024. [Google Scholar]
- European Commission. Regulation (EU) 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein; European Commission: Brussels, Belgium, 2017.
- EFSA. Risk Profile Related to Production and Consumption of Insects as Food and Feed; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2015; Volume 13. [Google Scholar]
- European Commission. Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation) 2009; European Commission: Brussels, Belgium, 2009.
- European Commission. Regulation (EU) No 68/2013 of 16 January 2013 on the Catalogue of Feed Materials 2013; European Commission: Brussels, Belgium, 2013.
- European Commission. Regulation (EU) 2021/1372 of 17 August 2021 Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals 16; European Commission: Brussels, Belgium, 2021.
- European Commission. Regulation (EU) 2021/1925 of 5 November 2021 Amending Certain Annexes to Regulation (EU) No 142/2011 as Regards the Requirements for Placing on the Market of Certain Insect Products and the Adaptation of a Containment Method; European Commission: Brussels, Belgium, 2021.
- European Commission. Regulation (EU) 2015/2283 of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 and Repealing Regulation (EC) No 258/97 and Regulation (EC) No 1852/2001; European Commission: Brussels, Belgium, 2015.
- European Commission. Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio Molitor Larva as a Novel Food under Regulation (EU) 2015/2283; European Commission: Brussels, Belgium, 2021.
- European Commission. Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio Molitor Larva) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2022.
- European Commission. Implementing Regulation (EU) 2025/89 of 20 January 2025 Authorising the Placing on the Market of UV-Treated Powder of Whole Tenebrio Molitor Larvae (Yellow Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2025.
- Turck, D.; Bohn, T.; Cámara, M.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Jos, Á.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; et al. Safety of Frozen and Dried Forms of Whole Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2025, 23, e9155. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta Migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2021.
- European Commission. Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta Domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2022.
- European Commission. Implementing Regulation (EU) 2023/5 of 3 January 2023 Authorising the Placing on the Market of Acheta domesticus (House Cricket) Partially Defatted Powder as a Novel Food and Amending Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2023.
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pentieva, K.; et al. Safety of Acheta domesticus Powder as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2024, 22, e8919. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Cámara, M.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Jos, Á.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; et al. Safety of Frozen, Dried and Powder Forms of House Crickets (Acheta domesticus) as a Novel Food Pursuant. EFSA J. 2024, 22, e9101. [Google Scholar] [CrossRef]
- European Commission. Implementing Regulation (EU) 2023/58 of 5 January Authorizing the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius Diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470; European Commission: Brussels, Belgium, 2023.
- Food and Agriculture Organization of the United Nation. Sustainable Food and Agriculture. Available online: https://www.fao.org/sustainability/en (accessed on 27 April 2025).
- Paoletti, M.G. (Ed.) Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs, and Snails; Science Publishers: Washington, DC, USA, 2005; ISBN 1578083397. [Google Scholar]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; Oonincx, D.G.A.B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Moruzzo, R.; Mancini, S.; Guidi, A. Edible Insects and Sustainable Development Goals. Insects 2021, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriadis, S.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G. Beyond Carrots: Evaluation of Gelling Agents as Wet Feeds for Tenebrio molitor, L. (Coleoptera: Tenebrionidae) Larvae. Chemosphere 2024, 363, 142783. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Vidal-Limón, A.M.; Liceaga, A.M. Advancing Food Security with Farmed Edible Insects: Economic, Social, and Environmental Aspects. Insects 2025, 16, 67. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The Role of Edible Insects to Mitigate Challenges for Sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations THE 17 GOALS—Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 27 April 2025).
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Baiano, A. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-Economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- Directorate-General for Agriculture and Rural Development Expert Group for Technical Advice on Organic Production EGTOP. Final Report on Insect Production for Food and Feed; Directorate-General for Agriculture and Rural Development: Brussels, Belgium, 2025.
- European Commission. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing (Text with EEA Relevance) 2009; European Commission: Brussels, Belgium, 2009.
- Eisemann, C.H.; Jorgensen, W.K.; Merritt, D.J.; Rice, M.J.; Cribb, B.W.; Webb, P.D.; Zalucki, M.P. Do Insects Feel Pain?—A Biological View. Experientia 1984, 40, 164–167. [Google Scholar] [CrossRef]
- Horvath, K.; Angeletti, D.; Nascetti, G.; Carere, C. Invertebrate Welfare: An Overlooked Issue. Ann. Ist. Super. Sanità 2013, 49, 9–17. [Google Scholar] [CrossRef]
- van Huis, A. Prospects of Insects as Food and Feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef]
- Martins da Silva, R.; Köhler, A.; de Cássia de Souza Schneider, R.; Prado de Vargas, D.; Lúcia Köhler, A.; da Costa e Silva, D.; Soares, J. Proximate and Fatty Acid Profile Analysis of Tenebrio molitor and Zophobas morio Using Different Killing Methods. Food Chem. 2024, 445, 138719. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Sorci, A.; Bonzanini, F.; Lolli, V.; Maistrello, L.; Sforza, S. Influence of the Killing Method of the Black Soldier Fly on Its Lipid Composition. Food Res. Int. 2019, 116, 276–282. [Google Scholar] [CrossRef]
- Pedrazzani, C.; Profeti, M.; Latino, F.; Caligiani, A. Effect of the Killing Method and Developmental Stage on Cricket (Acheta domesticus) Composition and Chitin Recovery. J. Insects Food Feed 2024, 11, 329–342. [Google Scholar] [CrossRef]
- Lemke, B.; Röpper, D.; Arki, A.; Visscher, C.; Plötz, M.; Krischek, C. Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. Insects 2024, 15, 843. [Google Scholar] [CrossRef]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ Concerns and Perceptions of Farm Animal Welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef]
- Dwyer, C.M. Can Improving Animal Welfare Contribute to Sustainability and Productivity? Black Sea J. Agric. 2020, 3, 61–65. [Google Scholar]
- Barrett, M.; Adcock, S.J.J. Animal Welfare Science: An Integral Piece of Sustainable Insect Agriculture. J. Insects Food Feed 2023, 10, 517–531. [Google Scholar] [CrossRef]
- Barr, S.; Laming, P.R.; Dick, J.T.A.; Elwood, R.W. Nociception or Pain in a Decapod Crustacean? Anim. Behav. 2008, 75, 745–751. [Google Scholar] [CrossRef]
- Tracey, W.D. Nociception. Curr. Biol. 2017, 27, R129–R133. [Google Scholar] [CrossRef]
- Gibbons, M.; Sarlak, S.; Chittka, L. Descending Control of Nociception in Insects? Proc. R. Soc. B Biol. Sci. 2022, 289, 20220599. [Google Scholar] [CrossRef]
- Birch, J. Animal Sentience and the Precautionary Principle. Anim. Sentience 2017, 16, 2. [Google Scholar] [CrossRef]
- Brambell, F.W.R. Report of the Technical Committee to Enquire into the Welfare of Animals Kept Under Intensive Livestock Husbandry Systems; Her Majesty’s Stationery Office: London, UK, 1965.
- IPIFF. Ensuring High Standards of Animal Welfare in Insect Production; IPIFF: Brussels, Belgium, 2022. [Google Scholar]
- Delvendahl, N.; Rumpold, B.A.; Langen, N. Edible Insects as Food–Insect Welfare and Ethical Aspects from a Consumer Perspective. Insects 2022, 13, 121. [Google Scholar] [CrossRef]
- Cinel, S.D.; Hahn, D.A.; Kawahara, A.Y. Predator-Induced Stress Responses in Insects: A Review. J. Insect Physiol. 2020, 122, 104093. [Google Scholar] [CrossRef] [PubMed]
- Parsons, P.A. Evolutionary Rates under Environmental Stress. In Evolutionary Biology; Springer: Boston, MA, USA, 1987; pp. 311–347. [Google Scholar]
- Imasheva, A.G.; Loeschcke, V.; Zhivotovsky, L.A.; Lazebny, O.E. Stress Temperatures and Quantitative Variation in Drosophila Melanogaster. Heredity 1998, 81, 246–253. [Google Scholar] [CrossRef]
- Punzo, F.; Mutchmor, J.A. Effects of Temperature, Relative Humidity and Period of Exposure on the Survival Capacity of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Kans. Entomol. Soc. 1980, 53, 260–270. [Google Scholar]
- Rahmathulla, V.; Mathur, V.; Geetha Devi, R. Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions. Philipp. J. Sci. 2004, 133, 39–43. [Google Scholar]
- Chavadi, V.B.; Sosalegowda, A.H.; Boregowda, M.H. Impact of Heat Shock on Heat Shock Proteins Expression, Biological and Commercial Traits of Bombyx mori. Insect Sci. 2006, 13, 243–250. [Google Scholar] [CrossRef]
- Renault, D.; Bijou, A.; Hervant, F. Impact of Different Acclimation Temperatures and Duration on the Chill Coma Temperature and Oxygen Consumption in the Tenebrionid Beetle Alphitobius diaperinus. Physiol. Entomol. 2012, 37, 354–359. [Google Scholar] [CrossRef]
- Hussain, M.; Naeem, M.; Khan, S.A.; Bhatti, M.F.; Munawar, M. Studies on the Influence of Temperature and Humidity on Biological Traits of Silkworm (Bombyx mori L.; Bombycidae). Afr. J. Biotechnol. 2011, 10, 12368–12375. [Google Scholar]
- Kjærsgaard, A.; Blanckenhorn, W.U.; Pertoldi, C.; Loeschcke, V.; Kaufmann, C.; Hald, B.; Pagès, N.; Bahrndorff, S. Plasticity in Behavioural Responses and Resistance to Temperature Stress in Musca domestica. Anim. Behav. 2015, 99, 123–130. [Google Scholar] [CrossRef]
- Chandrakanth, N.; Moorthy, S.M.; Rekha, M.; Sivaprasad, V. Stability and Path Analysis for Yield and Related Traits in Silkworm, (Bombyx mori L.) Reared under Stress Conditions. Genetika 2016, 48, 271–284. [Google Scholar] [CrossRef]
- Paul, S.; Keshan, B. Ovarian Development and Vitellogenin Gene Expression under Heat Stress in Silkworm, Bombyx mori. Psyche 2016, 2016, 42317. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Khamis, F.M.; Mohamed, S.A.; Salifu, D.; Sevgan, S.; Fiaboe, K.K.M.; Niassy, S.; Van Loon, J.J.A.; Dicke, M.; et al. Threshold Temperatures and Thermal Requirements of Black Soldier Fly Hermetia illucens: Implications for Mass Production. PLoS ONE 2018, 13, e0206097. [Google Scholar] [CrossRef]
- Lopes, T.B.F.; Aguiar, R.C.M.; de Souza, R.F.; Nascimento, C.C.; Dionísio, J.F.; Mantovani, M.S.; Semprebon, S.C.; da Rosa, R. Influence of Temperature Variation on Gene Expression and Cocoon Production in Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae). Comp. Biochem. Physiol. Part D Genom. Proteom. 2023, 47, 101111. [Google Scholar] [CrossRef]
- Schøn, M.L.; Mikkelsen, M.V.N.; Jensen, K.; Poulsen, J.M.; Berggreen, I.E.; Schou, T.M.; Nørgaard, J.V.; Overgaard, J. Effect of Temperature on Growth, Metabolism, and Gas Exchange in Hermetia illucens Larvae Reared under Commercial and Laboratory Conditions. J. Insects Food Feed 2024, 11, 1059–1074. [Google Scholar] [CrossRef]
- Whyard, S.; Wyatt, G.; Walker, V. The Heat Shock Response in Locusta migratoria. J. Comp. Physiol. B 1986, 156, 813–817. [Google Scholar] [CrossRef]
- Renault, D.; Bouchereau, A.; Delettre, Y.R.; Hervant, F.; Vernon, P. Changes in Free Amino Acids in Alphitobius diaperinus (Coleoptera: Tenebrionidae) during Thermal and Food Stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 143, 279–285. [Google Scholar] [CrossRef]
- Bjørge, J.D.; Overgaard, J.; Malte, H.; Gianotten, N.; Heckmann, L.H. Role of Temperature on Growth and Metabolic Rate in the Tenebrionid Beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol. 2018, 107, 89–96. [Google Scholar] [CrossRef]
- Herren, P.; Hesketh, H.; Dunn, A.M.; Meyling, N.V. Heat Stress Has Immediate and Persistent Effects on Immunity and Development of Tenebrio molitor. J. Insects Food Feed 2023, 10, 835–853. [Google Scholar] [CrossRef]
- Renault, D.; Salin, C.; Vannier, G.; Vernon, P. Survival and Chill-Coma in the Adult Lesser Mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), Exposed to Low Temperatures. J. Therm. Biol. 1999, 24, 229–236. [Google Scholar] [CrossRef]
- Renault, D.; Hance, T.; Vannier, G.; Vernon, P. Is Body Size an Influential Parameter in Determining the Duration of Survival at Low Temperatures in Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae)? J. Zool. 2003, 259, 381–388. [Google Scholar] [CrossRef]
- Renault, D.; Hervant, F.; Vernon, P. Effect of Food Shortage and Temperature on Oxygen Consumption in the Lesser Mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Physiol. Entomol. 2003, 28, 261–267. [Google Scholar] [CrossRef]
- Steinhausen, C.; Lecocq, A.; Oloktsidou, S.; Rukov, J.L. The Effect of Transport Temperature and Duration on Survival and Growth of House Cricket Nymphs and Eggs. J. Insects Food Feed 2024, 11, 1–6. [Google Scholar] [CrossRef]
- Bauerfeind, S.S.; Sørensen, J.G.; Loeschcke, V.; Berger, D.; Broder, E.D.; Geiger, M.; Ferrari, M.; Blanckenhorn, W.U. Geographic Variation in Responses of European Yellow Dung Flies to Thermal Stress. J. Therm. Biol. 2018, 73, 41–49. [Google Scholar] [CrossRef]
- Kingsolver, J.G.; Arthur Woods, H.; Buckley, L.B.; Potter, K.A.; MacLean, H.J.; Higgins, J.K. Complex Life Cycles and the Responses of Insects to Climate Change. Integr. Comp. Biol. 2011, 51, 719–732. [Google Scholar] [CrossRef]
- Baudier, K.M.; Mudd, A.E.; Erickson, S.C.; O’Donnell, S. Microhabitat and Body Size Effects on Heat Tolerance: Implications for Responses to Climate Change (Army Ants: Formicidae, Ecitoninae). J. Anim. Ecol. 2015, 84, 1322–1330. [Google Scholar] [CrossRef]
- Adamo, S.A.; Baker, J.L.; Lovett, M.M.E.; Wilson, G. Climate Change and Temperate Zone Insects: The Tyranny of Thermodynamics Meets the World of Limited Resources. Environ. Entomol. 2012, 41, 1644–1652. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-Shock Proteins, Molecular Chaperones and the Stress Response: Evolutionary and Ecological Physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Punyavathi; Manjunatha, H.B. Comprehensive Analysis of Differentially Expressed Proteins in the Male and Female Bombyx mori Larval Instars Exposed to Thermal Stress. Arch. Insect Biochem. Physiol. 2020, 105, e21719. [Google Scholar] [CrossRef] [PubMed]
- Podlesnik, J. Pupal Development and Adult Acclimation Temperatures Influence the Cold and Heat Tolerance in Tenebrio molitor (Coleoptera: Tenebrionidae). Insects 2025, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- Renault, D.; Salin, C.; Vannier, G.; Vernon, P. Survival at Low Temperatures in Insects: What Is the Ecological Significance of the Supercooling Point? CryoLetters 2002, 23, 217–228. [Google Scholar] [PubMed]
- Salt, R.W. Principles of Insect Cold-Hardiness. Annu. Rev. Entomol. 1961, 6, 55–74. [Google Scholar] [CrossRef]
- Leather, S.R.; Walters, K.F.A.; Bale, J.S. The Ecology of Insect Overwintering; Cambridge University Press: Cambridge, UK, 1995; p. 255. ISBN 0521556708. [Google Scholar]
- Salin, C.; Renault, D.; Vannier, G.; Vernon, P. A Sexually Dimorphic Response in Supercooling Temperature, Enhanced by Starvation, in the Lesser Mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Therm. Biol. 2000, 25, 411–418. [Google Scholar] [CrossRef]
- Johnston, S.L.; Lee, R.E. Regulation of Supercooling and Nucleation in a Freeze Intolerant Beetle (Tenebrio molitor). Cryobiology 1990, 27, 562–568. [Google Scholar] [CrossRef]
- Davis, H.E.; Cheslock, A.; MacMillan, H.A. Chill Coma Onset and Recovery Fail to Reveal True Variation in Thermal Performance among Populations of Drosophila Melanogaster. Sci. Rep. 2021, 11, 10876. [Google Scholar] [CrossRef]
- Overgaard, J.; MacMillan, H.A. The Integrative Physiology of Insect Chill Tolerance. Annu. Rev. Physiol. 2017, 79, 187–208. [Google Scholar] [CrossRef]
- Lachenicht, M.W.; Clusella-Trullas, S.; Boardman, L.; Le Roux, C.; Terblanche, J.S. Effects of Acclimation Temperature on Thermal Tolerance, Locomotion Performance and Respiratory Metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J. Insect Physiol. 2010, 56, 822–830. [Google Scholar] [CrossRef]
- Mir, A.H.; Qamar, A. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-Offs and Cross-Tolerances. Neotrop. Entomol. 2018, 47, 610–618. [Google Scholar] [CrossRef]
- Limberger, G.M.; Esteves, K.P.; Halal, L.M.; Nery, L.E.M.; da Fonseca, D.B. Chronic Immune Challenge Is Detrimental to Female Survival, Feeding Behavior, and Reproduction in the Field Cricket Gryllus assimilis (Fabricius, 1775). J. Comp. Physiol. B 2022, 192, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Diamond, S.E.; Yilmaz, A.R. The Role of Tolerance Variation in Vulnerability Forecasting of Insects. Curr. Opin. Insect Sci. 2018, 29, 85–92. [Google Scholar] [CrossRef]
- Allen, J.L.; Clusella-Trullas, S.; Chown, S.L. The Effects of Acclimation and Rates of Temperature Change on Critical Thermal Limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). J. Insect Physiol. 2012, 58, 669–678. [Google Scholar] [CrossRef]
- Li, C.; Addeo, N.F.; Rusch, T.W.; Dickerson, A.J.; Tarone, A.M.; Hu, W.; Tomberlin, J.K. Impact of Age, Sex, and Size on the Thermal Tolerance of the Adult Black Soldier Fly (Diptera: Stratiomyidae). J. Insects Food Feed 2022, 8, 681–691. [Google Scholar] [CrossRef]
- Laursen, S.F.; Hansen, L.S.; Bahrndorff, S.; Nielsen, H.M.; Noer, N.K.; Renault, D.; Sahana, G.; Sørensen, J.G.; Kristensen, T.N. Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. Insects 2021, 12, 380. [Google Scholar] [CrossRef]
- Renault, D. Long-Term after-Effects of Cold Exposure in Adult Alphitobius diaperinus (Tenebrionidae): The Need to Link Survival Ability with Subsequent Reproductive Success. Ecol. Entomol. 2011, 36, 36–42. [Google Scholar] [CrossRef]
- Taha, R.H. Impact of Thermal Stress on the Haemolymphal Proteins, Biological and economical Characters of the Silkworm, Bombyx mori L. Egypt. Acad. J. Biol. Sci. 2013, 5, 113–122. [Google Scholar] [CrossRef]
- Chipchase, K.M.; Enders, A.M.; Jacobs, E.G.; Hughes, M.R.; Killian, K.A. Effect of a Single Cold Stress Exposure on the Reproductive Behavior of Male Crickets. J. Insect Physiol. 2021, 133, 104287. [Google Scholar] [CrossRef]
- Centeno Filho, B.L.; Limberger, G.M.; Esteves, K.P.; da Fonseca, D.B.; Maciel, F.E. Mortality, Metabolic Rate, and Oviposition of Gryllus (Gryllus) Assimilis (Fabricius, 1775) (Orthoptera: Gryllidae) Females under Constant and Fluctuating Warm Temperatures. J. Therm. Biol. 2023, 114, 103574. [Google Scholar] [CrossRef]
- Ribeiro, N.; Abelho, M.; Costa, R. A Review of the Scientific Literature for Optimal Conditions for Mass Rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Macchiano, A.; Rojas, M.G. Estimating Optimal Temperature Conditions for Growth, Development, and Reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2025, 118, 71–82. [Google Scholar] [CrossRef]
- Schou, T.M.; Faurby, S.; Kjærsgaard, A.; Pertoldi, C.; Loeschcke, V.; Hald, B.; Bahrndorff, S. Temperature and Population Density Effects on Locomotor Activity of Musca domestica (Diptera: Muscidae). Environ. Entomol. 2013, 42, 1322–1328. [Google Scholar] [CrossRef]
- Parenti, C.C.; Binelli, A.; Caccia, S.; Della Torre, C.; Magni, S.; Pirovano, G.; Casartelli, M. Ingestion and Effects of Polystyrene Nanoparticles in the Silkworm Bombyx mori. Chemosphere 2020, 257, 127203. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.M.; Xu, H.; Shoemaker, K.L.; Dawson-Scully, K. Exposure to Heat Shock Affects Thermosensitivity of the Locust Flight System. J. Neurobiol. 1996, 29, 367–383. [Google Scholar] [CrossRef]
- Vasil’ev, A.G.; Ben’kovskaya, G.V.; Akhmetkireeva, T.T. Morphogenetic Consequences of Short-Term Thermal Stress in Short and Long Life House Fly Lines (Musca domestica L.): Geometric Wing Morphometrics. Russ. J. Ecol. 2023, 54, 366–382. [Google Scholar] [CrossRef]
- Nabizadeh, P.; Jagadeesh Kumar, T.S. Thermal Stress Induced Catalase Activity Level in Selected Bivoltine Breeds of Mulberry Silkworm Bombyx mori L. Mod. Appl. Sci. 2010, 4, 88–95. [Google Scholar] [CrossRef]
- Punzo, F.; Huff, G. Comparative Temperature and Water Relations and the Effects of Thermal Acclimation on Tenebrio molitor and Tenebrio Obscurus (Coleoptera: Tenebrionidae). Biochem. Physiol. 1989, 93, 527–533. [Google Scholar] [CrossRef]
- Joyal, J.J.; Hansen, L.D.; Coons, D.R.; Booth, G.M.; Smith, B.N.; Mill, D.D. Calorespirometric Determination of the Effects of Temperature, Humidity, Low O2 and High CO2 on the Development of Musca domestica Pupae. J. Therm. Anal. Calorim. 2005, 82, 703–709. [Google Scholar] [CrossRef]
- Holmes, L.A.; Vanlaerhoven, S.L.; Tomberlin, J.K. Relative Humidity Effects on the Life History of Hermetia illucens (Diptera: Stratiomyidae). Environ. Entomol. 2012, 41, 971–978. [Google Scholar] [CrossRef]
- Deruytter, D.; Coudron, C.L.; Claeys, J. Transporting Tenebrio molitor Eggs: The Effect of Temperature, Humidity and Time on the Hatch Rate. Sustainability 2023, 15, 6231. [Google Scholar] [CrossRef]
- Johnsen, N.S.; Andersen, J.L.; Offenberg, J. The Effect of Relative Humidity on the Survival and Growth Rate of the Yellow Mealworm Larvae (Tenebrio molitor, Linnaeus 1758). J. Insects Food Feed 2021, 7, 311–318. [Google Scholar] [CrossRef]
- Lindberg, F.A.; Waern, I.; Nilsson, E.; Jansson, A.; Holm, L.; Roman, E. Effect of Fasting and Two Different Photoperiods on Immune Parameters in Adult Male and Female House Crickets (Acheta domesticus). Comp. Immunol. Rep. 2025, 8, 200210. [Google Scholar] [CrossRef]
- Ferenz, M.J. Visible Light and Its Influence on the Embryonic Viability of the Cricket Acheta domesticus. Adv. Entomol. 2023, 11, 309–324. [Google Scholar] [CrossRef]
- Cattaneo, A.; Macinnis, A.E.; Meneguz, M.; Dabbou, S.; Tomberlin, J.K. Volatile Organic Compounds as Potential Indicators of Stress in Black Soldier Fly (Diptera: Stratiomyidae) Larvae. J. Insects Food Feed 2025, 11, 2009–2022. [Google Scholar] [CrossRef]
- Renault, D.; Hervant, F.; Vernon, P. Comparative Study of the Metabolic Responses during Food Shortage and Subsequent Recovery at Different Temperatures in the Adult Lesser Mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Physiol. Entomol. 2002, 27, 291–301. [Google Scholar] [CrossRef]
- Engell Dahl, J.; Marti, S.-L.; Colinet, H.; Wiegand, C.; Holmstrup, M.; Renault, D. Thermal Plasticity and Sensitivity to Insecticides in Populations of an Invasive Beetle: Cyfluthrin Increases Vulnerability to Extreme Temperature. Chemosphere 2021, 274, 129905. [Google Scholar] [CrossRef]
- Shephard, A.M.; Aksenov, V.; Tran, J.; Nelson, C.J.; Boreham, D.R.; Rollo, C.D. Hormetic Effects of Early Juvenile Radiation Exposure on Adult Reproduction and Offspring Performance in the Cricket (Acheta domesticus). Dose-Response 2018, 16, 1559325818797499. [Google Scholar] [CrossRef]
- Li, X.; Rollo, C.D. Radiation Induces Stress and Transgenerational Impacts in the Cricket, Acheta domesticus. Int. J. Radiat. Biol. 2021, 98, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Sakaluk, S.K.; Schaus, J.M.; Eggert, A.-K.; Snedden, W.A.; Brady, P.L. Polyandry and Fitness of Offspring Reared under Varying Nutritional Stress in Decorated Crickets. Evolution 1999, 56, 1999–2007. [Google Scholar]
- Mallard, S.T.; Barnard, C.J. Food Stress, Fluctuating Asymmetry and Performance in the Gryllid Crickets Gryllus Bimaculatus and Gryllodes sigillatus. Behaviour 2004, 141, 219–232. [Google Scholar] [CrossRef]
- Lyn, J.C.; Naikkhwah, W.; Aksenov, V.; Rollo, C.D. Influence of Two Methods of Dietary Restriction on Life History Features and Aging of the Cricket Acheta domesticus. Age 2011, 33, 509–522. [Google Scholar] [CrossRef]
- Vossen, L.E.; Roman, E.; Jansson, A. Fasting Increases Shelter Use in House Crickets (Acheta domesticus). J. Insects Food Feed 2022, 8, 5–8. [Google Scholar] [CrossRef]
- Mccluney, K.E.; Date, R.C. The Effects of Hydration on Growth of the House Cricket, Acheta domesticus. J. Insect Sci. 2008, 8, 1–9. [Google Scholar] [CrossRef]
- Orchard, I.; Loughton, B.G.; Webb, R.A. Octopamine and Short-Term Hyperlipaemia in the Locust. Gen. Comp. Endocrinol. 1981, 45, 175–180. [Google Scholar] [CrossRef]
- Harak, M.; Kuusik, A.; Hiiesaar, K.; Metspalu, L.; Luik, A.; Tartes, U. Calorimetric Investigations on Physiological Stress in Tenebrio molitor (Coleoptera, Tenebrionidae) Pupae. Thermochim. Acta 1998, 309, 57–61. [Google Scholar] [CrossRef]
- Woodring, J.P.; Meier, O.W.; Rose, R. Effect of Development, Photoperiod, and Stress on Octopamine Levels in the House Cricket, Acheta domesticus. J. Insect Physiol. 1988, 34, 759–765. [Google Scholar] [CrossRef]
- Mezheritskiy, M.I.; Vorontsov, D.D.; Dyakonova, V.E.; Zakharov, I.S. Behavioral Functions of Octopamine in Adult Insects under Stressful Conditions. Biol. Bull. Rev. 2024, 14, 535–547. [Google Scholar] [CrossRef]
- Woodring, J.P.; Clifford, C.W.; Roe, R.M.; Beckman, B.R. Effects of CO2 and Anoxia on Feeding, Growth, Metabolism, Water Balance, and Blood Composition in Larval Female House Crickets, Acheta domesticus. J. Insect Physiol. 1978, 24, 499–509. [Google Scholar] [CrossRef]
- Loudon, C. Development of Tenebrio molitor in Low Oxygen Levels. Insect Physiol. 1988, 34, 97–103. [Google Scholar] [CrossRef]
- Zhu, Z.; Tan, Y.; Xiao, S.; Guan, Z.; Zhao, W.; Dai, Z.; Liu, G.; Zhang, Z. Solitary Living Brings a Decreased Weight and an Increased Agility to the Domestic Silkworm, Bombyx mori. Insects 2021, 12, 809. [Google Scholar] [CrossRef]
- Mahavidanage, S.; Fuciarelli, T.M.; Li, X.; David Rollo, C. The Effects of Rearing Density on Growth, Survival, and Starvation Resistance of the House Cricket Acheta domesticus. J. Orthoptera Res. 2023, 32, 25–31. [Google Scholar] [CrossRef]
- Baliota, G.V.; Rumbos, C.I.; Athanassiou, C.G. The More, the Better? Effect of Density on the Growth of the Lesser Mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). J. Insects Food Feed 2023, 10, 1171–1179. [Google Scholar] [CrossRef]
- Hirashima, A.; Ueno, R.; Eto, M. Effects of Various Stressors on Larval Growth and Whole-Body Octopamine Levels of Tribolium Castaneum. Pestic. Biochem. Physiol. 1992, 44, 217–225. [Google Scholar] [CrossRef]
- Pedersen, S.A.; Kristiansen, E.; Hansen, B.H.; Andersen, R.A.; Zachariassen, K.E. Cold Hardiness in Relation to Trace Metal Stress in the Freeze-Avoiding Beetle Tenebrio molitor. J. Insect Physiol. 2006, 52, 846–853. [Google Scholar] [CrossRef]
- Dziewięcka, M.; Flasz, B.; Rost-Roszkowska, M.; Kędziorski, A.; Kochanowicz, A.; Augustyniak, M. Graphene Oxide as a New Anthropogenic Stress Factor—Multigenerational Study at the Molecular, Cellular, Individual and Population Level of Acheta domesticus. J. Hazard. Mater. 2020, 396, 122775. [Google Scholar] [CrossRef]
- Rong, W.; Chen, Y.; Lu, J.; Huang, S.; Xin, L.; Guan, D.; Li, X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes 2023, 14, 1616. [Google Scholar] [CrossRef]
- Meng, X.; Abdlli, N.; Wang, N.; Lü, P.; Nie, Z.; Dong, X.; Lu, S.; Chen, K. Effects of Ag Nanoparticles on Growth and Fat Body Proteins in Silkworms (Bombyx mori). Biol. Trace Elem. Res. 2017, 180, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Fudlosid, S.; Ritchie, M.W.; Muzzatti, M.J.; Allison, J.E.; Provencher, J.; MacMillan, H.A. Ingestion of Microplastic Fibres, But Not Microplastic Beads, Impacts Growth Rates in the Tropical House Cricket Gryllodes sigillatus. Front. Physiol. 2022, 13, 871149. [Google Scholar] [CrossRef]
- Angulo, F.J.; Baker, N.L.; Olsen, S.J.; Anderson, A.; Barrett, T.J. Antimicrobial Use in Agriculture: Controlling the Transfer of Antimicrobial Resistance to Humans. Semin. Pediatr. Infect. Dis. 2004, 15, 78–85. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Mandal, T.K. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics 2025, 14, 207. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition 2003; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Khmaissa, M.; Zouari-Mechichi, H.; Sciara, G.; Record, E.; Mechichi, T. Pollution from Livestock Farming Antibiotics an Emerging Environmental and Human Health Concern: A Review. J. Hazard. Mater. Adv. 2024, 13, 100410. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, R.; Miranda, M.; Baudracco, J.; Fouz, R.; Pereira, V.; López-Alonso, M. Breeding for Organic Dairy Farming: What Types of Cows Are Needed? J. Dairy Res. 2019, 86, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Eilenberg, J.; Vlak, J.M.; Nielsen-LeRoux, C.; Cappellozza, S.; Jensen, A.B. Diseases in Insects Produced for Food and Feed. J. Insects Food Feed 2015, 1, 87–102. [Google Scholar] [CrossRef]
- Joosten, L.; Lecocq, A.; Jensen, A.B.; Haenen, O.; Schmitt, E.; Eilenberg, J. Review of Insect Pathogen Risks for the Black Soldier Fly (Hermetia illucens) and Guidelines for Reliable Production. Entomol. Exp. Appl. 2020, 168, 432–447. [Google Scholar] [CrossRef]
- Hillyer, J.F. Insect Immunology and Hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef]
- James, R.R.; Li, Z. From Silkworms to Bees. In Insect Pathology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 425–459. [Google Scholar]
- Maciel-Vergara, G.; Jensen, A.B.; Lecocq, A.; Eilenberg, J. Diseases in Edible Insect Rearing Systems. J. Insects Food Feed 2021, 7, 621–638. [Google Scholar] [CrossRef]
- de Mesquita Souza Saraiva, M.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial Resistance in the Globalized Food Chain: A One Health Perspective Applied to the Poultry Industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Baptiste, K.E.; Pokludová, L. Mass Medications: Prophylaxis and Metaphylaxis, Cascade and Off-Label Use, Treatment Guidelines and Antimicrobial Stewardship. In Antimicrobials in Livestock 1: Regulation, Science, Practice; Springer International Publishing: Cham, Switzerland, 2020; pp. 167–193. [Google Scholar]
- Murthy, M.R.V.; Sreenivasaya, M. Effect of Antibiotics on the Growth of the Silkworm, Bombyx mori L. Nature 1953, 172, 684–685. [Google Scholar] [CrossRef]
- Shyamala, B.; Bhat, J.V. Chloromycetin in the Nutrition of the Silkworm Bombyx mori L. III. Influence on Gut Weight, Oxygen Uptake, and Glucose Absorption. J. Ins. Physiol. 1962, 8, 241–250. [Google Scholar] [CrossRef]
- Lalander, C.; Senecal, J.; Gros Calvo, M.; Ahrens, L.; Josefsson, S.; Wiberg, K.; Vinnerås, B. Fate of Pharmaceuticals and Pesticides in Fly Larvae Composting. Sci. Total Environ. 2016, 565, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huo, Y.; Kong, Y.; Zhou, W.; Qin, F.; Hu, X. Effects of Short-Term Florfenicol Exposure on the Gene Expression Pattern, Midgut Microbiota, and Metabolome in the Lepidopteran Model Silkworm (Bombyx mori). Sci. Total Environ. 2024, 912, 1169099. [Google Scholar] [CrossRef]
- Ilan, J.; Ilan, J.; Quastel, J.H. Effects of Actinomycin D on Nucleic Acid Metabolism and Protein Biosynthesis during Metamorphosis of Tenebrio molitor L. Biochem. J. 1966, 100, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Chase, A.M. Effects of Antibiotics on Epidermal Metamorphosis and Nucleic Acid Synthesis in Tenebrio molitor. J. Insect Physiol. 1970, 16, 865–884. [Google Scholar] [CrossRef]
- Sweeley, C.C.; O’connor, J.D.; Bieber, L.L. Effects of Polyene Macrolides on Growth and Reproduction of Musca domestica and on the Uptake of Cholesterolin Galleria Melonella Larvae. Chem.-Biol. Interact. 1970, 2, 247–253. [Google Scholar] [CrossRef]
- Schroeder, F.; Bieber, L.L. Effects of Filipin and Cholesterol on Housefly, Musca domestica L., and Wax moth, Galleria melonella L. Chem.-Biol. Interact. 1972, 4, 239–249. [Google Scholar] [CrossRef]
- Socha, R.; Sehnal, F. Inhibition of Adult Development in Tenebrio molitor by Insect Hormones and Antibiotics. J. Insect Physiol. 1972, 18, 317–337. [Google Scholar] [CrossRef]
- Roberts, P.E.; Willis, J.H. Effects of Juvenile Hormone, Ecdysterone, Actinomycin D, and Mitomycin C on the Cuticular Proteins of Tenebrio molitor. J. Embryol. Exp. Morphol. 1980, 56, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Yukuhiro, F.; Noda, H. Subacute and Delayed Toxicity of Iminoctadine Liquid Formulation, Which Contains Iminoctadine Triacetate as an Antifungal Component on a Nontarget Domesticated Insect, the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Pestic. Biochem. Physiol. 2011, 100, 239–243. [Google Scholar] [CrossRef]
- Arakawa, T.; Ito, K.; Kidokoro, K.; Kadono-Okuda, K.; Yukuhiro, F.; Noda, H. A Conspicuous Intoxication in Bombyx mori (Lepidoptera: Bombycidae) Caused by a Fungicide Containing Iminoctadine Triacetate. Ann. Entomol. Soc. Am. 2013, 106, 122–127. [Google Scholar] [CrossRef]
- Alyokhin, A.; Buzza, A.; Beaulieu, J. Effects of Food Substrates and Moxidectin on Development of Black Soldier Fly, Hermetia illucens. J. Appl. Entomol. 2019, 143, 137–143. [Google Scholar] [CrossRef]
- Gao, Q.; Deng, W.; Gao, Z.; Li, M.; Liu, W.; Wang, X.; Zhu, F. Effect of Sulfonamide Pollution on the Growth of Manure Management Candidate Hermetia illucens. PLoS ONE 2019, 14, e216086. [Google Scholar] [CrossRef] [PubMed]
- Jiangbo, S.; Jiang, G.; Zhang, J.; Guo, J.; Li, Z.; Hao, K.; Liu, L.; Cheng, Z.; Tong, X.; Fangyin, D. Metformin Prolongs Lifespan through Remodeling the Energy Strategy in Silkworm, Bombyx mori. Aging 2019, 11, 240–248. [Google Scholar] [CrossRef]
- Liu, C.; Yao, H.; Wang, C. Black Soldier Fly Larvae Can Effectively Degrade Oxytetracycline Bacterial Residue by Means of the Gut Bacterial Community. Front. Microbiol. 2021, 12, 663972. [Google Scholar] [CrossRef]
- Hoek van den Hil, E.F.; van de Schans, M.G.M.; Bor, G.; van der Fels-Klerx, H.J. Effects of Veterinary Drugs on Rearing and Safety of Black Soldier Fly (Hermetia illucens) Larvae. J. Insects Food Feed 2022, 8, 1097–1106. [Google Scholar] [CrossRef]
- Hoek-Van den Hil, E.F.; Meijer, N.P.; Van Rozen, K.; Elissen, H.; van Wikselaar, P.G.; Brust, H.; Te Loeke, N.A.J.M.; de Rijk, T.; Tienstra, M.; van de Schans, M.G.M.; et al. Safety of Black Soldier Fly (Hermetia illucens) Larvae Reared on Waste Streams of Animal and Vegetal Origin and Manure. J. Insects Food Feed 2024, 10, 771–783. [Google Scholar] [CrossRef]
- Tian, C.; Zou, H.; Guo, X.; Shu, Q.; Zhang, X.; Cheng, J.; Gu, Z.; Li, F.; Li, B. Effects of Florfenicol on the Midgut Physiological Function of Bombyx mori, Based on the Diversity of Intestinal Microbiota. Entomol. Exp. Appl. 2024, 172, 953–963. [Google Scholar] [CrossRef]
- de Mello Braga, L.L.V.; Simão, G.; Schiebel, C.S.; Oliveira, Y.F.; da Rosa, L.B.; Gois, M.B.; Fernandes, E.S.; Maria-Ferreira, D. Tenebrio molitor as a New Alternative Model for the Investigation of Chemotherapy-Induced Intestinal Toxicity. Pharmacol. Res. Rep. 2024, 2, 100013. [Google Scholar] [CrossRef]
- Gemrich, E.G. Effects of Polyene Antibiotics on the Growth and Development of the House Fly. J. Econ. Entomol. 1972, 65, 1552–1554. [Google Scholar] [CrossRef]
- Kubo, M.; Kato, Y.; Morisaka, K.; Inamori, Y.; Nomoto, K.; Takemoto, T.; Sakai, M.; Sawada, Y.; Taniyama, H. Insecticidal Activity of Streptothricin Antibiotics. Chem. Pharm. Bull. 1981, 29, 3727–3730. [Google Scholar] [CrossRef]
- Jordan, M.; Warchalowska-Śliwa, E.; Maryanska-Nadachowska, A. The Effect of Some Selected Pesticides on the Embryonal Development of Acheta domesticus. Folia Biol. 1979, 27, 25–34. [Google Scholar]
- He, Z.; Fang, Y.; Zhang, F.; Liu, Y.; Wen, X.; Yu, C.; Cheng, X.; Li, D.; Huang, L.; Ai, H.; et al. Toxic Effect of Methyl-Thiophanate on Bombyx mori Based on Physiological and Transcriptomic Analysis. Genes 2024, 15, 1279. [Google Scholar] [CrossRef]
- Shyamala, M.B.; Sharada, K.; Bhat, M.G.; Bhat, J.V. Chloromycetin in the Nutrition of the Silkworm Bombyx mori L. II. Influence on Digestion and Utilization of Proteins, Fat and Minerals. J. Ins. Physiol. 1959, 4, 229–234. [Google Scholar] [CrossRef]
- Rahmathulla, V.K.; Nayak, P.; Vindya, G.S.; Himantharaj, M.T.; Rajan, R.K. Influence of Antibiotic on Feed Conversion Efficiency of Mulberry Silkworm (Bombyx mori L.). Anim. Biol. 2006, 56, 13–22. [Google Scholar] [CrossRef]
- Li, S.; Jiang, H.; Qiao, K.; Gui, W.; Zhu, G. Insights into the Effect on Silkworm (Bombyx mori) Cocooning and Its Mechanisms Following Non-Lethal Dose Tebuconazole. Chemosphere 2019, 234, 338–345. [Google Scholar] [CrossRef]
- Pansa, M.C.; Migliori Natalizi, G.; Bettini, S. Toxicity of Valinomycin on Insects. J. Invertebr. Pathol. 1973, 22, 148–152. [Google Scholar] [CrossRef]
- Kawasaki, H. DNA Synthesis of Wing Disc Cells and the Effects of Mitomycin C and X Ray Irradiation on the Wing Development of Bombyx mori. Zool. Sci. 1995, 12, 775–782. [Google Scholar] [CrossRef]
- Jung, J.; Heo, A.; Woo Park, Y.; Ji Kim, Y.; Koh, H.; Park, W. Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change. J. Microbiol. Biotechnol. 2014, 24, 888–897. [Google Scholar] [CrossRef]
- Brai, A.; Poggialini, F.; Vagaggini, C.; Pasqualini, C.; Simoni, S.; Francardi, V.; Dreassi, E. Tenebrio molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int. J. Mol. Sci. 2023, 24, 2296. [Google Scholar] [CrossRef]
- Kubo, M.; Kato, Y.; Morisaka, K.; Nomoto, K.; Inamori, Y. The Mechanism of Delayed Insecticidal Action of Stretothricin Antibiotics. I. Toxic Symptoms and Distribution of Racemomycin-D into the Tissues of the 5th Instar Larvae of Silkworm, Bombyx mori. Chem. Pharm. Bull. 1983, 31, 325–329. [Google Scholar] [CrossRef]
- Kato, Y.; Kubo, M.; Morisaka, K.; Waku, Y.; Hayashiya, K.; Inamori, Y. The Mechanism of Delayed Insecticidal Action of Stretothricin Antibiotics. II. Effect of Racemomycin-D on the Excretion Function of the 5th Instar Larvae of Silkworm, Bombyx mori. Chem. Pharm. Bull. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Ishaaya, I.; Chefurka, W. Differential Effect of Actinomycin D on Amino Acid Incorporation by Microsomal Components of the Housefly Musca domestica. Exp. Cell Res. 1971, 69, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, J.; Wang, H.; Liu, C.; Lv, X.; Li, J.; Guo, B. Enantiomerization and Enantioselective Bioaccumulation of Benalaxyl in Tenebrio molitor Larvae from Wheat Bran. J. Agric. Food Chem. 2013, 61, 9045–9051. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, M.; Spranghers, T.; De Clercq, P.; Cooreman-Algoed, M.; Couchement, T.; De Clercq, G.; Verbeke, S.; Spanoghe, P. Pesticide Contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for Human Consumption. Food Chem. 2016, 201, 264–269. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Y.; Liu, C.; Guo, B.; Yu, C.; Wang, S. Study on Enantioselective Bioaccumulation of Tetraconazole in Tenebrio molitor Larvae. Int. J. Trop. Insect Sci. 2023, 43, 449–454. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, J.; Wang, H.; Liu, M.; Wu, L.; Ping, F.; He, Q.; Li, H.; Zheng, C.; Xu, X. Attenuation of Veterinary Antibiotics in Full-Scale Vermicomposting of Swine Manure via the Housefly Larvae (Musca domestica). Sci. Rep. 2014, 4, 6844. [Google Scholar] [CrossRef]
- Liu, C.; Yao, H.; Chapman, S.J.; Su, J.; Wang, C. Changes in Gut Bacterial Communities and the Incidence of Antibiotic Resistance Genes during Degradation of Antibiotics by Black Soldier Fly Larvae. Environ. Int. 2020, 142, 105734. [Google Scholar] [CrossRef]
- Mei, H.; Li, C.; Li, X.; Hu, B.; Lu, L.; Tomberlin, J.K.; Hu, W. Characteristics of Tylosin and Enrofloxacin Degradation in Swine Manure Digested by Black Soldier Fly (Hermetia illucens L.) Larvae. Environ. Pollut. 2022, 293, 118495. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, C.; Li, Y.; Qin, Y.; Wang, C.; Wang, T. The Underlying Mechanisms of Oxytetracycline Degradation Mediated by Gut Microbial Proteins and Metabolites in Hermetia illucens. Sci. Total Environ. 2024, 946, 174224. [Google Scholar] [CrossRef]
- Yang, S.S.; Ding, M.Q.; Zhang, Z.R.; Ding, J.; Bai, S.W.; Cao, G.L.; Zhao, L.; Pang, J.W.; Xing, D.F.; Ren, N.Q.; et al. Confirmation of Biodegradation of Low-Density Polyethylene in Dark- versus Yellow- Mealworms (Larvae of Tenebrio Obscurus versus Tenebrio molitor) via. Gut Microbe-Independent Depolymerization. Sci. Total Environ. 2021, 789, 147915. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Q.; Lin, Y.; Tang, Z.; Tomberlin, J.K.; Liu, W.; Huang, Y. Black Soldier Fly Larvae Effectively Degrade Lincomycin from Pharmaceutical Industry Wastes. J. Environ. Manag. 2022, 307, 114359. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xia, X.; Zhao, S.; Shi, M.; Liu, F.; Zhu, Y. The Physiological and Toxicological Effects of Antibiotics on an Interspecies Insect Model. Chemosphere 2020, 248, 126919. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Cheng, J.; Gu, H.; Zou, H.; Peng, P.; Li, B. The Mechanism of High-Concentration Florfenicol Exposure Inducing Apoptosis in the Midgut of Bombyx mori (Lepidoptera: Bombycidae). J. Asia Pac. Entomol. 2025, 28, 102399. [Google Scholar] [CrossRef]
- Phillips, D.R.; Loughton, B.G. The Effect of Inhibition of RNA and Protein Synthesis on the Development of Larvae of Locusta migratoria. Insect Biochem. 1978, 9, 241–245. [Google Scholar] [CrossRef]
- van Dongen, K.C.W.; de Lange, E.; van Asseldonk, L.L.M.; Zoet, L.; van der Fels-Klerx, H.J. Safety and Transfer of Veterinary Drugs from Substrate to Black Soldier Fly Larvae. Animal 2024, 18, 101214. [Google Scholar] [CrossRef]
- Sharada, K.; Bhat, J.V. Effect of Chloromycetin and Glycine on the Growth and Production of Silk by Bombyx mori L. J. Indian Inst. Sci. 1956, 38, 136–147. [Google Scholar]
- Saha, A.K.; Rahman, M.S.; Saha, B.N.; Alam, R.A.; Mandal, S.P.; Yasmeen, F. Effect of Antibiotics on the Lipid and Water Contents of Silkworm, Bombyx mori L. Pak. J. Zool. 1995, 27, 291–294. [Google Scholar]
- Srivastava, A.; Kumar, R.V. Efficacy of Three Antibiotics on Reduction of Mortality Rate in Mulberry Silkworm (Bombyx mori L.) in the Monsoon Season of Lucknow. Trends Biosci. 2009, 2, 33–35. [Google Scholar]
- Gangola, S.; Bhatt, P.; Kumar, A.J.; Bhandari, G.; Joshi, S.; Punetha, A.; Bhatt, K.; Rene, E.R. Biotechnological Tools to Elucidate the Mechanism of Pesticide Degradation in the Environment. Chemosphere 2022, 296, 133916. [Google Scholar] [CrossRef]
- Pesticidi: Quali Sono i Loro Effetti Sulla Salute—ISSalute. Available online: https://www.issalute.it/index.php/la-salute-dalla-a-alla-z-menu/p/pesticidi (accessed on 29 May 2025).
- EFSA. Pesticides. Available online: https://www.efsa.europa.eu/it/topics/topic/pesticides (accessed on 29 May 2025).
- Pietrzak, D.; Kania, J.; Malina, G.; Kmiecik, E.; Wątor, K. Pesticides from the EU First and Second Watch Lists in the Water Environment. Clean 2019, 47, 1800376. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009; European Commission: Brussels, Belgium, 2009.
- European Commission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and amending Council Directive 91/414/EEC; European Commission: Brussels, Belgium, 2005.
- Handford, C.E.; Elliott, C.T.; Campbell, K. A Review of the Global Pesticide Legislation and the Scale of Challenge in Reaching the Global Harmonization of Food Safety Standards. Integr. Environ. Assess. Manag. 2015, 11, 525–536. [Google Scholar] [CrossRef]
- Li, Z.; Fantke, P. Framework for Defining Pesticide Maximum Residue Levels in Feed: Applications to Cattle and Sheep. Pest Manag. Sci. 2023, 79, 748–759. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Isaac, N.J.B.; Bullock, J.M.; Roy, D.B.; Garthwaite, D.G.; Crowe, A.; Pywell, R.F. Impacts of Neonicotinoid Use on Long-Term Population Changes in Wild Bees in England. Nat. Commun. 2016, 7, 12459. [Google Scholar] [CrossRef]
- Wan, N.-F.; Fu, L.; Dainese, M.; Kiær, L.P.; Hu, Y.-Q.; Xin, F.; Goulson, D.; Woodcock, B.A.; Vanbergen, A.J.; Spurgeon, D.J.; et al. Pesticides Have Negative Effects on Non-Target Organisms. Nat. Commun. 2025, 16, 1360. [Google Scholar] [CrossRef]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jäger, H. Impact of Substrate Contamination with Mycotoxins, Heavy Metals and Pesticides on the Growth Performance and Composition of Black Soldier Fly Larvae (Hermetia illucens) for Use in the Feed and Food Value Chain. Food Addit. Contam. Part A 2017, 34, 1410–1420. [Google Scholar] [CrossRef]
- Mbokou Foukmeniok, S.; Ogbon, A.; Bougna Tchoumi, H.H.; Dzepe, D.; Santos, J.C.C.; Riggi, L.; Tonle Kenfack, I.; Djouaka, R. Effect of the Rearing Substrate Contamination with λ-Cyhalothrin Pesticide on the Growth Performance and Survival of Black Soldier Fly (Hermetia illucens) Larvae: A Study of Biodegradation Kinetics. Chem. Afr. 2024, 7, 2833–2844. [Google Scholar] [CrossRef]
- Meijer, N.; Zoet, L.; de Rijk, T.; Zomer, P.; Rijkers, D.; van der Fels-Klerx, H.J.; van Loon, J.J.A. Effects of Pyrethroid and Organophosphate Insecticides on Reared Black Soldier Fly Larvae (Hermetia illucens). Insect Sci. 2024, 31, 817–834. [Google Scholar] [CrossRef]
- Donald, C.E.; Jaastad, G.; Flaigeng, M.H.; Merel, S.; Rasinger, J.D.; Berntssen, M.H.G.; Belghit, I. Tolerance and Degradation of the Insecticide Pirimiphos-Methyl and Its Metabolites by Black Soldier Fly and Yellow Mealworm Larvae. J. Insects Food Feed 2025, 1–13. [Google Scholar] [CrossRef]
- Ogbon, E.A.; Dzepe, D.; Lalander, C.; Wiklicky, V.; Sinda, P.V.K.; Adéoti, R.; Mignouna, D.; Gbaguidi, B.; Behanzin, J.G.; Riggi, L.; et al. Risk Assessment of Black Soldier Fly (Hermetia illucens (L.), Diptera: Stratiomyidae) Larvae Composting for Circular Waste Management in Southern Benin. J. Insects Food Feed 2025, 11, 1483–1498. [Google Scholar] [CrossRef]
- Meijer, N.; de Rijk, T.; van Loon, J.J.A.; Zoet, L.; van der Fels-Klerx, H.J. Effects of Insecticides on Mortality, Growth and Bioaccumulation in Black Soldier Fly (Hermetia illucens) Larvae. PLoS ONE 2021, 16, e249362. [Google Scholar] [CrossRef]
- Meijer, N.; Zoet, L.; Rijkers, D.; Nijssen, R.; Willemsen, M.; Zomer, P.; Van Der Fels-Klerx, H.J. Toxicity, Transfer and Metabolization of the Pyrethroid Insecticides Cypermethrin and Deltamethrin by Reared Black Soldier Fly Larvae. J. Insects Food Feed 2024, 11, S157–S166. [Google Scholar] [CrossRef]
- Meijer, N.; de Rijk, T.; van Loon, J.J.A.; Bosch, M.W.; van der Fels-Klerx, H.J. Effects of Insecticides on Lesser Mealworm (Alphitobius diaperinus)—Bioaccumulation, Mortality, and Growth. J. Insects Food Feed 2022, 8, 773–782. [Google Scholar] [CrossRef]
- Meijer, N.; Bosch, M.W.; De Rijk, T.; Zomer, P.; Van Der Fels-Klerx, H.J.; Van Loon, J.J.A. Lethal and Sublethal Effects of Chronic Exposure to Insecticide Residues on Reared Alphitobius diaperinus. J. Insects Food Feed 2024, 10, 991–1003. [Google Scholar] [CrossRef]
- Dedos, S.G.; Szurdoki, F.; Székács, A.; Shiotsuki, T.; Hammock, B.D.; Shimada, J.; Fugo, H. Fenoxycarb Levels and Their Effects on General and Juvenile Hormone Esterase Activity in the Hemolymph of the Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2002, 73, 174–187. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tsuji, Y.; Aso, Y.; Hamasaki, T.; Shirahata, S.; Katakura, Y. Effect of Diazinon Exposure on Antioxidant Reactions in the Silkmoth, Bombyx mori. J. Appl. Entomol. 2011, 135, 320–325. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, J.; Li, J.; Chen, J.; Wang, H.; Mao, T.; Xue, B.; Li, B. The Silk Gland Damage and the Transcriptional Response to Detoxifying Enzymes-Related Genes of Bombyx mori under Phoxim Exposure. Chemosphere 2018, 209, 964–971. [Google Scholar] [CrossRef]
- Cheng, X.; Li, F.; Chen, J.; Wang, H.; Mao, T.; Li, J.; Hu, J.; Li, B. Mechanism of Trace Acetamiprid-Caused Reproductive Disorders in Silkworm, Bombyx mori. Pest Manag. Sci. 2019, 75, 2672–2681. [Google Scholar] [CrossRef]
- Lu, Z.; Li, M.; Fang, Y.; Qu, J.; Ye, W.; Dai, M.; Bian, D.; Mao, T.; Li, F.; Sun, H.; et al. The Mechanism of Damage to the Posterior Silk Gland by Trace Amounts of Acetamiprid in the Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2020, 170, 104676. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, F.; Shi, M.; Li, S.; Xie, X.; Li, G.; Zhang, X.; Zhu, Y. Transcriptome Analysis of the Reproduction of Silkworm (Bombyx mori) under Dimethoate Stress. Pestic. Biochem. Physiol. 2022, 183, 105081. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Li, M.; Fang, Y.; Qu, J.; Mao, T.; Chen, J.; Li, F.; Sun, H.; Li, B. Responses of Detoxification Enzymes in the Midgut of Bombyx mori after Exposure to Low-Dose of Acetamiprid. Chemosphere 2020, 251, 126438. [Google Scholar] [CrossRef]
- Kuribayashi, S. Studies on the Effect of Pesticides on the Reproduction of the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) II. Ovicidal Action of Organophosphorus Insecticides Administered during the Larval Stage. Appl. Ent. Zool. 1981, 16, 423–431. [Google Scholar] [CrossRef]
- Li, B.; Sun, Q.; Yu, X.; Xie, Y.; Hong, J.; Zhao, X.; Sang, X.; Shen, W.; Hong, F. Molecular Mechanisms of Silk Gland Damage Caused by Phoxim Exposure and Protection of Phoxim-Induced Damage by Cerium Chloride in Bombyx mori. Environ. Toxicol. 2015, 30, 1102–1111. [Google Scholar] [CrossRef]
- Ardiles, M.; González, C.R. Assessment of the Susceptibility and Alterations Caused by Lufenuron in Larvae, Pupae, and Adults of Hermetia illucens (Linnaeus) (Black Soldier Fly) (Diptera: Stratiomyidae). J. Entomol. Zool. Stud. 2024, 12, 98–105. [Google Scholar] [CrossRef]
- Pedersen, K.E.; Pedersen, N.N.; Meyling, N.V.; Fredensborg, B.L.; Cedergreen, N. Differences in Life Stage Sensitivity of the Beetle Tenebrio molitor towards a Pyrethroid Insecticide Explained by Stage-Specific Variations in Uptake, Elimination and Activity of Detoxifying Enzymes. Pestic. Biochem. Physiol. 2020, 162, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Gourgouta, M.; Athanassiou, C.G. Efficacy of Phosphine on Different Life Stages of Alphitobius diaperinus and Tenebrio molitor (Coleoptera: Tenebrionidae). Sustainability 2023, 15, 2131. [Google Scholar] [CrossRef]
- Zutshi, M.; Saxena, Y.; Sharma, P.P. Toxicity of Some Insecticides for Crowded and Isolated Nymphs of Gryllodes Sigillatus Wlk. (Orthoptera: Gryllidae). Experientia 1980, 36, 231–232. [Google Scholar] [CrossRef]
- Parkinson, R.H.; Little, J.M.; Gray, J.R. A Sublethal Dose of a Neonicotinoid Insecticide Disrupts Visual Processing and Collision Avoidance Behaviour in Locusta migratoria. Sci. Rep. 2017, 7, 936. [Google Scholar] [CrossRef]
- Sugiyama, H. Effects of EDB (1, 2-Dibromoethane) on the Silkworm (Bombyx mori, L.). J. Pestic. Sci. 1980, 5, 599–602. [Google Scholar] [CrossRef]
- Sugiyama, H.; Emori, T. Pesticide Residues of MEP, MPP and PAP in Mulberry Stumps and Its Effect on the Silkworm (Bombyx mori, L.). J. Pestic. Sci. 1980, 5, 423–425. [Google Scholar] [CrossRef]
- Asano, S.; Kuwano, E.; Eto, M. Induction of Precocious Administration Metamorphosis by Dietary of 1-Citronellyl-5-Phenylimidazole in the 4th Instar Larvae of the Silkworm, Bombyx mori L. J. Pestic. Sci. 1984, 9, 503–509. [Google Scholar] [CrossRef]
- Koul, O.; Amanai, K.; Ohtaki, T. Effect of Azadirachtin on the Endocrine Events of Bombyx mori. J. Insect Physiol. 1987, 33, 103–108. [Google Scholar] [CrossRef]
- Bhagyalakshmi, A.; Reddy, S.V.; Reddy, P.S. Studies on the Effect of Hexachloro-Cyclohexane on the Growth and Silk Qualities of Silkworm, Bombyx mori. Chem. Ecol. 1995, 11, 97–104. [Google Scholar] [CrossRef]
- Arakawa, T.; Furuta, Y.; Miyazawa, M.; Kato, M. Flufenoxuron, an Insect Growth Regulator, Promotes Peroral by Nucleopolyhedrovirus (BmNPV) Budded in the Silkworm, Bombyx mori L. J. Virol. Methods 2002, 100, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.H.; Li, S.N.; Liu, S.Y.; Zhu, G.N.; Zhuang, H.S. Genotoxicity Evaluation of Low Doses of Clodinafop-Propargyl to the Silkworm Bombyx mori Using Alkaline Single-Cell Gel Electrophoresis. Environ. Toxicol. Pharmacol. 2008, 26, 162–166. [Google Scholar] [CrossRef]
- Goncu, E.; Parlak, O. The Influence of Juvenile Hormone Analogue, Fenoxycarb on the Midgut Remodeling in Bombyx mori (L., 1758) (Lepidoptera: Bombycidae) during Larval-Pupal Metamorphosis. Türk. J. Entomol. 2011, 35, 179–194. [Google Scholar]
- Li, B.; Yu, X.; Gui, S.; Xie, Y.; Zhao, X.; Hong, J.; Sun, Q.; Sang, X.; Sheng, L.; Cheng, Z.; et al. Molecular Mechanisms of Phoxim-Induced Silk Gland Damage and TiO2 Nanoparticle-Attenuated Damage in Bombyx mori. Chemosphere 2014, 104, 221–227. [Google Scholar] [CrossRef]
- Li, F.; Ni, M.; Zhang, H.; Wang, B.; Xu, K.; Tian, J.; Hu, J.; Shen, W.; Li, B. Expression Profile Analysis of Silkworm P450 Family Genes after Phoxim Induction. Pestic. Biochem. Physiol. 2015, 122, 103–109. [Google Scholar] [CrossRef]
- Wang, L.; Su, M.; Zhao, X.; Hong, J.; Yu, X.; Xu, B.; Sheng, L.; Liu, D.; Shen, W.; Li, B.; et al. Nanoparticulate TiO2 Protection of Midgut Damage in the Silkworm (Bombyx mori) Following Phoxim Exposure. Arch. Environ. Contam. Toxicol. 2015, 68, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.Y.; Li, F.C.; Hu, J.S.; Ding, C.; Wang, C.; Tian, J.H.; Xue, B.; Xu, K.Z.; Shen, W.D.; Li, B. Sublethal Dose of Phoxim and Bombyx mori Nucleopolyhedrovirus Interact to Elevate Silkworm Mortality. Pest Manag. Sci. 2016, 73, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hu, J.; Tian, J.; Xu, K.; Ni, M.; Wang, B.; Shen, W.; Li, B. Effects of Phoxim on Nutrient Metabolism and Insulin Signaling Pathway in Silkworm Midgut. Chemosphere 2016, 146, 478–485. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Sun, Z.; Xie, J.; Zhong, G.; Yi, X. Azadirachtin Induced Apoptosis in the Prothoracic Gland in Bombyx mori and a Pronounced Ca2+ release Effect in Sf9 Cells. Int. J. Biol. Sci. 2017, 13, 1532–1539. [Google Scholar] [CrossRef]
- Gao, H.J.; Sun, Y.L.; Song, G.Z.; Su, B.; Zhang, M.M.; Ren, C.J.; Wang, Y.W. Preventive Effects of N-Acetyl-l-Cysteine against Imidacloprid Intoxication on Bombyx mori Larvae. Arch. Insect Biochem. Physiol. 2018, 99, e21497. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; He, F.; Li, X.; Tan, H.; Zeng, D. Combined Toxicity of Chlorantraniliprole, Lambda-Cyhalothrin, and Imidacloprid to the Silkworm Bombyx mori (Lepidoptera: Bombycidae). Environ. Sci. Pollut. Res. 2018, 25, 22598–22605. [Google Scholar] [CrossRef]
- Hu, J.; Li, M.; Lu, Z.; Mao, T.; Chen, J.; Wang, H.; Qu, J.; Fang, Y.; Cheng, X.; Li, J.; et al. The Mechanism of Damage in the Midgut of Bombyx mori after Chlorantraniliprole Exposure. Ecotoxicology 2019, 28, 903–912. [Google Scholar] [CrossRef]
- Kumar, T.S.; Naika, R.; Mohan, K.M.; Sadatulla, F.; Banuprakash, K.G.; Mohan, M.; Jagadish, K.S. Studies on Efficacy of Green Insecticides on Mulberry Silkworm, Bombyx mori L. through Rearing Performance. J. Entomol. Zool. Stud. 2019, 7, 1532–1537. [Google Scholar]
- Santorum, M.; Brancalhão, R.M.C.; Guimarães, A.T.B.; Padovani, C.R.; Tettamanti, G.; dos Santos, D.C. Negative Impact of Novaluron on the Nontarget Insect Bombyx mori (Lepidoptera: Bombycidae). Environ. Pollut. 2019, 249, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, F.; Qu, J.; Mao, T.; Chen, J.; Li, M.; Lu, Z.; Fang, Y.; Shi, G.; Li, B. The Mechanism of Damage by Trace Amounts of Acetamiprid to the Midgut of the Silkworm, Bombyx mori. Environ. Toxicol. 2019, 34, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, M.; Wang, H.; Mao, T.; Chen, J.; Lu, Z.; Qu, J.; Fang, Y.; Li, B. Effects of Phoxim Pesticide on the Immune System of Silkworm Midgut. Pestic. Biochem. Physiol. 2020, 164, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, M.; Mao, T.; Wang, H.; Chen, J.; Lu, Z.; Qu, J.; Fang, Y.; Gu, Z.; Li, B. Effects of Phoxim Exposure on Gut Microbial Composition in the Silkworm, Bombyx mori. Ecotoxicol. Environ. Saf. 2020, 189, 110011. [Google Scholar] [CrossRef]
- Mao, T.; Cheng, X.; Fang, Y.; Li, M.; Lu, Z.; Qu, J.; Chen, J.; Wang, H.; Li, F.; Li, B. Induction of ER Stress, Antioxidant and Detoxification Response by Sublethal Doses of Chlorantraniliprole in the Silk Gland of Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2020, 170, 104685. [Google Scholar] [CrossRef]
- Zhao, G.; Guo, H.; Zhang, H.; Zhang, X.; Qian, H.; Li, G.; Xu, A. Effects of Pyriproxyfen Exposure on Immune Signaling Pathway and Transcription of Detoxification Enzyme Genes in Fat Body of Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2020, 168, 104621. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, X.; Wang, C.; Zhang, H.; Guo, H.; Qian, H.; Li, G.; Xu, A. Effect of Pyriproxyfen Exposure on Cocooning and Gene Expression in the Silk Gland of Bombyx mori (Linnaeus, 1758). Ecotoxicol. Environ. Saf. 2020, 202, 110914. [Google Scholar] [CrossRef]
- Shao, Y.; Xin, X.D.; Liu, Z.X.; Wang, J.; Zhang, R.; Gui, Z.Z. Transcriptional Response of Detoxifying Enzyme Genes in Bombyx mori under Chlorfenapyr Exposure. Pestic. Biochem. Physiol. 2021, 177, 104899. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Dai, M.; Yang, J.; Wang, Y.; Mao, T.; Su, W.; Li, F.; Sun, H.; Wei, J.; Li, B. Effects of Glyphosate on the Growth, Development, and Physiological Functions of Silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 2022, 111, E21919. [Google Scholar] [CrossRef]
- Qadri, H.A.; Qamar, A.; Maheshwari, N. Oxidative Stress, DNA Damage, and Histological Alterations in Bombyx mori Exposed Orally to Pesticide Dimethoate. Physiol. Entomol. 2023, 48, 1–13. [Google Scholar] [CrossRef]
- Xu, S.; Hao, Z.; Li, Y.; Zhou, Y.; Shao, R.; Chen, R.; Zheng, M.; Xu, Y.; Wang, H. Biochemical Toxicity and Transcriptome Aberration Induced by Dinotefuran in Bombyx mori. Environ. Pollut. 2022, 307, 119562. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, S.; Yang, X.; Yan, H.; Wang, K.; Ba, X.; Wang, H. Sublethal Effects of Neonicotinoid Insecticides on the Development, Body Weight and Economic Characteristics of Silkworm. Toxics 2023, 11, 402. [Google Scholar] [CrossRef]
- Lin, Q.; Deng, P.; Feng, T.; Ou, G.; Mou, L.; Zhang, Y. Enantioselectivity of Indoxacarb Enantiomers in Bombyx mori Larvae: Toxicity, Bioaccumulation and Biotransformation. Pest Manag. Sci. 2023, 79, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Su, Y.; Wang, W.; Li, F.; Sun, H.; Li, B. Characterization of the Sublethal Toxicity and Transcriptome-Wide Biological Changes Induced by λ-Cyhalothrin in Bombyx mori. Environ. Toxicol. 2023, 38, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, F.; Zheng, J.; Sun, Z.; Ma, S.; Chen, K.; Ju, X.; Wang, Q. Toxic Effects Caused by Sublethal Doses of Broflanilide on the Development of 2 Silkworms, Bombyx mori, and Their Detoxification Mechanism. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025, 297, 110304. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhao, Z.Q.; Song, C.X.; Su, Z.H.; Li, M.W.; Wu, Y.C.; Jin, B.R.; Deng, M.J. Fumarate Mitigates Disruption Induced by Fenpropathrin in the Silkworm Bombyx mori (Lepidoptera): A Metabolomics Study. Insect Sci. 2023, 30, 789–802. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Z.; Huang, Z.; Ma, S.; Chen, K.; Ju, X. Effects of Tolfenpyrad Exposure on Development and Response Mechanism in the Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2023, 189, 105280. [Google Scholar] [CrossRef]
- Muhammad, A.; Qian, Z.; Li, Y.; Lei, X.; Iqbal, J.; Shen, X.; He, J.; Zhang, N.; Sun, C.; Shao, Y. Enhanced Bioaccumulation and Toxicity of Fenpropathrin by Polystyrene Nano(Micro)Plastics in the Model Insect, Silkworm (Bombyx mori). J. Nanobiotechnology 2025, 23, 38. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Chen, J.; Li, F.; Sun, H.; Wei, J.; Li, B. Impact of Sublethal Chlorantraniliprole on Epidermis of Bombyx mori during Prepupal-Pupal Transition. Pestic. Biochem. Physiol. 2022, 187, 105200. [Google Scholar] [CrossRef]
- Su, J.; Li, B.; Cheng, S.; Zhu, Z.; Sang, X.; Gui, S.; Xie, Y.; Sun, Q.; Cheng, Z.; Cheng, J.; et al. Phoxim-Induced Damages of Bombyx mori Larval Midgut and Titanium Dioxide Nanoparticles Protective Role under Phoxim-Induced Toxicity. Environ. Toxicol. 2013, 29, 1355–1366. [Google Scholar] [CrossRef]
- Jun, W.; Daqiang, Y.; Genfa, L.; Fengfan, Z. Effects of Dimehypo (Disodium 2-Methylaminotrimethylene Di Thiosulfonate) on Growth and Cocooning of the Silkworm, Bombyx mori (Lepidoptera: Saturnidae). Pestic. Sci. 1999, 55, 1070–1076. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, B.; Li, F.; Ma, L.; Ni, M.; Shen, W.; Hong, F.; Li, B. Molecular Mechanisms of Reduced Nerve Toxicity by Titanium Dioxide Nanoparticles in the Phoxim-Exposed Brain of Bombyx mori. PLoS ONE 2014, 9, e101062. [Google Scholar] [CrossRef] [PubMed]
- Bindu, P.U.; Priya Bhaskaran, K.P.; Akhilesh, V.P.; Jisha Krishnan, E.K.; Rukhsana, K.; Sebastian, C.D. Toxicological Effect of Chlorantraniliprole on Fat Body and Haemolymph Metabolism in the Final Instar Larvae of Silk Insect, Bombyx mori L. Int. J. Sci. Nat. 2015, 6, 177–182. [Google Scholar]
- Akram, S.; Butt, A.; Khan, S.A. Toxicity of Imidacloprid Administered Alone and in Combination with Heavy Metal Lead on Silkworm, Bombyx mori (Lepidoptera: Bombycidae). Pak. J. Zool. 2022, 55, 165–171. [Google Scholar] [CrossRef]
- Onyeqcha, F.A.; Fuzeau-Braesch, S. Comparative Toxicity of Some Synthetic Insecticides, and a Growth Inhibitor, in the Migratory Locust, Locusta migratoria. Comp. Biochem. Physiol. 1991, 100, 361–363. [Google Scholar]
- Grosscurt, A.C.; Tipker, J. Ovicidal and Larvicidal Structure-Activity Relationships of Benzoylureas on the House Fly (Musca domestica). Pestic. Biochem. Physiol. 1980, 13, 249–254. [Google Scholar] [CrossRef]
- Hartman, M.J. House Crickets: Ovicidal Effect of Fenthion on Mortality and Cholinesterase Activity. J. Econ. Entomol. 1973, 66, 1029–1031. [Google Scholar] [CrossRef]
- Haniffa, M.A.; Jose, S.S. Inhibition of Egg Production and Fertility in the House Cricket Gryllodes sigillatus Walker (Orthoptera, Gryllidae) Following Topical Application of Cythion. Anz. Für Schädlingskunde Pflanzenschutz Umweltschutz 1987, 60, 136–138. [Google Scholar] [CrossRef]
- Qian, H.Y.; Zhang, X.; Zhao, G.D.; Guo, H.M.; Li, G.; Xu, A.Y. Effects of Pyriproxyfen Exposure on Reproduction and Gene Expressions in Silkworm, Bombyx mori. Insects 2020, 11, 467. [Google Scholar] [CrossRef]
- Santorum, M.; Gastelbondo-Pastrana, B.I.; Scudeler, E.L.; Santorum, M.; Costa, R.M.; Carvalho dos Santos, D. Reproductive Toxicity of Novaluron in Bombyx mori (Lepidoptera: Bombycidae) and Its Impact on Egg Production. Chemosphere 2021, 273, 129592. [Google Scholar] [CrossRef]
- Wang, M.J.; Chen, E.X.; Ji, Y.L.; Qian, Y.X.; Zhang, Y.M.; Zhu, L.; Zhao, G.D.; Qian, H.Y. Effects of Novaluron Exposure on the Oviposition and Expression of Ovarian Development Related Genes in Silkworm, Bombyx mori (Lepidoptera: Bombycidae). Insects 2025, 16, 9. [Google Scholar] [CrossRef]
- Miller, T.; Bruner, L.J.; Fukuto, T.R. The Effect of Light, Temperature, and DDT Poisoning on Housefly Locomotion and Flight Muscle Activity. Pestic. Biochem. Physiol. 1972, 1, 483–491. [Google Scholar] [CrossRef]
- Miller, T.; Kennedy, J.M. Flight Motor Activity of Housefly as Affected by Temperature and Insecticides. Pestic. Biochem. Physiol. 1972, 2, 206–222. [Google Scholar] [CrossRef]
- Miller, T.; Kennedy, J.M. In Vivo Measurement of House Fly Temperature, Flight Muscle Potentials, Heartbeat and Locomotion During Insecticide Poisoning. Pestic. Biochem. Physiol. 1973, 3, 370–383. [Google Scholar] [CrossRef]
- Moreteau, B.; Chaminade, N. The Effects of Lindane Poisoning on N-Acetyldopamine and N-Acetyl 5-Hydroxytryptamine Concentrations in the Brain of Locusta migratoria L. Ecotoxicol. Environ. Saf. 1990, 20, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Gu, Z.Y.; Wang, J.M.; Sun, S.S.; Wang, B.B.; Jin, Y.Q.; Shen, W.D.; Li, B. Changes in the Activity and the Expression of Detoxification Enzymes in Silkworms (Bombyx mori) after Phoxim Feeding. Pestic. Biochem. Physiol. 2013, 105, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.Y.; Sun, S.S.; Wang, Y.H.; Wang, B.B.; Xie, Y.; Ma, L.; Wang, J.M.; Shen, W.D.; Li, B. Transcriptional Characteristics of Gene Expression in the Midgut of Domestic Silkworms (Bombyx mori) Exposed to Phoxim. Pestic. Biochem. Physiol. 2013, 105, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.H.; El-Ashram, D.F.; Elyamani, E.M. Bioassay and Expression Alterations of Acetyl Cholinesterase Enzyme Gene to Spinosad (Bio-Insecticides) on Nontarget Silkworm, Bombyx mori (Lepidoptera: Bombycidae). Egypt. Pharm. J. 2023, 22, 449–455. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Q.; Chen, G.; Chen, Z.; Wang, K.; Wang, H. Toxicity of Nitenpyram to Silkworm (Bombyx mori L.) and Its Potential Mechanisms. Chemosphere 2023, 311, 137026. [Google Scholar] [CrossRef]
- Tang, X.; Li, N.; Wang, W.; Yu, J.; Xu, L.; Shen, Z. DGE Analysis of Changes in Gene Expression in Response to Temperature and Deltamethrin Stress in the Silkworm (Bombyx mori). J. Asia Pac. Entomol. 2016, 19, 45–50. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Wang, W.; Jia, L.; Guo, W.; Wu, G. Protective Effects of Pretreatment with Fe2+, Cu2+, and Rb+ on Phoxim Poisoning in Silkworm, Bombyx mori. J. Trace Elem. Med. Biol. 2021, 68, 126844. [Google Scholar] [CrossRef]
- Li, F.; Li, M.; Zhu, Q.; Mao, T.; Dai, M.; Ye, W.; Bian, D.; Su, W.; Feng, P.; Ren, Y.; et al. Imbalance of Intestinal Microbial Homeostasis Caused by Acetamiprid Is Detrimental to Resistance to Pathogenic Bacteria in Bombyx mori. Environ. Pollut. 2021, 289, 117866. [Google Scholar] [CrossRef]
- Abdelfattah, E.A.; El-Bassiony, G.M. Impact of Malathion Toxicity on the Oxidative Stress Parameters of the Black Soldier Fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci. Rep. 2022, 12, 4583. [Google Scholar] [CrossRef]
- Kodrík, D.; Bednářová, A.; Zemanová, M.; Krishnan, N. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update. Int. J. Mol. Sci. 2015, 16, 25788–25816. [Google Scholar] [CrossRef]
- Gui, Z.; Hou, C.; Liu, T.; Qin, G.; Li, M.; Jin, B. Effects of Insect Viruses and Pesticides on Glutathione S-Transferase Activity and Gene Expression in Bombyx mori. J. Econ. Entomol. 2009, 102, 1591–1598. [Google Scholar] [CrossRef]
- Peng, G.D.; Wang, J.M.; Ma, L.; Wang, Y.H.; Cao, Y.Q.; Shen, W.D.; Li, B. Transcriptional Characteristics of Acetylcholinesterase Genes in Domestic Silkworms (Bombyx mori) Exposed to Phoxim. Pestic. Biochem. Physiol. 2011, 101, 154–158. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Zhang, J.Z.; Yang, M.L.; Yan, L.Z.; Zhu, K.Y.; Guo, Y.P.; Ma, E.B. Comparative Analysis of Cytochrome P450-like Genes from Locusta migratoria Manilensis: Expression Profiling and Response to Insecticide Exposure. Insect Sci. 2012, 19, 75–85. [Google Scholar] [CrossRef]
- Ma, L.; Xie, Y.; Gu, Z.Y.; Wang, B.B.; Li, F.C.; Xu, K.Z.; Shen, W.D.; Li, B. Characteristics of Phoxim-Exposed Gene Transcription in the Silk Gland of Silkworms. Pestic. Biochem. Physiol. 2013, 107, 391–397. [Google Scholar] [CrossRef]
- Phugare, S.S.; Kalyani, D.C.; Gaikwad, Y.B.; Jadhav, J.P. Microbial Degradation of Imidacloprid and Toxicological Analysis of Its Biodegradation Metabolites in Silkworm (Bombyx mori). Chem. Eng. J. 2013, 230, 27–35. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Zhou, Y.J.; Xie, Y.; Li, F.C.; Ma, L.; Sun, S.S.; Wu, Y.; Wang, B.B.; Wang, J.M.; Hong, F.; et al. The Adverse Effects of Phoxim Exposure in the Midgut of Silkworm, Bombyx mori. Chemosphere 2014, 96, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.Q.; Zhang, Z.; Jia, K.L.; Zhang, K.; An, D.X.; Wang, G.; Zhang, B.L.; Yin, H.N. Characterization and Expression Analysis of Peroxiredoxin Family Genes from the Silkworm Bombyx mori in Response to Phoxim and Chlorpyrifos. Pestic. Biochem. Physiol. 2014, 114, 24–31. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Li, F.C.; Wang, B.B.; Xu, K.Z.; Ni, M.; Zhang, H.; Shen, W.D.; Li, B. Differentially Expressed Genes in the Fat Body of Bombyx mori in Response to Phoxim Insecticide. Pestic. Biochem. Physiol. 2015, 117, 47–53. [Google Scholar] [CrossRef]
- Hu, J.S.; Li, F.C.; Xu, K.Z.; Ni, M.; Wang, B.B.; Tian, J.H.; Li, Y.Y.; Shen, W.D.; Li, B. Mechanisms of TiO2 NPs-Induced Phoxim Metabolism in Silkworm (Bombyx mori) Fat Body. Pestic. Biochem. Physiol. 2016, 129, 89–94. [Google Scholar] [CrossRef]
- Mao, T.; Li, F.; Fang, Y.; Wang, H.; Chen, J.; Li, M.; Lu, Z.; Qu, J.; Li, J.; Hu, J.; et al. Effects of Chlorantraniliprole Exposure on Detoxification Enzyme Activities and Detoxification-Related Gene Expression in the Fat Body of the Silkworm, Bombyx mori. Ecotoxicol. Environ. Saf. 2019, 176, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, X.; Sun, J.; Zheng, X.; Zhao, G.; Li, G.; Qian, H. Effects of Pyriproxyfen Exposure on Damage to Midgut and Related Gene Expressions in the Bombyx mori Silkworm. ScienceAsia 2021, 47, 733–740. [Google Scholar] [CrossRef]
- Hao, Z.; Lu, Q.; Zhou, Y.; Liang, Y.; Gao, Y.; Ma, H.; Xu, Y.; Wang, H. Molecular Characterization of MyD88 as a Potential Biomarker for Pesticide-Induced Stress in Bombyx mori. Pestic. Biochem. Physiol. 2023, 196, 105610. [Google Scholar] [CrossRef]
- Macarini, L.C.; Guimarães, A.T.B.; Szinwelski, N. Ecotoxicological Effects of a Glyphosate-Based Herbicide on Gryllus (Gryllus) Assimilis (Orthoptera: Gryllidae) Ontogeny: A Study on Antioxidant System, Oxidative Stress and Cholinergic System. Ecotoxicology 2025, 34, 219–230. [Google Scholar] [CrossRef]
- Li, B.; Yu, X.; Gui, S.; Xie, Y.; Hong, J.; Zhao, X.; Sheng, L.; Sang, X.; Sun, Q.; Wang, L.; et al. Titanium Dioxide Nanoparticles Relieve Silk Gland Damage and Increase Cocooning of Bombyx mori under Phoxim-Induced Toxicity. J. Agric. Food Chem. 2013, 61, 12238–12243. [Google Scholar] [CrossRef]
- Santorum, M.; Costa, R.M.; dos Reis, G.H.; Carvalho dos Santos, D. Novaluron Impairs the Silk Gland and Productive Performance of Silkworm Bombyx mori (Lepidoptera: Bombycidae) Larvae. Chemosphere 2020, 239, 124697. [Google Scholar] [CrossRef]
- Yeshika, M.P.; Banuprakash, K.G.; Mohan, K.M.; Vinoda, K.S. Effect of Novel Insecticide Molecules in Mulberry on Reeling Parameters of Silkworm Bombyx mori L. Coccoons. Environ. Ecol. 2020, 38, 161–166. [Google Scholar]
- Xie, X.; Hou, J.; Li, M.; Liu, Z.; He, M.; Li, C.; Du, X.; Chen, L. Chronic Low-Dose Phoxim Exposure Impairs Silk Production in Bombyx mori L. (Lepidoptera: Bombycidae) by Disrupting Juvenile Hormone Signaling-Mediated Fibroin Synthesis. Toxics 2025, 13, 427. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; He, C.; Wei, Y.; Cai, K.; Lu, Q.; Liu, X.; Zhu, Y.; Xu, K. The Promoting Effects of Pyriproxyfen on Autophagy and Apoptosis in Silk Glands of Non-Target Insect Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2023, 196, 105586. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Sun, Q.; Li, B.; Xie, Y.; Zhao, X.; Hong, J.; Sheng, L.; Sang, X.; Gui, S.; Wang, L.; et al. Mechanisms of Larval Midgut Damage Following Exposure to Phoxim and Repair of Phoxim-Induced Damage by Cerium in Bombyx mori. Environ. Toxicol. 2015, 30, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yu, J.; Qin, Z.; Liu, X.; Zhao, X.; Hu, X.; Yu, R.; Wang, Q.; Yang, J.; Shi, Y.; et al. Guadipyr, a New Insecticide, Induces Microbiota Dysbiosis and Immune Disorders in the Midgut of Silkworms (Bombyx mori). Environ. Pollut. 2021, 286, 117531. [Google Scholar] [CrossRef]
- Ye, W.T.; Dai, M.L.; Bian, D.D.; Zhu, Q.Y.; Li, X.; Sun, H.N.; Li, F.C.; Wei, J.; Li, B. Sublethal Chlorantraniliprole Exposure Induces Autophagy and Apoptosis through Disrupting Calcium Homeostasis in the Silkworm Bombyx mori. Insect Mol. Biol. 2023, 32, 36–45. [Google Scholar] [CrossRef]
- Su, Y.; Wang, W.; Dai, Y.; Qi, R.; Gu, H.; Guo, X.; Liu, X.; Ren, Y.; Li, F.; Li, B.; et al. JH Degradation Pathway Participates in Hormonal Regulation of Larval Development of Bombyx mori Following λ-Cyhalothrin Exposure. Chemosphere 2024, 349, 140871. [Google Scholar] [CrossRef]
- Shen, W.F.; Zhao, X.P.; Wang, Q.; Niu, B.L.; Liu, Y.; He, L.H.; Weng, H.B.; Meng, Z.Q.; Chen, Y.Y. Genotoxicity Evaluation of Low Doses of Avermectin to Hemocytes of Silkworm (Bombyx mori) and Response of Gene Expression to DNA Damage. Pestic. Biochem. Physiol. 2011, 101, 159–164. [Google Scholar] [CrossRef]
- Zhao, G.D.; Qian, H.Y.; Zhang, Y.L.; Li, G.; Tang, J.; Xu, A.Y. Transcriptome Analysis in the Fat Body of Two Silkworm (Bombyx mori) Strains with Different Susceptibility to Fenvalerate. Pak. J. Zool. 2021, 54, 1883–1891. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, K.; Ou, Q.; Xu, P.; Qin, S.; Sun, X.; Li, M.; Wu, Y.; Wang, X. Identification of Optimal Reference Genes in Bombyx mori (Lepidoptera) for Normalization of Stress-Responsive Genes after Challenge with Pesticides. Arch. Insect Biochem. Physiol. 2022, 110, e21896. [Google Scholar] [CrossRef]
- Mao, T.; Ye, W.; Dai, M.; Bian, D.; Zhu, Q.; Feng, P.; Ren, Y.; Li, F.; Li, B. Mechanism of Autophagy Induced by Low Concentrations of Chlorantraniliprole in Silk Gland, Bombyx mori. Pestic. Biochem. Physiol. 2022, 188, 105223. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Shu, Q.; Dai, M.; Zou, H.; Wang, Y.; Cheng, J.; Su, Y.; Li, F.; Li, B. Low Concentration Chlorantraniliprole-Promoted Ca2+ Release Drives a Shift from Autophagy to Apoptosis in the Silk Gland of Bombyx mori. Pestic. Biochem. Physiol. 2023, 196, 105585. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Xu, S.; Hao, Z.; Li, Y.; Huang, Y.; Ying, S.; Jing, W.; Zou, S.; Xu, Y.; Wang, H. Dinotefuran Exposure Induces Autophagy and Apoptosis through Oxidative Stress in Bombyx mori. J. Hazard. Mater. 2023, 458, 131997. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.J.P.; Orchard, I.; Loughton, B.G. Pharmacology of Insecticide-Induced Release of Hyperlipaemic Hormone in the Locust, Locusta migratoria. Gen. Pharmacol. Vasc. Syst. 1982, 13, 471–475. [Google Scholar] [CrossRef]
- Monconduit, H.; Mauchamp, B. Fenoxycarb, a Potent Contaminant of the Silkworm, Bombyx mori L., Does Not Influence Its Juvenile Hormone Titer. Arch. Insect Biochem. Physiol. 1999, 40, 141–149. [Google Scholar] [CrossRef]
- Singh, G.K.P.; Orchard, I. Action of Bioresmethrin on the Corpus Cardiacum of Locusta migratoria. Pestic. Sci. 1983, 14, 229–234. [Google Scholar] [CrossRef]
- Gerolt, P. The Mode of Action of Insecticides: Accelerated Water Loss and Reduced Respiration in Insecticide-Treated Musca domestica L. Pestic. Sci. 1976, 7, 604–620. [Google Scholar] [CrossRef]
- Nath, B.S. Changes in Carbohydrate Metabolism in Hemolymph and Fat Body of the Silkworm, Bombyx mori L., Exposed to Organophosphorus Insecticides. Pestic. Biochem. Physiol. 2000, 68, 127–137. [Google Scholar] [CrossRef]
- Alaoui, A.; Gourdoux, L.; Atay, Z.K.; Moreau, R. Alteration in Carbohydrate Metabolism Induced in Locusta migratoria after Poisoning with the Pyrethroid Insecticide Deltamethrin. Pestic. Biochem. Physiol. 1994, 50, 183–190. [Google Scholar] [CrossRef]
- Alaoui, A.; Moreau, R.; Gourdoux, L. Effects of Deltamethrin on Glucose Catabolic Pathways in the Isolated Fat Body of Adult Male Locusta migratoria. Comp. Biochem. Physiol. 1997, 116, 17–21. [Google Scholar] [CrossRef]
- Leonardi, M.G.; Marciani, P.; Montorfano, P.G.; Cappellozza, S.; Giordana, B.; Monticelli, G. Effect of Fenoxycarb on Leucine Uptake and Lipid Composition of Midgut Brush Border Membrane in the Silkworm, Bombyx mori (Lepidoptera, Bombycidae). Pestic. Biochem. Physiol. 2001, 70, 42–51. [Google Scholar] [CrossRef]
- Nath, B.S. Shifts in Glycogen Metabolism in Hemolymph and Fat Body of the Silkworm, Bombyx mori (Lepidoptera: Bombycidae) in Response to Organophosphorus Insecticides Toxicity. Pestic. Biochem. Physiol. 2002, 74, 73–84. [Google Scholar] [CrossRef]
- Zhan, X.-m.; Liu, H.-j.; Miao, Y.-g.; Liu, W.-p. A Comparative Study of Rac- and S-Metolachlor on Some Activities and Metabolism of Silkworm, Bombyx mori L. Pestic. Biochem. Physiol. 2006, 85, 133–138. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, J.M.; Peng, G.D.; Sun, B.X.; Li, B.; Shen, W.D. Gene Expression Analysis from Phoxim-Induced Domesticated Silkworm (Bombyx mori) by Whole-Genome Oligonucleotide Microarray. Pestic. Biochem. Physiol. 2011, 101, 48–52. [Google Scholar] [CrossRef]
- Li, B.; Xie, Y.; Cheng, Z.; Cheng, J.; Hu, R.; Sang, X.; Gui, S.; Sun, Q.; Gong, X.; Cui, Y.; et al. Cerium Chloride Improves Protein and Carbohydrate Metabolism of Fifth-Instar Larvae of Bombyx mori under Phoxim Toxicity. Biol. Trace Elem. Res. 2012, 150, 214–220. [Google Scholar] [CrossRef]
- Thangaraj, P.; Neelamegam, R.k.; Nagarajan, K.; Muthukalingan, K. Interaction of Azadirachtin with the Lipid-Binding Domain: Suppression of Lipid Transportation in the Silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2018, 152, 62–68. [Google Scholar] [CrossRef]
- Kuwano, E.; Hisano, T.; Eto, M.; Suzuki, K.; Unnithan, G.C.; Bowers, W.S. Disubstituted Imidazoles Against Bombyx mori and Oncopeltus Fasciatus. Pestic. Sci. 1992, 34, 263–268. [Google Scholar] [CrossRef]
- Arakawa, T. Promotion of Nucleopolyhedrovirus Infection in Larvae of the Silkworm, Bombyx mori (Lepidoptera: Bombycidae) by FLufenoxuron. Appl. Entomol. Zool. 2002, 37, 7–11. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Wang, D.-L.; Chi, Z.-J.; Liu, X.-J.; Hong, X.-Y. Acute Toxicity of Organophosphorus and Pyrethroid Insecticides to Bombyx mori. J. Econ. Entomol. 2008, 101, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Van Der Valk, H.; Jiang, H.; Wang, X.; Yuan, S.; Zhang, Y.; Roessink, I.; Gao, X. Development of a Standard Acute Dietary Toxicity Test for the Silkworm (Bombyx mori L.). Crop Prot. 2012, 42, 260–267. [Google Scholar] [CrossRef]
- Yu, R.X.; Wang, Y.H.; Hu, X.Q.; Wu, S.G.; Cai, L.M.; Zhao, X.P. Individual and Joint Acute Toxicities of Selected Insecticides against Bombyx mori (Lepidoptera: Bombycidae). J. Econ. Entomol. 2016, 109, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, X.; Liu, X.; Zhang, X.; Yu, R.; Ma, E.; Moussian, B.; Zhu, K.Y.; Zhang, J. Effect of RNAi-Mediated Silencing of Two Knickkopf Family Genes (LmKnk2 and LmKnk3) on Cuticle Formation and Insecticide Susceptibility in Locusta migratoria. Pest Manag. Sci. 2020, 76, 2907–2917. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Sheppard, D.C.; Joyce, J.A. Susceptibility of Black Soldier Fly (Diptera: Stratiomyidae) Larvae and Adults to Four Insecticides. J. Econ. Entomol. 2002, 95, 598–602. [Google Scholar] [CrossRef]
Order | Specie | Stress | Evaluation | Stage | Effects | Reference |
---|---|---|---|---|---|---|
Dip | Hi | RH | Eggs eclosion Adult emergence | E P | Low RH: >mortality, slower development (E, L and P), <A emergence, <A longevity | [125] |
Dip | Hi | T | Survival rate Development Longevity Reproduction Body mass | E L PP P A | Low t°: >E eclosion time, >L and PP development 35 °C: <E eclosion time, >eclosion rate 30 °C: <PP development 10 °C and 42 °C: no E survived 40 °C: no PP High t°: <L survival rate, <P survival <A survival at extreme t°, >fecundity at 30 °C Higher weights at 35 °C (PP, P, A) | [80] |
Dip | Hi | H | CCRT (Chill-Coma Recovery Time), HKDT (Heat KnockDown Time), CTmax (critical Thermal maximum) Movement and middle cross (MC) | A | Differences in time for movements, MC, total distances based on acclimation t°, species and t° Changes in CTmax based on acclimation t° | [111] |
Dip | Hi | T | CTmax (critical Thermal maximum) and CTmin (critical Thermal minimum) | A | No significant effects of age, sex and size on CTmax >age, >CTmin (worse in females) <size, <CTmin >size, >CTmin (in females) | [110] |
Dip | Hi | T | Growth rate Metabolism | L | >t°, <growth and metabolism | [82] |
Dip | Hi | F L | Volatile organic compounds (VOCs) | L | Changes in VOCs emission (no statistical differences) | [130] |
Dip | Md | G RH T | Calorespirometric investigations | P | >t°, <development | [124] |
Dip | Md | D H | Locomotor activity | A | >D, <activity >t°, <activity | [118] |
Dip | Md | H | Locomotor activity Flight performances Morphological measurements | A | Changes in survival rates, flight and locomotor activity based on population and sex | [77] |
Dip | Md | H | CCRT (Chill-Coma Recovery Time), HKDT (Heat KnockDown Time), CTmax (critical T maximum) Movement and middle cross (MC) | A | Differences in time for movements, MC, total distances (based on acclimation t°, specie and t°) Changes in CTmax (based on acclimation t°) | [111] |
Dip | Md | H (short) | Morphogenetic consequences | A | >size of wings and changes in shape | [121] |
Col | Adi | C | Days of survival Recovery from chill coma | A | <t°, >time: <days of survival; <time of chill coma in males later entry in chill coma = no recovery = death | [87] |
Col | Adi | F T | Metabolic responses | A | >survival at low t° during F Non-F beetles: <water content at 12–16 °C 12 °C: <triglycerides and glycogen in non-F beetles <triglycerides, glucose, glycogen and protein >glycerol in F beetles 16–20 °C: <triglycerides, glycogen, glycerol, glucose, protein in F beetles | [131] |
Col | Adi | T | Days of survival | A | 6 °C: >energy consumption <fresh mass (males) <water ratio (females) 10 °C: >size = >survival, <weight loss | [88] |
Col | Adi | F T | Survival O2 consumption | A | Non-F beetles: >O2 consumption; >t°, >O2 consumption | [89] |
Col | Adi | T F | Survival ratio Free amino acid levels | A | Longer survival for females >free amino acids with C | [84] |
Col | Adi | T | Survival Reproductive capacity | A | >t°, <survival; >survival with acclimation >t°, >number of L; >L with acclimation | [112] |
Col | Adi | T | Chill coma temperature O2 consumption | A | <chill coma t° in non acclimated insects; <acclimation t°, <O2 consumption | [75] |
Col | Adi | T | Growth rate Nutritional content Respirometry Daily energy assimilation (DEA) Conversion efficiency (CE) | L | >t° (31 °C), >growth; <t° (15.2 °C), <growth minimum growth at 37–39 °C Max lipid at 37 °C—max protein at 15.2 °C VO2: >when fasting (except at 15 °C); >t°, >VO2 >DEA and CE at 31 °C | [85] |
Col | Adi | Ch T | Recovery time Active Larvae | A | Recovery time based on population/duration of exposure to extreme t° <number of active L with insecticide <probability of recovery with insecticide | [132] |
Col | Tm | T | Survival capacity | E L P A | >RH, >water uptake; no embryo development at <t° <E weight at <t°; <RH, higher E mortality >t° and >RH, >young L mortality | [72] |
Col | Tm | RH T | Survival, thermal acclimation Water loss Metabolic rate | L P A | >resistance of pupal stage; >stress at <RH; >resistance of older L at <RH; no E development at <RH and <t°; no E laying at <t°; | [123] |
Col | Tm | T | Critical Thermal limits (critical Thermal maximum CTmax and critical Thermal minimum CTmin) | A | <CTmax and CTmin with faster rates of change in t Changes in CTmin after 35 °C exposure Longer time of reacclimation to 25 °C after exposure to 15/35 °C | [109] |
Col | Tm | T | Growth rate Nutritional content Respirometry Daily energy assimilation (DEA) Conversion efficiency (CE) | L | >t (31 °C), >growth minimum growth at 37–39 °C Max lipid at 31 °C—min protein at 31 °C VO2: >when F (except at 15 °C and 33 °C) >DEA at 31 °C | [85] |
Col | Tm | RH | Survival and growth rate Length | L | >RH, >mass and length | [127] |
Col | Tm | RH T (transport) | Hatch rate | E | <10 to >35 °C: <hatch rate >3 days at 5–10 °C: <hatch rate <RH at >t°: >hatch rate (if <6 days) | [126] |
Col | Tm | H pathogen exposure | Survival Development and fitness measurements Immune response | L | >survival rates for L exposed to M. brunneum after short H; Temporary (5 d) <body weight gain in H (L) >antibacterial activity in haemolymph after HS; <haemocytes concentration after exposure to M. brunneum >body weight in larval O of females exposed to short H >haemocytes concentration after long H <haemocytes after long HS + exposure to M. brunneum >number of exuviae after H | [86] |
Col | Tm | T | Recovery from chill coma Resistance to Heat shock | A | C tolerance test: better recovery in A reared at low t° better resistance to H shock in A reared at high t° <t° acclimation: >resistance to low t° >t acclimation: >resistance to high t° | [97] |
Ort | Lm | H | Survival rate Heat Shock Proteins (HSPs) | A | >47 °C <survival rate >t°, new HSPs | [83] |
Ort | Lm | H (shock) | Thermosensitivity of the flight system | A | >t°, <wingbeat frequency Acclimation: >chances of survival >thoracic t°, >frequency of flight rhythm | [120] |
Ort | Ado | T | Chill coma recovery Locomotor activities Standard metabolic rate Mortality | A | 33 °C acclimation: >chill coma recovery >t°, >running speed and jumping distance >t°, >standard metabolic rate >mortality in 33 °C and 25 °C acclimation | [105] |
Ort | Ado | Ionizing R | Hormetic effects on adult reproduction and offspring performance | A O | Low dose: >female fecundity, >O size, >O performance <survival to reproductive maturity with high dose | [133] |
Ort | Ado | C | Spermatophore production Spermatophore transmission | A | <t°: less likely to transport/transmit spermatophore | [114] |
Ort | Ado | R | Growth rate | A O | <maturation mass, <growth rates | [134] |
Ort | Ado | T (transport) | Survival | E N | <survival 3 days after transport at <t° (5 °C) <survival 6 day after transport at >t° (35 °C) No growth in transport at <t° (5 °C and 25 °C) >t°, earlier hatching of E after transport >t°, >hatching rate | [90] |
Ort | Ado | F L | Haemocytes count Protein content Body weight | A | 16 L:8 D, >haemocytes in males 12 L:12 D, >haemocytes in females <haemocytes in females with F 16 L:8 D, <protein content in haemolymph | [128] |
Ort | Ga | T | Mortality Reproductive capacity | A | 40 °C = 50% mortality in females 34 °C = decreased oviposition | [115] |
Lep | Bm | H | Larval mortality Effective rate of rearing (ERR%) | L | 100% mortality at 45 °C >mortality of young L with >t° >t°, >ERR% | [74] |
Lep | Bm | H | Catalase (CAT) activity | L | >CAT activity in fat body (based on breeds) at 35 °C <CAT activity in fat body at 40 °C <CAT activity in midgut and haemolymph at <40 °C (based on breeds) | [122] |
Lep | Bm | T | Larval mortality Egg hatchability Pupation rates | E L | t° < or >25 °C = worse biological performances RH < 70–80% = worse biological performances <RH and >t°: >mortality | [76] |
Lep | Bm | T | Yield Rearing traits | L | Rearing traits: based on genotype/environment interactions | [78] |
Lep | Bm | H | Reproductive capacity | A | >t° (42–45), <gonadosomatic index >t° (42), <fecundity 45 °C = death 39–42 °C, >vitellogenin mRNA expression 45 °C, <vitellogenin mRNA expression | [79] |
Lep | Bm | F T | Thermal tolerance Chill Coma recovery time (CCRT) | L | F, <CCRT F + Heat shock, minimum CCTR | [106] |
Lep | Bm | H | Heat shock proteins (HSPs) | L | Different HSPs (variations in t° and sex) | [96] |
Lep | Bm | H | Body weight Mortality | L | >t°, <body weight | [81] |
Order | Specie | Veterinary Drug | Inclusion | Dose | Stage | Evaluation | Effects | Bioaccumulation | Reference |
---|---|---|---|---|---|---|---|---|---|
Dip | Hi | Carbamazepine Roxithromycin Trimethoprim Azoxystrobin Propiconazole | Diet | Carbamazepine 1.8–1.9 mg/g Roxithromycin 5.8–5.9 mg/g Trimethoprim 5.9–9.9 mg/g Azoxystrobin 2.4–4.6 mg/g Propiconazole 3.2–14.1 mg/g | L | Larval growth Nutritional composition Residues | >fat content with contaminated substrates | Only trimethoprim | [170] |
Dip | Hi | Moxidectin | Diet | 645 ng/g (Moxidectin) | L | Larval growth Survival rates | <larval growth <survival rate with contaminated feed | Not evaluated | [180] |
Dip | Hi | Sulfamonomethoxine Sulfamethoxazole Sulfamethazine Sulfadiazine | Diet | Low (0.1 mg/kg) Medium (1 mg/kg) High (10 mg/kg) | L P | Survival rate Body weight Duration of larval/pupal stage Pupation/eclosion dynamics Antioxidant activity (catalase CAT, peroxidase POD, superoxide dismutase SOD, total antioxidant capacity T-AOC Drug residues | <survival at high dose <pupation rate at high dose <eclosion rate at high dose >contamination, <body weight High dose, >larval stage duration Delay of the peak of pupation at high dose Later appearance of A at high dose >cumulated eclosion rate at low/medium dose <CAT activity at high dose >dose, <POD activity >dose, <SOD activity <activity of T-AOC at high dose | Only sulfadiazine was detected in medium and high dose treatments | [181] |
Dip | Hi | Oxytetracycline | Diet | 0/100/1000/2000 mg/kg | L | Degradation of antibiotic Effects on intestinal microorganisms | >degradation efficiency with larvae <growth rates and diet consumption levels (<3 d) >growth rates and diet consumption levels (>3 d) <gut microorganism diversity in the first 3 d >dose, >microorganism diversity overall Changes in gut bacterial community composition | Not detected | [206] |
Dip | Hi | Oxytetracycline | In Oxytetracycline bacterial residue and soy | 434.4 mg/kg 3042.3 mg/kg | L | Degradation of substances Weight gain Gut bacterial population | >dose, <degradation >dose, <weight gain >dose, <diversity of bacterial community | Not detected | [183] |
Dip | Hi | Flubendazole (FLUB) Ivermectin (IVM) Doxycycline (DOX) Flumequine (FLUM) Sulfadiazine (SULF) | Diet | 0.05 and 0.5 mg/kg (FLUB, IVM) 0.5 and 5 mg/kg (DOX, FLUM, SULF) | L | Survival rate Larval growth Drug residues Mass balance | <growth with IVM 0.5 mg/kg Mass balance: 40% of the drugs were found back | Larvae: DOX, FLUM, SULF, IVM, FLUB and FLUB metabolites | [184] |
Dip | Hi | Lincomycin fermentation residues (LFR) | Diet | 100 g LFR/100 g of what bran | L | Degradation | 84.9% degradation rate >richness and diversity of larval microbiota >six lnu genes encoding nucleotidyl transferases | Not detected | [210] |
Dip | Hi | Various | Diet | Naturally present in various substrates | L | Presence/Not presence | Not measured | Only oxytetracycline with pig manure substrates | [185] |
Dip | Hi | Enrofloxacin Oxytetracycline Sulfamethoxazole Narasin Salinomycin Toltrazuril Eprinomectin | Diet | 0.5 and 5 mg/kg (Enrofloxacin, Oxytetracycline, Sulfamethoxazole, Eprinomectin) 5 and 50 mg/kg (Narasin, Salinomycin, Toltrazuril) | L | Survival rate Larval growth Drug residues Molar mass balance | Eprinomectin-5: <survival rate Oxytetracycline-5, Eprinomectin-0.5/5: <larval growth | Not detected | [214] |
Dip | Md | Amphotericin Mycoticin Flavofungin Filipin | Diet | Amphotericin 60 mg/flask Mycoticin 20 mg/flask Flavofungin 60 mg/flask Filipin 5/10/17 mg/flask | L A | Larval growth Mortality | Flavofungin: 100% mortality in 24 h Filipin low dose: slow larval growth Filipin medium-high dose: 100% mortality in 4 d Digitonin high dose: 100% mortality in 24 h Filipin: retarded E production and <% of flies that developed E and ovaries | Not evaluated | [174] |
Dip | Md | Actinomycin D | Injection | Not reported | A | Amino acid incorporation by microsomal components | Inhibition of RNA synthesis No rapid incorporation of leucine in free ribosomes | Not evaluated | [201] |
Dip | Md | Nystatin Amphotericin Tetrin Trichomycin Trichlorfon Filipin Candicidin Aureofungin | Diet | Nystatin 3.24/32.4 ppm Amphotericin 3.24/32.4 ppm Tetrin 32.4 ppm Trichomycin 32.4 ppm Trichlorfon 3.24 ppm Filipin 3.24/32.4/324 ppm Candicidin 32.4/324 ppm Aureofungin 32.4 ppm | A | Growth and development Mortality | Filipin: <growth, >mortality | Not evaluated | [188] |
Dip | Md | Filipin | Diet | 8/15/29 µmoles | L A | Mortality E production Effects of dietary cholesterol Loss of 32 P | >mortality, <E, >loss of 32 P With cholesterol: <mortality, >E, <loss of 32 P | Not evaluated | [175] |
Dip | Md | Valinomycin | Diet Topic application Injection | 1 mg/mL (mixed in sugar) 0.2 and 0.5 µL solution at different concentrations | A | Mortality (LD50) | Topic application: no toxicity Injection: >mortality, movement issues Consumption: >mortality, <ingestion | Not evaluated | [195] |
Dip | Md | Racemomycin A, B, C Citromycin Streptothricin | Bait method | 100/500/1000 ppm | A | Mortality rate | Different mortality rates (>than control) based on drugs and dosage | Not evaluated | [189] |
Col | Tm | Actinomycin D | Injection in pupae | 0.16 µg | P | Nucleic acid metabolism Protein biosynthesis | Issues with development from pupae to adults Inhibition of labelled uridine incorporation in RNA >incorporation of labelled glycine into protein 7 d after injection | Not evaluated | [172] |
Col | Tm | Actinomycin D Mitomycin C Ouabain | Injection in pupae | Actinomycin D 3.2 µg/g live weight Mitomycin C 50 µg/g live weight Ouabain 7.3 µg/g live weight | P | Epidermal metamorphosis Nucleic acid synthesis | Antinomycin D: <RNA synthesis in epidermal cells, inhibition of eclosion, >mortality, abnormalities in cuticle development based on time of injection Mitomycin C: delay in attainment of peak thymidine uptake, differences in cuticle formation based on time of injection, inhibition of mitosis Ouabain: inhibition of cuticle formation based on time of injection, issues in ionic balance | Not evaluated | [173] |
Col | Tm | Actinomycin D Mitomycin D | Injection in pupae | 0.5/5 µg | P | Ecdysis | Antinomycin D: inhibition of the moulting process, narrowing of eyes with pigmented spots, delayed apolysis, >mortality Mitomycin D: developmental block (high dosage), limited apolysis, viscera with pupal form, failure in shedding old cuticle, irregular pigmentation of eyes, <number and size of caeca | Not evaluated | [176] |
Col | Tm | Actinomycin D Mitomycin D | Injection in pupae | 1–3 µL of 120 µM solution | P | Mortality Cuticle proteins | >mortality Modification of cuticula formation | Not evaluated | [177] |
Col | Tm | Benalaxyl | Diet | 50 mL solution | L | Enantioselective bioaccumulation | Different bioaccumulation based on the type of benalaxyl enantiomers | No significant accumulation in time | [202] |
Col | Tm | Ampicillin Kanamycin | Diet Injected into the gut | Ampicillin 50/100 µg/mL Kanamycin 1/5/10/50 µg/mL | L | Bacterial Community Composition | Ampicillin: <bacterial communities diversity and size <in 16S rRNS gene copy number | Not evaluated | [197] |
Col | Tm | Bentazone Clopyralid Fenpropimorph Linuron Mefenoxam Pendimethalin Pyrimethanil Tebuconazole | Diet | 1000 mg/L | L | Bioaccumulation Presence of residues | Residues> than LOQ (except for bentazone and clopyralid) <residues after starvation | Detection of 6 substances out of 8 | [203] |
Col | Tm | Gentamicin Chloramphenicol Erythromycin Kanamycin sulphate Penicillin Tetracycline | Diet | 30 µg/disc | L | Polyethylene degradation | Inhibition of gut microbes, but no inhibition of low-density polyethylene degradation | Not evaluated | [209] |
Col | Tm | Acyclovir Amoxicillin Carbamazepine Chloramphenicol Chlorpromazine Cimetidine Cloxacillin Codeine Diazepam Diphenhydramine Furosemide Ketoprofen Mepivacaine Metoprolol Molnupiravir Nimesulide Paracetamol Salicylic acid Sulfadiazine Trimethoprim | Injection in adults | LD50 LD50/2 | A | LD50/Toxicity | Death | Not evaluated | [198] |
Col | Tm | Tetraconazole | Diet | 2/20 mg/kg | L | Bioaccumulation | Bioaccumulation is higher in the first 3 d | Detected | [204] |
Col | Tm | Irinotecan (IRI) 5-fluorouracil (5-FU) | Injection in larvae | IRI 10/75 mg/kg 5-FU 12.5/100 mg/kg | L | Health index Glucose level and ALT (Alanine aminotransferase) activity | Worse health index >mortality >dose, >number of cells darkening <glucose level <ALT activity Changes in the muscular layer >visceral surface area <external diameter and lumen diameter IRI: >lumen perimeter 5 FU: >external perimeter >histological score | Not evaluated | [187] |
Ort | Lm | Actinomycin D (ACT) Cycloheximide (CLX) | Injection in nymphs | Actinomycin D 1/2/3/4 µg/g fresh weight Cycloheximide 100/200/300/400 µg/g fresh weight | L | RNA and protein synthesis inhibition | 58% inhibition max (ACT) 4° instar: paler and greenish tint in 5° instar No ecdysis with injection late in instar CLX: max 90% inhibition Modified pronota and wing buds Different mortality based on the time of injection | Not evaluated | [213] |
Ort | Ado | Miedzian 50 | Spraying | 0.1/0.01/0.001/0.0005/0.0001/0.00005/0.00001/0.000005/0.000001% | E | Mortality Development of eggs and new crickets | Accelerated hatching, <body size in first 2 months | Not evaluated | [190] |
Lep | Bm | Aureomycin Chloromycetin | Oral administration | Not reported | L P | Larval growth | >9/10% in larval and pupal growth >8/14% in the production of silk | Not evaluated | [168] |
Lep | Bm | Chloromycetin | Diet | 20/30/40/50/60/70 mg/100 mL | L | Growth Production of silk | 50–60 mg/kg live weight max beneficial effects Maximum effect in V instar Maximum effects with glycine | Not evaluated | [215] |
Lep | Bm | Chloromycetin | Diet | 200 mg/mL | L | Digestion and utilization of DM, N, mineral constituents, crude fat Composition of L Silk yield | <DM and fat digestibility >utilization of all constituents <utilization of nitrogen for silk production | Not evaluated | [192] |
Lep | Bm | Chloromycetin | Aqueous form | 250 µg/mL | L | O2 uptake Gut weight | >O2 uptake <gut weight >growth rate >glucose utilization in the guts | Not evaluated | [169] |
Lep | Bm | Racemomycin D | Injection | 50/100/150/200 µg/g | L | Mortality Body weight Excreta Distribution of the drug | <movement after 48 h Change in skin colour to yellow-brown 72 h: black skin <ingestion (100/150/200) Vomit Before 24 h: >weight After 24 h: <weight <excreta with time | Presence of compound in blood after 96 h No detection in feces after 24 h >residues in Malpighian tubes | [199] |
Lep | Bm | Racemomycin D | Injection | 150 µg/g | L | Excretion function | Abnormality of Malpighian tubes >uric acid in haemolymph >excretion of uric acid | Not evaluated | [200] |
Lep | Bm | Mitomycin C | Injection | 2.5/5/10 µg/g | L A | Wing formation Tritiated thymidine incorporation | Inhibition of wing formation based on dose and time of injection <Tritiated thymidine incorporation | Not evaluated | [196] |
Lep | Bm | Cloxacillin Streptomycin Gentamycin Terramycin | Diet | 0.05/0.1% in distilled water | L | Lipid and water content | >dose, <water content >dose, >lipid content | Not evaluated | [216] |
Lep | Bm | Norfloxacin | Diet | 50/100 ppm | L P | Feed conversion efficiency (Efficiency of Conversion of Ingested food index, ECI) | >digestibility of food source <excreta >ECI >conversion of food into a cocoon shell >larval biomass production | Not evaluated | [193] |
Lep | Bm | Oflaxacin Acyclovir Griesovin | Diet | 0.04/0.08/0.12% | L | Incidence of diseases | <incidence of disease and minimum mortality rate with 0.12% | Not evaluated | [217] |
Lep | Bm | Iminoctadine | Liquid formulation | 0.03–3% range | L | Moulting | >dose, deficient moulting | Not evaluated | [178] |
Lep | Bm | Iminoctadine triacetate | Diet | 0.03–0.1% | L | Development and mortality | Mortality (0.1%) 0.03%: longer larval period <intake | Not evaluated | [179] |
Lep | Bm | Tebuconazole | Diet | 0.4/2/20 mg/L | L | Silk parameters Juvenile hormone (JH1) and ecdysteroid (ES) levels | <cocoon weight, cocoon shell weight, cocoon shell rate Damage to the silk gland Downregulation of gene transcription involved in protein synthesis in the silk gland Decrease in mRNA expression <ES and >JH1 | Not evaluated | [194] |
Lep | Bm | Metformin | Diet | 5 µL 0.1 M | L P | Lifespan Body weight Silk ratio Fecundity | >lifespan for M <cocoon-shell ratio <fecundity >lifespan in food stress | Not evaluated | [182] |
Lep | Bm | Chlorampenicol Vancomycin | Diet | 0.1 mg/kg | L | Growth indices Feeding behaviour Bacterial count Antioxidant enzyme activity Intestinal morphological and microbiota alterations Intestinal metabolic pathway | Promoted feeding behaviour <intestinal cultivable bacterial counts <antioxidant activity of some enzymes Oxidative damage to the intestine Perturbation of antimicrobial peptides gene expression Disintegration of some epithelial cells Variations in taxonomic composition of intestinal microbiota Variation in some metabolic pathways | Not evaluated | [211] |
Lep | Bm | Florfenicol | Diet | 0.06 g/L 0.12 g/L 1.2 g/L | L | Midgut physiology function Microbiota | High dose: <body/cocoon weight >conditional pathogens and <Pseudomonas and Pedobacter in microbiota >intestinal reactive O2 specie Loose muscle layer and gut goble cells atrophy >Lactobacillus, <intestinal fluid pH, <a-amylase and protease activities, >lipase activity | Not evaluated | [186] |
Lep | Bm | Methyl-Thiophanate | Diet | 2.5, 5, and 10 mg/mL | L | Toxic effect on physiological and transcriptomic analysis Oxidative stress (reactive oxygen species ROS, superoxide dismutase SOD, peroxidase POD, catalase CAT) | <weight autophagy in the midgut oxidative stress: activation of ROS, SOD, CAT, POD Differently expressed genes related to antioxidant defence, detoxification processes, lysosome biogenesis, and metabolic pathways | Not evaluated | [191] |
Lep | Bm | Florfenicol | Diet | 10 µg/L (LD) 50 µg/L (MD) 250 µg/L (HD) | L P | Cocoon production Fitness Development Midgut bacterial community Metabolome mRNA profile in midgut and fat Expressed genes in the midgut and fat | >whole cocoon weight and pupal weight at HD <cocooning rate and pupation rate Shift in microbial diversity and population Altered function in the midgut of microbial populations Alteration of metabolites for various biological pathways Differences in expressed genes | Not evaluated | [171] |
Lep | Bm | Florfenicol | Diet | 1.2 g/L | L | Antioxidant activities Mitochondrial damage | <antioxidant activity Cellular damage <phosphorylation pathway in the midgut >release of mitochondrial BmCytochrome c | Not evaluated | [212] |
Order | Specie | Substance | Dosage | Inclusion | Stage | Evaluations | Effects | Bioaccumulation | Reference |
---|---|---|---|---|---|---|---|---|---|
Dip | Hi | Cyromazine (CYR) Pyriproxifen (PYR) γ-cyhalothrin (CYH) Permethrin (PER) | CYR: 9 doses (0.0585–1.5 ppm) PRY: 14 doses 0.0316–1857 ppm CYH: 9 doses (0.061–1.5625 µg/cm3) PER:11 doses (0.65–37.5 µg/cm3) | Diet Treated paper | L A | Larval development Mortality Weight LC50 | Cyromazine: 100% mortality with 1.5 ppm <prepupal weight <emergence rate Pyriproxifen: >prepupal weight with 58 ppm, <weight with 1857 ppm <% of L in prepupal stage LD50: 0.314–0.320 g/cm2 (CYH), 6.46–8.43 g/cm2 (PER) | Not evaluated | [360] |
Dip | Hi | Chlorpyrifos Chlorpyrifos-methyl Pirimiphos-methyl | 2.5 mg/kg of substrate | Diet | L | Larval survival Larval growth Concentration and bioaccumulation | No significant effects | Not detected | [228] |
Dip | Hi | Chlorpyrifos Propoxur Cypermethrin Imidacloprid Spinosad Tebufenozide Piperonyl butoxide PBO | 1° assay: MRLs 2° assay: >/<MRLs based on effects in the 1° exp | Diet | L | Larval survival Larval growth Concentration and bioaccumulation | 1° exp: <larval survival with spinosad, cypermethrin and cypermethrin + PBO >larval biomass with imidacloprid <larval growth with spinosad, cypermethrin and cypermethrin + PBO | Exp 1: spinosad, cypermethrin, PBO Exp 2: all but propoxur | [233] |
Dip | Hi | Malathion | 0.005, 0.01, 0.015, or 0.02 mg/mL | Diet | L A | Concentration of reactive oxygen species ROS Oxidative damage Enzymatic antioxidant response non-enzymatic antioxidant response | <content of hydrogen peroxide and superoxide anion radicals mean values >mean protein carbonyls except for 0.02 mg/mL Max lipid peroxide concentration at 0.015 mg/mL, min at 0.2 mg/mL >Superoxide dismutase and catalase antioxidant activity at 0.02 mg/mL <Polyphenol oxidase activity at 0.2 mg/mL α, α-diphenyl-β-picrylhydrazyl (DPPH) >in 0.005 and 0.02 mg/mL >DPPH in control adult >Reduced glutathione in L and 0.01 and 0.02 mg/mL | Not evaluated | [311] |
Dip | Hi | Lufenuron | 0.069/0.149/0.282/0.878 mg/kg | Diet | L P A | Larval/pupal survival Morphology | <survival Morphological modification in L, P, A Presence of necrosis (at elevated concentration) Incomplete ecdysis in P | Not evaluated | [246] |
Dip | Hi | λ-cyhalothrin | 0.5, 1, 3, 5 mg/L in 25 mL solution | Diet | L | Larval survival Larval growth Concentration and bioaccumulation | 100% mortality with 5 mg after 48 h 20% mortality with 3 mg <growth at 1 and 3 mg | Not detected | [229] |
Dip | Hi | Cypermethrin (CYP) Deltamethrin (DEL) Permethrin (PER) Pirimiphos-methyl (PM) Chlorpyrifos-methyl (CM) Malathion (MAL) Piperonyl butoxide (PBO) | CYP: 0.5/1/1.6/2/4.5/8 mg/kg PBO: 40–40.3 mg/kg DEL and PER: 0.5–1.6 mg/kg PM: 2.5/3.4/5/7.5/10/10.1 mg/kg CM/MAL: 3.4–10.1 mg/kg + added with PBO + combined substances | Diet | L | Doses needed to affect larval growth | CYP MRL: insufficient to ensure optimal yields PM: >mortality, <yield DEL: >toxicity than CYP and PER Addition of PBO: <yield CM: <yield PM and MAL at a lot concentration: no effects on yield | No bioaccumulation for any treatment | [230] |
Dip | Hi | Pirimiphos-methyl (PM) | 10/20/40 mg/kg | Diet | L | Larval survival Larval biomass and weight Detection of metabolites Genotoxicity Mass balance Bioaccumulation | PM20: >50% survivability PM40: 10% survivability <body weight PM20, <at PM40 >body weight at PM10 6 metabolites detected in diet, 1 in L 98% of PM10 and PM20 metabolized | Not detected | [231] |
Dip | Hi | Cypermethrin (CYP) Deltamethrin (DEL) Piperonyl butoxide (PBO) | CYP: 1.0–2.0 mg/kg DEL: 0.06/0.13/0.25/0.5/1.0 mg/kg CYP + PBO: 1/10 and 2/20 mg/kg DEL + PBO: 0.13/0.25 and 0.25/2.5 and 0.5/5 mg/kg | Diet | L | Toxicity, transfer and metabolization | >dose, <yield Concentrations >than maximum residue levels (MRLs) with higher exposure Overall recovery around 50% | Detection >MRL with higher concentrations | [234] |
Dip | Hi | λ-chyalothrin Cypermthrin Acetamiprid Chlorpyrifos-ethyl Avermectin | Naturally present in biowaste streams | Naturally present in biowaste streams | L | Detection of pesticide residues | No detection in L | Not detected | [232] |
Dip | Md | DDT | 10 µg/mL | Topic application | A | Locomotion and activity | Initial irritation and hyperactivity, then activity decreased to 0 (based on dose) | Not evaluated | [300] |
Dip | Md | DDT | 1 µg/mL | Topic application | A | Flight and activity | Various effects based on pesticide: >interference of potentials of flight muscles, >motor activity, tetany, depression in activity, convulsive flight | Not evaluated | [301] |
Dip | Md | Monitor Lindane Carbofuran | 1 µL in acetone solution | Topic application | A | Thoracic temperature Flight Heart rate | >thoracic temperature Convulsions and convulsive flight >heart rate Tetany Excessive cleaning motions (varying based on substance) | Not evaluated | [302] |
Dip | Md | Parathion Parathion methyl Malathion BAAY 22190 Chlorfenvinphos Tetrachlorvinphos Coumithioate G-23611 Carbaryl SD 8530 HEOD gamma-BHC p,p′-DDT Pyrethrum Resmethrin Tetramethrin | 1 mg solution in water | Topic application | L A | Water loss Respiration | >loss of water by regurgitation or excretion, and transpiration <respiration rate | Not evaluated | [344] |
Dip | Md | Benzoylureas | Various | Diet Injection | E L | Effects on E and L | Ovicidal activity Larvicidal activity | Not evaluated | [294] |
Col | Adi | Cyfluthrin | 5/10/20 mg/m2 | In Petri dishes | A | Sensitivity to I and effects of temperature | Mobility impairment when exposed to cyfluthrin and heat spikes | Not evaluated | [132] |
Col | Adi | Chlorpyrifos Propoxur Cypermethrin Imidacloprid Spinosad Tebufenozide Fipronil Pirimiphos methyl Piperonyl butoxide PBO | Chlorpyrifos: 0.05 mg/kg Propoxur: 0.05 mg/kg Cypermethrin: 0.3 mg/kg Imidacloprid: 0.1 mg/kg Spinosad: 2 mg/kg Tebufenozide 0.05 mg/kg Fipronil: 0.005 mg/kg Pirimiphos methyl: 0.5 mg/kg Piperonyl butoxide PBO: 6 mg/kg Cypermethrin + PBO: 0.3 + 0.6 mg/kg | Diet | L | Larval survival Larval growth Concentration and bioaccumulation | <total yield in Imidacloprid and Spinosad | Detection < LOQ, except for Spinosad | [235] |
Col | Adi | Phospine | Bioassay 1: 50/100 ppm for 3 d Bioassay 2: 3000 ppm Bipassay 3: 3000 ppm for 90 m | Fumigation | E L P A | Mortality LT99 LT50 | B1: 100% mortality after 7 d (A) and 14 d(L) (3 d of exposure 50/100 ppm) E: 5% survival after 7 and 14 d with 50 ppm B2: LT99 5.5, LT50 2.4 (L) Larval mortality: 20% (7 d), 40% (14 d) B3: mortality at 7 d 48.8%, at 14 d 53.3% | Not evaluated | [248] |
Col | Adi | Spinosad SPI Imidacloprid IMI | MRLs and 10% of MRLs (2.0 and 0.2 mg/kg spinosad) (0.1 and 0.01 mg/kg imidacloprid) | Diet | L P A | Weight N. of L Pupation Eclosion Substance transfer | L: (parental generation P1 and offspring F1) SPI2: <weights in P1 and F1 IMI0.1: <weights in P1 SPI0.2: >number of L in F1 A: <weights in IMI0.1 >weights in SPI2 >pupation in P1 Transfer <10% | Transfer from feed to L of P1 and F1 < 10% | [236] |
Col | Tm | 2,4 D Bifenthrin Diflufenican Isoproturon | 1000 mg/L | Diet | L | Bioaccumulation Presence of residues | Residues >than LOQ (except for 2,4-D and bifenthrin) <residues after starvation | Detection of 2 substances out of 4 | [203] |
Col | Tm | α-cypermethrin | 31/250/750 ng/individual | Spraying | L P A | Locomotion Pupal development Toxico-kinetics Survival Enzymatic activities | Immobility after application >degree of deformities in beetles emerging from exposed P Internal concentration based on time and life stage <40% mortality, except for high dose in A, 90% mortality Different enzyme activity based on dose and life stage | Not evaluated | [247] |
Col | Tm | Phosphine | Bioassay 1: 50/100 ppm for 3 d Bioassay 2: 3000 ppm Bipassay 3: 3000 ppm for 90 m | Fumigation | E L P A | Mortality LT99 LT50 | B1: 100% mortality after 7 d (A) and 14 d(L) (3 d of exposure 50/100 ppm) E: 91.6 and 88.8% after 7 and 14 d with 50 ppm B2: LT99 4.34, LT50 1.78 Mortality: 60% (7 d), 93% (14 d) B3: 100% mortality | Not evaluated | [248] |
Col | Tm | Pirimiphos-methyl (PM) | 10/20/40 mg/kg | Diet | L | Larval survival Larval biomass and weight Detection of metabolites Genotoxicity Mass balance Bioaccumulation | PM20: >70% survivability PM40: 2% survivability >dose, <body weight 6 metabolites detected in diet, 1 in L PM10: >metabolization overall < 60% metabolization | Not detected | [231] |
Ort | Lm | DDT Dieldrin Chlorfenvinphos Bioresmethrin | 20 µL solution | Injection | A | Activity of hyperlipaemic hormone | >release of hyperlipaemic hormone from corpora cardiaca | Not evaluated | [341] |
Ort | Lm | Bioresmethrin | 0.01/0.1 µmol | Injection | A | Electrical activity of corpora cardiaca Hyperlipaemic hormone | Burst of electrical activity, >with >dose >release of hyperlipaemic hormone | Not evaluated | [343] |
Ort | Lm | Lindane | 3 µg/g in acetonic solution | Topic application | L | N-acetyldopamine (NADA) and N-acetyl5-hydroxytryptamine (NA % HT) in brain | <NADA and <NA 5 HT Initial hyperactive phase, later issues in movements, + paralysis >dopamine and 5-hydroxytryptamine | Not evaluated | [303] |
Ort | Lm | Dieldrin Methomyl Fenitrothion Permethrin Tefubenzuron | Various based on LD50 | Topic application | N A | Toxicity and resistance | >resistance with >in developmental stage for pesticides (except A) >resistance of younger L for growth inhibitor Tefubenzuron (A not affected) >resistance of solitary insects compared to gregarious ones | Not evaluated | [293] |
Ort | Lm | Deltamethrin | 0.2/0.23 µg/g | Injection | A | Kinetics of trehalosemia Glycogen and glycogen phosphorilase activity Biological activity of hemolymphatic peptide extracts | >trehalosemia in 24 h Retarded decrease in flight muscle glycogen Rapid decrease in fat body glycogen >activity of fat body glycogen | Not evaluated | [346] |
Ort | Lm | Deltamethrin | LD 15, 25, 50, 75 and non-lethal | Injection | A | Glucose catabolic pathways | Changes in glucose catabolism when removing fat body based on dose and time of removal | Not evaluated | [347] |
Ort | Lm | Deltamethrin Malathion Carbaryl | LD10, LD30 and LD50 | Topic application | N | Analysis of cytochrome P450-like genes | Deltamethrin: significant effect on the cytochrome P450 enzyme activity >transcriptions of several cytochrome P450 genes | Not evaluated | [315] |
Ort | Lm | Imidacloprid | 0.1 µg–10 mg/mL solution with acetone | Injection | A | LD50 Behavioural responses Descending Contralateral Movement Detector Response (DCMD) | >doses, >movement issues, paralysis >dose, >mortality >resistance of F LD50 M: 2500 ng/g, LD50 F: 10,000 ng/g No reaction to visible stimuli <bursting | Not evaluated | [250] |
Ort | Lm | Malathion Chlorpyrifos Deltamethrin Carbaryl | Malathion 0.48 μg/N Chlorpyrifos 0.18 μg/N Deltamethrin 0.015 μg/N Carbaryl 0.195 μg/N | Topic application | N | Susceptibility based on changes in cuticular structure | dsLmKnk3–50 = <chitin pesticides = >susceptibility | Not evaluated | [359] |
Ort | Ado | Fenthion | 300 mg/L | Topic application | E | Development and eclosion Mortality Cholinesterase (ChE) acitivty | >mortality of E depressed ChE activity at 8–9 d | Not evaluated | [295] |
Ort | Ado | Karbatox 75 Lindane Gesagard 50 | Karbatox 50: 0.1/0.01/0.005/0.001/0.0005/0.0001/0.00005/0.00001/0.000005/0.000001% Lindane: 0.1/0.01/0.005/0.001/0.0005/0.0001/0.00001/0.000005/0.000001% Gesagard 50: 0.1/0.01/0.001/0.0001% | Spraying | E | Mortality Development of E and new crickets | Karbatox 75 and Lindan (based on dosage): >mortality rates, presence of abnormalites in E and hatched crickets Gesagard 50 sorted no effects | Not evaluated | [190] |
Ort | Ga | Glyphosate based herbicide (GBH) | 0.864 mg | In water | N | Antioxidant enzymes Cholinergic enzymes Lipid peroxidation activity | >catalase activity in nymphal phase >cellular detoxification >efficiency of control of lipid peroxidation | Not evaluated | [325] |
Ort | Gs | Chlordane Malathion Fenitrothion Pyrethrum Rotenone Sevin | 0.005% solution in acetone | Topic application | A | Toxicity of substances based on rearing conditions | Crickets reared in crowded conditions > susceptible than solitary crickets 100% mortality in all conditions for chlordane chlordane > malathion > fenitrothion > pyrethrum > rotenone > Sevin | Not evaluated | [249] |
Ort | Gs | Cythion | 0.001–0.003% in water | Topic application | A | E production Fertility | <E production <hatching <E weight <weight of newly hatched N | Not evaluated | [296] |
Lep | Bm | EDB (1,2-dibromoethane) | Acute toxicity: 10 µL acetone solution of EDB (5%) Chronic toxicity: 1000 ppm EDB emulsion | Topic application (acute) Diet (chronic) Vaporized | L | Development Weight Silk parameters Effects on next generation Mutagenic effects | Vapour effect: uneven development 100% mortality with 10.4 ppm exposure 100% mortality for newly ecdysis L with 41.6 ppm No pupation at 20.8 ppm | Not evaluated | [251] |
Lep | Bm | MEP, MPP, EDB, PAP | Not reported | Leaves harvested from treated stumps | L | Residues in L | No residues < cocoon weight and shell weight | Not detected | [252] |
Lep | Bm | Parathion Disulfoton Malathion | 4–5 grades dilution from LD50-LD0 | Diet Injection | L P | Reproduction | <number of E laid >% of abnormalities in E >E mortality Late hatching Retention of substances in pupal body Transfer from mother to E Respiratory inhibition <cholinesterase activity | Detected | [244] |
Lep | Bm | 1-citronellyl-5-phenylimidazole | 3.12/6.25/12.5/25/50/100 ppm | Diet | L | Metamorphosis Pupation Ecdysis, an emergence, cocoon spinning | Precocious pupation (6.25–100 ppm) Earlier ecdysis and emergence <larval, cocoon and cocoon shell weights | Not evaluated | [253] |
Lep | Bm | Azardirachtin | 1/2 µg/g BW | Injection | L | Endocrine events | <weight and <pupation rate Morphological deformities No significant effects on endocrine events | Not evaluated | [254] |
Lep | Bm | 17 1,5 Disubstituted Imidazoles | 1/4 µL/larva | Topic application | L | Development Toxicity | Precocious pupation with a variety of 1,5-disubstituted Imidazole No toxicity of the imidazole compound Toxicity of benzyl analogue | Not evaluated | [354] |
Lep | Bm | Hexachlorocyclohexane | 0.7 µg/larva | Topic application | E L P A O | Growth Cocoon production | Longer larval period <growth <fibroin content <cocoon weight and cocoon shell ratio <survival rate <number of E, <emergence of moths < reliability of cocoons Loss of body water Negative effects on offspring | Not evaluated | [255] |
Lep | Bm | Fenoxycarb | 100 pg/larva and 1 ng/larva | Diet | L | Juvenile Hormone Titer | Fenoxycarb: not a JH-esterase inhibitor Inhibition of larval prothoracic glands (PG) activity without modification of JH | Not evaluated | [342] |
Lep | Bm | Dimehypo | 0.0612/0.108/0.217/0.346/0.684/1.20 mg per leaf (acute toxicity) 1.7 × 10−6, 1.7 × 10−5, 3.4 × 10−5, 1.7 × 10−4 mg/day (spring); 1.7 × 10−8, 1.7 × 10−7, 1.7 × 10−6, 1.7 × 10−5 mg/day (autumn) (chronic toxicity) | Diet | L | Growth and cocooning | Acute toxicity: >mortality, <cocooning rate <wet weight of cocoons and cocoon layers Chronic toxicity: longer larval stadium and ecdysis <mean wet weight <cocooning rate (spring-autumn) Changes in the biosynthesis of fibroin and in the physiological activity of the posterior silk gland cell | Not evaluated | [289] |
Lep | Bm | Fenitrothion Ethion | Lethal and sublethal dose | Diet | L | Carbohydrate metabolism Fat body | <pyruvate level and lactate dehydrogenase activity with >lactate levels <respiration rate at the tissue level (<enzymes of Krebs cycle) | Not evaluated | [345] |
Lep | Bm | Fenoxycarb | 1–2 µL solution | Topic application Orally administered | L | Leucine Uptake Lipid Composition of Midgut Brush Border Membrane | Feeding inhibition Frass inhibition >K+ dependent leucine uptake and accumulation in midgut <unidentified fatty acid | Not evaluated | [348] |
Lep | Bm | Flufenoxuron | 10–500 ppm | Diet | L | Nucleopolyhedrovirus infection | Enhanced viral infection >sensitivity to infection Fragile peritrophic membrane | Not evaluated | [355] |
Lep | Bm | Flufenoxuron Chlorfluazuron Teflubenzuron Diflubenzuron Buprofezin | 0.10% | Diet | L | Peroral infection by nucleopolyhedrovirus | Flufenoxuron: promoted BmNPV budded particle peroral infection Chlorfluazurn/teflubenzuron/diflubenzuron contaminated L did not pupate | Not evaluated | [256] |
Lep | Bm | Fenoxycarb | 0.2 µg/µL solution | Topic application | L | General and juvenile hormone esterase activity | >haemolymph GE and JHE activities Dauer L | In haemolymph and feces | [237] |
Lep | Bm | Fenitrothion Ethion | LD50: 0.306 (F) 0.037 ppm sublethal dose: 0.061 ppm (F) 0.007 ppm (E) | Diet | L | Glycogen metabolism in haemolymph and fat body | <glycogen level in fat body >trehalose and glucose reserves in haemolymph and <in fat body >Glycogen phosphorylase and trehalase in the fat body <Food intake and feces defecated at lethal dose | Not evaluated | [349] |
Lep | Bm | Rac- and S-metolachlor | 600 mg/L in alcohol/water | Diet | L | Toxicity Enzyme activity | <haemolymph lactate dehydrogenase/catalase activity levels with rac <ACP activity with rac <midgut alkaline phosphatase activity with rac | Not evaluated | [350] |
Lep | Bm | Clodinafop-propargyl | 30, 60, 120, 240, 480 mg/L | Diet | L | Genotoxicity evaluation | >dose, >DNA damage <% of cocooning and pupating | Not evaluated | [257] |
Lep | Bm | Organophosphorus and Pyrethroid I | 2 µg/mL | Diet | L | Toxicity LC50 | >toxicity LC50: from 0.06 to 4.11 mg litre-1 different levels of toxicity based on mixtures of different types of compounds | Not evaluated | [356] |
Lep | Bm | Glyphosate Permethrin | 103 ppm | Injection | L | Effects on Glutathione S-Transferase Activity and gene expression | >mRNA level of BmGSTS2 >expression of the BmGSTS2 gene in midgut | Not evaluated | [313] |
Lep | Bm | Diazinon | 1 µg/g larva | Topic application | L | Antioxidant reactions | Induction of mRNA encoding manganese-containing superoxide dismutase (SOD), and omega-class glutathione S-transferases (GST) >ROS, <glutathione in fat body | Metabolites in the haemolymph | [238] |
Lep | Bm | Fenoxycarb | 1 ng/10 µL and 10 ng/10 µl | Topic application | L | Larval/pupal development Morphology of the midgut | >length of the last larval stage Inhibition of larval-pupal differentiation (spinning, gut purge and remodelling of midgut) Larval midgut degeneration and apoptosis >level of caspase 3 | Not evaluated | [258] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Transcriptional characteristics of acetylcholinesterase genes | First >then <transcription levels of Bm-AChE-1 and Bm-AChE-2 in brain, fat body and silk gland First <then >transcription of Bm-AChE-1 and Bm-AChE-2 in midgut >dose, >mortality | Not evaluated | [314] |
Lep | Bm | Avermectin | 1.0/2.0/4.0 µg/L | Diet | L | DNA damage and gene expression in haemocytes | DNA damage of haemocytes Differential gene expression (<Polyubiquitin, ATP translocase, Glycoprotein, >ribosomal protein S18) | Not evaluated | [335] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Gene expression analysis | 247 differentially transcribed genes Up-regulated genes: involved in glycometabolism, fat metabolism, protein hydrolysis electron transfer process Down-regulated genes: involved in cell division, transcriptional regulation, and intracellular signalling cascade | Not evaluated | [351] |
Lep | Bm | Phoxim | 4 μg/mL | Diet | L | Protein and Carbohydrate Metabolism | Beneficial effects of cerium with phoxim toxicity: >contents of protein, glucose and pyruvate, and carbohydrate metabolism-related enzyme activities by adding cerium chloride, <free amino acids, urea, uric acid and lactate levels and inhibited the protein metabolism-related enzyme activities | Not evaluated | [352] |
Lep | Bm | Cypermethrin Dichlorvos Dimethoate Imidacloprid Monosultap Phoxim | 2 mL solution | Diet | L | Toxicity test | Different toxicity based on pesticides | Not evaluated | [357] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Gene expression | Different gene expression on detoxification, immune response, stress response, energy metabolism and transport Upregulation of genes involved in detoxification | Not evaluated | [305] |
Lep | Bm | Phoxim | 4 mg/mL | Diet | L | Silk gland damage and cocooning + effects of TiO2 NPs | Severe damage to the silk gland structure <cocooning <expressions of silk protein synthesis-related genes Beneficial effects of TiO2 particles | Not evaluated | [326] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Gene transcription in the silk gland | 270 differentially expressed genes related to apoptosis, detoxification and protein degradation Inhibition of fibroin synthesis | Not evaluated | [316] |
Lep | Bm | Imidacloprid | 2 mg/L | Diet | L | Microbial degradation Toxicological analysis | >antioxidant enzyme activities (SOD and CAT) in the midgut Haemocytes damages >lipid peroxidation and protein oxidation | Not evaluated | [317] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Midgut damages Antioxidant activities | <survival rate >malondialdehyde (MDA), carbonyl and 8-OHdG levels >ROS accumulation <activities of AChE, superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase in midgut <levels of ascorbic acid, glutathione, thiol in midgut Beneficial effects of TiO2 NPs | Not evaluated | [288] |
Lep | Bm | Phoxim | 100 mg in 1 mL acetone, 4 µg/mL | Diet | L | Detoxification enzyme activity | Gastric juice spitting, body distortion, body shrinking, head and chest protrusion >activity of cytochrome P450 oxidase in the midgut and fat body <esterase activity in midgut, >in fat body >expression of cytochrome P450 oxidase genes, glutathione-S-transferase-related genes and esterase gene in midgut and fat body | Not evaluated | [304] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Larval midgut damage | Severe midgut damage and oxidative stress Beneficial effects of cerium Different gene expression regarding digestion and absorption Significant alterations of esterase, lysozyme, and amylase 48 | Not evaluated | [331] |
Lep | Bm | Phoxim | 4.0 µg/mL phoxim solution | Diet | L | Adverse effects on the midgut | Head nystagmus, chaotic crawling, vomiting, cramps and paralysis Deaths of columnar cells and lysis of the goblet cells Abnormal cell structure, intestinal wall cracking and appearance of many sheet structures Changes in gene expression profile >activity of cytochrome P450s Apoptosis in the midgut Morphological changes in the nuclei and mitochondria Up-regulation of caspase-3 and CytC >protein levels of CytC in the total lysate and the cytosolic fraction <protein level of CytC in mitochondrial fraction Inhibition of the Toll signal pathway and the IMD signal pathway | Not evaluated | [318] |
Lep | Bm | Phoxim Chlorpyrifos | Phoxim: 0.75–0.375 mg/L Chlorpyrifos: 1–0.5 mg/L | Diet | L | Expression analysis of peroxiredoxin family genes | >overall expression of peroxiredoxin family genes | Not evaluated | [319] |
Lep | Bm | Phoxim | 4 µg/mL phoxim solution | Diet | L | Symptoms Silk parameters Gene expression | Head nystagmus, chaotic climbing, vomiting, cramps, body shrinkage, paralysis <survival and cocooning Silk gland damage Oxidative stress Downregulation of the expression of silk-related genes Beneficial effect of TiO2 NPs | Not evaluated | [259] |
Lep | Bm | Phoxim | 4 µg/L | Diet | L | Symptoms Silk gland damage Gene expression Effects of CeCl3 | Head nystagmus, chaotic climbing, vomiting, cramps, body shrinkage, paralysis <body weight, <survival <cocooning rate Damages to the silk gland, <protein content in the silk gland oxidative stress <antioxidant activities Differently expressed genes related mainly to silk protein synthesis, antioxidant capacity Beneficial effects of CeCl3 | 0.27 µg/g in silk gland 0.09 µg/g in silk gland with CeCl3 | [245] |
Lep | Bm | Phoxim | 4 mg/mL | Diet | L | Nerve Toxicity and effects of TiO2 NPs | Gastric juice, spit, head nystagmus, body distortion, body shrinkage, paralysis and other symptoms <body weight and >mortality Histopathological changes in the brain Altered the release of neurotransmitters and the The activities of several important enzymes in the nerve conduction Oxidative stress Beneficial effects of TiO2 particles | Not evaluated | [290] |
Lep | Bm | Chlorantraniliprole | 2.5 ppm/L | Diet | L | Development Haemolymph | <body size, slow movement, body contraction, cessation of feeding, discolouration of body cuticle Loss of haemolymph <haemolymph volume with >age <protein level in fat body >urea levels >activity of aminotransferases | Not evaluated | [291] |
Lep | Bm | Phoxim | 4.0 μg/mL | Diet | L | Expression of genes in the fat body | 774 differentially expressed genes Upregulation of expression of detoxification genes Downregulation of antimicrobial peptide genes Expression level of metamorphosis-related genes after exposure | Not evaluated | [320] |
Lep | Bm | Phoxim | 4 mg/L | Diet | L | Effects of TiO2 NPs + phoxim on transcription of antioxidant genes and enzyme activity in fat body | Differential expression of genes Upregulation of antioxidant genes transcriptional TiO2 NPs: >expression of the P450 family genes -->>fat body’s ability to metabolize phoxim and reduce phoxim-induced oxidative stress | Not evaluated | [321] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Expression profile analysis of P450 family genes | Head nystagmus, chaotic crawling, gastric juice spitting, cramps, and paralysis >mortality Changes in moulting hormone synthesis-related genes >expression of detoxification-related genes | Not evaluated | [260] |
Lep | Bm | Phoxim | 4.0 μg/mL | Diet | L | Body Weight, Survival, and Oxidative Stress Midgut damages | <body weight and survival rate >oxidative stress Midgut damages Differential expression of various genes | Not evaluated | [261] |
Lep | Bm | Phoxim | 1 µg/mL | Diet | L | Symptoms and mortality Oxidative stress parameters Effects on immune genes | Head nystagmus, chaotic crawling, gastric juice spitting, cramps and paralysis >mortality in the group treated with phoxim and nucleopolyhedrovirus >H2O2 and >levels of genes related to oxidative stress and immune response | Not evaluated | [262] |
Lep | Bm | Phoxim | 4 µg/mL | Diet | L | Nutrient metabolism and insulin signalling pathway in the midgut | Typical symptoms of poisoning <body weight >trypsin, lipase, and amylase activities Nutrition metabolism-related enzymes are dysregulated in the midgut <expression levels of insulin/insulin growth factor signalling (IIS) pathway genes | Not evaluated | [263] |
Lep | Bm | Deltamethrin | 0.025 µg/mL | Diet | L | Changes in gene expression | <expression of immune system functions genes at 30 °C Severe stress response <expression of peptidoglycan recognition protein genes, mucin, antimicrobial peptides genes <genes related to reactive oxygen species scavenging <mortality at >t° | Not evaluated | [308] |
Lep | Bm | Imidacloprid Thiamethoxam Cypermethrin Deltamethrin Chlorpyrifos Acephate | 5 mg/L | Diet | L | Mortality Toxicity Combined effects Toxicosis symptoms | >dose, <survival rate >exposure time, >toxicity Additive/antagonist effects based on a combination of compounds Stiffness of body, vomiting, <feed intake (with pyrethroid and organophosphates) Tremors, shortened body, vomiting, <feed intake (with neonicotinoids) | Not evaluated | [358] |
Lep | Bm | Azadirachtin | 1/2.5/5/7.5/10/15/20 mg/L | Diet | L | Rearing performances Effects on the prothoracic gland | >dose, >mortality >dose, no production of cocoon <size of cocoons Incomplete process of spinning cocoons and pupation <development of A, <cocooning rate Morphological changes and shrunken prothoracic glands Apoptosis in the prothoracic gland and DNA fragmentation <protein concentration in prothoracic glands <activities of Ca2+-Mg2+-ATPase >Ca2+ concentration | Not evaluated | [264] |
Lep | Bm | Acetamiprid | 0.01 mg/L | Diet | L | Symptoms and mortality Residue in haemolymph Gonad development Changes in the expression of 20E and JH-related genes | Mild poisoning symptoms <body and E weight Abnormalities in the ovaries and fallopian tubes <production of E Downregulation of ovarian development-related genes, ecdysone metabolism-related gene Upregulation of the expression of the juvenile hormone-related gene <ecdysone and >juvenile hormone in haemolymph | In haemolymph | [240] |
Lep | Bm | Phoxim | 5 µg | Injection | L | Silk gland damage Transcriptional response | Residue in the silk gland up to 24 h Upregulation of detoxifying enzymes-related genes | In silk glands up to 24 h | [239] |
Lep | Bm | Imidaclorpid | 0.6 mg/L | Diet | L | Intoxication and effects of N-acetyl-L-cysteine (NAC) | <growth, <survival rate, <food intake, <amount of digestion and ratio of digestion <cocoon mass, cocoon shell mass, ratio of cocoon shell >malondialdehyde >SOD enzyme activity <CAT activities <GSH-Px activities Beneficial effects of NAC | Not evaluated | [265] |
Lep | Bm | Chlorantraniliprole Lambda-cyhalothrin Imidacloprid | 0.1/1 mL/L | Diet | L | Pesticide toxicity | >mortality Different toxicity based on pesticides and time after exposure, different toxicity of a combination of compounds (additive effects) | Not evaluated | [266] |
Lep | Bm | Azadirachtin | 25 µg/pupa | Injection | P | Lipid transportation | Azadirachtin binds with LBD: interruption of protein–lipid interaction = suppression of lipid transportation to the ovary | Not evaluated | [353] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L | Growth and body mass Histochemical changes, Morphological structure Digestive enzyme activities Oxidative stress Differentially expressed genes (DEGs) | Head tremor, chaotic crawling, gastric juice spitting and cramps Stopped feeding, retarded movement, full-body contraction, yellowish epidermis <body mass Changes in morphology of midgut cells, <midgut cells, thinner stroma, disappearance of microvilli, karyopyknosis in the midgut Accumulation of ROS Swollen mitochondria, chromatin of the nucleus aggregated with a nonuniform distribution, and vacuoles in the cytoplasm Dysregulates the activities of digestive enzymes in the midgut <e expressions of oxidative phosphorylation pathway and antioxidant defence system related genes | Not evaluated | [267] |
Lep | Bm | Lambda-cyhalothrin 2.5% (LAM) Chlorfenapyr 10% CLO Emamectin benzoate 5% EMA Profenofos 50% PRO Azadirachtin 0.03% AZA Fipronil 5% FIP Novaluron 10% NOV Dichlorvos DIC | LAM 1 mL/L CLO 1.5 mL/L EMA 0.4 gm/L PRO 1 mL/L AZA 2 mL/L FIP 0.75 mL/L NOV 0.5 mL/L DIC 2.63 mL/L | Diet | L | Toxicity Development Rearing performances | 100% mortality with lambdacyhalothrin and emamectin benzoate Chlorofenapyr: less toxic Longer larval period <weights Delay in moulting <cocoon weight | Not evaluated | [268] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L | Detoxification enzyme activities Detoxification-related gene expression in the fat body | >activity of P450 and GST enzymes <CarE enzyme >expressions of the key genes in the PI3K/Akt/CncC signalling pathway and mRNA Inhibition of Akt at the protein level >detoxifying capability | Not evaluated | [322] |
Lep | Bm | Novaluron | 0.15 mL/L | Diet | L | Symptomatology Mortality Cell death analysis | Rupture in the integument, complete cessation of feeding, late development, incomplete ecdysis and production of defective cocoons >mortality (differences based on larval age) Cytotoxic effects Impaired development | Not evaluated | [269] |
Lep | Bm | Acetamiprid | 0.01 mg/L | Diet | L | Midgut damages | <size, <weight <cocoon mass, cocoon shell mass, ratio of cocoon-shell Histopathological and cellular microstructural changes in the midgut <activity of trypsin Differentially expressed genes involved in nutrient metabolism, stress responses, and inflammation pathways Oxidative stress | Not evaluated | [270] |
Lep | Bm | Phoxim | 1.0 μg/mL | Diet | L | Weight Gut microbial composition | <body and cocoon mass >bacterial community evenness Alteration of the structure of gut microbiota Differences in microbial communities <expressions of antimicrobial peptides >pathogenesis of Enterobacter cloacae | Not evaluated | [272] |
Lep | Bm | Phoxim | 4 μg/mL | Diet | L | Effects on the immune system | <body weight and survival rate Dysregulation of immune responses and expressions of immune-related genes in the midgut | Not evaluated | [271] |
Lep | Bm | Acetamiprid | 0.15 mg/L | Diet | L | Symptoms Silk gland damage | Yellowish colour <size Cocoon abnormalities <larval weight Residues in the posterior silk gland <cocoon weight, cocoon shell weight, ratio cocoon shell <silk glad size, morphological abnormalities Differently expressed genes <transcript levels of genes related to the synthesis of silk protein | Not evaluated | [241] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L | Effects on the silk gland Antioxidant and detoxification response | Slow movement, gastric juice spitting, the body was shrunk <body weight, thin-shelled cocoons, >mortality Damages of the posterior silk gland >activities and >expression of antioxidant and detoxification enzymes | Not evaluated | [273] |
Lep | Bm | Pyriproxyfen | 0.001/1/100 µg/L | Diet | L | Reproduction Gene expression | <number of E <hatch rate >dose, >damages <E size Affected absorption of nutrients, energy metabolism, ovary development and E formation | Not evaluated | [297] |
Lep | Bm | Novaluron | 0.15 mL/L | Diet | L | Silk gland Productive performances | Cytotoxic effects on epithelial cells of the silk gland Changes in the production of fibres and silk cocoons <weight of cocoon, defective cocoons | Not evaluated | [327] |
Lep | Bm | Acetamiprid | 0.15 mg/L | Diet | L | Detoxification enzymes in the midgut | >mortality + enlarged breast, head-shaking, gastric juice spitting, abdominal foot weakness, falling on mulberry leaves, body shrinking and softening, darker colour, anorexia, <body weight >CYP4M5, CYP6AB4, P450 enzyme activity <transcription levels of CarE, CarE-11 and the activity of CarE enzymes >transcription levels of GSTe3 and GSTd1, and GST enzyme activity >detoxification enzymes | In the midgut and haemolymph up to 96 h | [243] |
Lep | Bm | Buprofezin Pymetrozine Flonicamid Dinotefuran Azadirachtin Dichlorovos | B: 1–2 mL/L P: 0.3–0.6 g/L F: 0.15–0.3 g/L DIN: 0.12–0.25 g/L A: 1–2 mL/L DIC: 1.32–2.63 mL/L | Diet | L | Reeling parameters | <length of filament Finer denier | Not evaluated | [328] |
Lep | Bm | Pyriproxyfen | 0.01 μg/L | Diet | L | Symptoms Body weight Silk parameters Gene expression | Gastric juice spitting, chaotic crawling and cramps <body weight <cocooning rate >rate of dead worm cocoons >cocoon weight <cocoon-shell ratio Histological changes in silk glands Downregulation of expression n levels of silk protein synthesis-related genes >expression levels of detoxification genes | Not evaluated | [275] |
Lep | Bm | Pyriproxyfen | 0.01 µg/mL | Diet | L | Immune signalling pathway and transcription of detoxification enzyme genes in the fat body | Cramps, chaotic crawling, and gastric juice spitting, <body weight, >cocoon mortality, <cocooning rate Histological changes in fat body: outflow of cellular content and appearance of some vacuoles in the cytoplasm Differential expressions of key genes in immune signalling pathways Upregulation of transcriptional levels of detoxification enzyme genes, and >activities of detoxification enzymes | Not evaluated | [274] |
Lep | Bm | Phoxim | 2.5 mg/L | Diet | L | Effects of Fe2+. Cu2+, Rb2+ | Fe2+, Cu2+, Rb2+ alleviate the toxicity of phoxim about survival, ROS accumulation and oxidative stress | Not evaluated | [309] |
Lep | Bm | Pyriproxyfen | 0.001 mg/L | Diet | L | Midgut damages and related gene expression | Cellular damage to the midgut <expressions of digestive enzyme genes, oxidative phosphorylation genes, and antioxidant enzyme genes >activities of detoxification enzymes and the expressions of detoxification-related genes | Not evaluated | [323] |
Lep | Bm | Guadipyr | 5.25 and 10.50 mg/L | Diet | L | Microbiota Immune system | Alteration of midgut microbiota in terms of structure and richness Downregulation of antimicrobial peptide genes Immune disorders | Not evaluated | [332] |
Lep | Bm | Acetamiprid | 0.15 mg/L | Diet | L | Intestinal microbial homeostasis | ROS accumulation Dysregulation of intestinal immune signalling pathways Alteration of evenness and structure of the bacterial community Bacterial invasion in haemolymph <resistance to pathogens | Not evaluated | [310] |
Lep | Bm | Novaluron | 0.15 mL/L | Diet | L | Reproductive toxicity E production | Changes in organization, distribution, and Development of the cysts containing male germ cells Changes in morphological features of cell death <fertility of females, <of oviposition | Not evaluated | [298] |
Lep | Bm | Chlorfenapyr | 80/160/320/640/1280 mg/L | Diet | L | Transcriptional response of detoxifying enzyme genes | High number of differentially expressed genes, many related to detoxification pathways >mortality | Not evaluated | [276] |
Lep | Bm | Fenvalerate | 0.02 mg/L | Diet | L | Transcriptome Analysis in the Fat Body | Differentially expressed genes in the infected fat related to cellular components, molecular function and biological process | Not evaluated | [336] |
Lep | Bm | Imidacloprid | 20 mg/L | Diet | L | Mortality associated with lead contamination | Positive correlation with concentration and negative with the age of L of all 3-combination tested (imidacloprid formulation, imidacloprid technical grade and Pb) | Not evaluated | [292] |
Lep | Bm | Glyphosate | 4872/8663.78/15,406.62/27,397.27/48,719.10 mg/L | Diet | L | Growth Development Physiological functions | <growth <cocoon weight <feed digestibility <activities of alpha-amylase and trypsin Midgut damages Accumulation of peroxides in intestinal tissue >messenger RNA transcription of SOD and CAT | Not evaluated | [277] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L P | Impact on epidermis during PP-P transition | Disruption of energy homeostasis, oxidative stress, autophagy and apoptosis in the epidermis >trehalose <trehalose metabolism genes <chitin content | Not evaluated | [287] |
Lep | Bm | Chlorantraniliprole | 0.001 mg/L 2.783/7.746/21.558/60/166.989/464.758 × 10−3 mg/L | Diet | L | Mechanism of autophagy | <Ca2+-ATPase and CA2+-Mg2+-ATPase activities Activation of AMPK-related genes AMPK-a and AMPK-b Upregulation of autophagy-related genes | Not evaluated | [338] |
Lep | Bm | Dimethoate | 25, 50, and 100 ppm | Diet | L | Oxidative stress DNA damage Histological alterations | Weight loss Damage at the histological level to the mid-gut, silk gland, and fat body <level of antioxidants like CAT, SOD, GPx, GSH, GS Lipid peroxidation in the silk gland, gut, and fat body | Not evaluated | [278] |
Lep | Bm | Dinotefuran | 0.4 mg/L (LCG) 4 mg/L (HCG) | Diet | L | Biochemical toxicity Transcriptome aberration | >dose, >mortality; <larval weights Intoxication (antifeeding, vomit, softening of the body) (HCG) >activity of GST and UGT enzymes in fat body (LCG) >activity of GST, P450, CarE and UGT enzymes in fat body (HCG) >activity of GST enzyme in midgut (HCG) Upregulation of detoxifying enzymes genes >energy metabolism, oxidative stress, detoxification <carbon metabolism, fatty acids biosynthesis, pyruvate metabolism, citrate cycle Activation of MAPK/CREB, CncC/Keap1, PI3K(Akt and Toll/IMD pathways | Not evaluated | [279] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L | Autophagy and apoptosis | Release of intracellular Ca2+ in BmN cells Induction of Ca2+-dependent genes in midgut Damaged mitochondria, autophagosomes, nuclear membrane rupture and condensed chromatin Downregulation of genes in the oxidative phosphorylation pathway Upregulation of autophagy-related genes and apoptosis genes >protein levels of LC3-II and ATG7, gene caspase 3 | Not evaluated | [333] |
Lep | Bm | Fenvalerate DDVP | Fenvalerate 0.05 µg/L DDVP8 µg/L | Diet | L | Expression levels of seven reference genes (RGs) | Different levels of stability of stress-responsive genes based on the evaluated tissue and type of pesticide | Not evaluated | [337] |
Lep | Bm | Dimethoate | 200 mg/L | Diet | L P A | Oviposition, fertility, reproduction | <moths >number of E inside female genitalia, <E laid, >production of unhealthy E Morphological changes in cocoons and P Slower development Differentially expressed genes related to promoting trehalase transporter genes, stress response genes, zinc fingers protein genes, epidermal protein genes and 5-HT pathway related genes | In E | [242] |
Lep | Bm | Imidacloprid Thiamethoxam | 0.125/0.25/0.50/1/2 mg/L | Diet Spraying | L | Development Body Weight Economic Characteristics | Different LD50 based on method of application >developmental time wth >dose <sputum production <weight with >dose (spraying) >CarE and GST activities >expression of CarE-11, GSTe3, GSTz2 genes DNA damage | Not evaluated | [280] |
Lep | Bm | Chlorantraniliprole | 0.01 mg/L | Diet | L | Apoptosis in the silk gland | Abnormal silk gland development release of intracellular Ca2+, triggering of Ca2+-dependent gene transcription <oxidative phosphorylation and antioxidant enzyme-related genes in silk gland (peroxide accumulation) >autophagy-related genes and protein levels of LC3-I and LC3-II | Not evaluated | [339] |
Lep | Bm | Dinotefuran Imidaclorpid Methoprene Fenoxycarb | Dinotefuran: 4 mg/L Imidaclorpid: 0.8 mg/L Methoprene: 1 mg/mL Fenoxycarb: 3 ng/L | Diet (dinotefuran, imidaclorpid, fenoxycarb) Topic application (methoprene) | L | Expression of the MyD88 gene | >expression of MyD88 gene in fat body (dinotefuran, methoprene, fenoxycarb) and in fat body and midgut (imidacloprid) | Not evaluated | [324] |
Lep | Bm | Pyriproxyfen | 1 × 10−4 mg/L | Diet | L | Autophagy and apoptosis in silk gland (PSG) | Shrinkage, vacuolization, and fragmentation in the posterior silk gland Induction and apoptosis in the PSG gland by autophagy-related genes Activation of juvenile hormone signalling pathway genes Inhibition of 20-hydroxyecdysone (20E) signalling pathway genes Upregulation of autophagy and apoptosis-related genes | Not evaluated | [330] |
Lep | Bm | Indoxacarb enantiomers (enantiopure R-indoxacarb, enantiopure S-indoxacarb and enriched S-indoxacarb) | enantiopure R-indoxacarb 2.164 µg/mL enantiopure S-indoxacarb 0.0392 µg/mL enriched S-indoxacarb 0.1378 µg/mL | Diet | L | Toxicity, bioaccumulation and biotransformation | No chiral transition from S-indoxacarb to R-indoxacarb Indoxacarb bioaccumulated in L >bioconversion in metabolite DCJW by S-indoxacarb S-indoxacarb >toxic than R-indoxacarb S-indoxacarb: <weight gain <Food intake | Not evaluated | [281] |
Lep | Bm | Dinotefuran | 0.4–4 mg/L | Diet | L | Autophagy and apoptosis | >reactive oxygen species (ROS) and malondialdehyde (MDA) in midgut and fat body (oxidative stress) Alteration of autophagy and apoptosis genes >expression levels of autophagy/apoptosis-related proteins | Not evaluated | [340] |
Lep | Bm | λ-cyhalothrin | 0.13, 0.21, 0.27, 0.45 mg/L | Diet | L | Sublethal toxicity and transcriptome-wide biological changes | Food refusal, sluggish movement, head tilted back, and vomiting of intestinal fluid <body size Slow recovery of size after stopping exposure <body weight P malformation Differential gene expression <oxidative phosphorylation pathway | Not evaluated | [282] |
Lep | Bm | Spinosad | 0.1, 0.05, and 0.025 ppm | Diet | L | Bioassay and expression alterations of acetyl cholinesterase enzyme gene | 0.1 ppm: >mortality Morphological symptoms (vomit, lying on the side, body shrinking >expression levels of Ace gene (>expression with >dose) | Not evaluated | [306] |
Lep | Bm | Nitenpyram | 4/6/8/10 mg/L 0.125/0.2/0.5/1/2/4 mg/L 5/10/15/20/25/30 mg/L Based on the formulation of reagents | Diet | L | Toxicity | Vomiting, anti-feeding, head shaking, body shrinking and softening and dysplasia Soft and black body Oxidative stress DNA damage Changes in gene patterns | Not evaluated | [307] |
Lep | Bm | Fenpropathrin (FPP) | 0.5, 1, 2, 4, 8 μg/mL 0.03, 0.06, 0.125, 0.25, 0.5 μg/mL | Diet | L | Metabolites | >dose, >mortality (100% with 8 µg/mL) 26 of 27 metabolites showed significant differences | Not evaluated | [284] |
Lep | Bm | Tolfenpyrad | 2.5 mg/L | Diet | L | Development and response mechanism | Mild symptoms of intoxication <body weight, <feeding, slow crawling, >development duration <cocooning rate, <eclosion rate, <pupation rate Differential gene expression related to xenobiotics degradation and metabolism, the immune system and the digestive system >abundance of Enterobacter and Staphylococcus <abundance of Tyzzerella and Methylobacterium-Methylorubrum | Not evaluated | [285] |
Lep | Bm | λ-cyhalothrin | 0.21 mg/L | Diet | L | JH degradation pathway | Longer developmental time >JH III titer in haemolymph Upregulation of JH interacting genes Downregulation of 13 JH degradation genes in the midgut Inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase | Not evaluated | [334] |
Lep | Bm | Broflanilide | 0.011 mg/L | Diet | E L P A O | Development and detoxification mechanism | Gastric juice spitting, anal prolapse, and convulsions Deformities in P and A <larval and pupal weight <cocooning rate, good cocoon rate, eclosion rate <fecundity, number of E, hatching rate Worse silk parameters >ROS and oxidative stress in the midgut >antioxidant enzymes activity Activation of innate immune signalling pathways and AMP genes <survival rate of O at all stages | Not evaluated | [283] |
Lep | Bm | Fenpropathrin (FPP) | 2.5 µg/mL | Diet | L | Toxicity of pesticides in nano/microplastics (NMPs) | <survival and growth, delayed development, <cocoon production (FPP + NMPs) Physical and oxidative damage to the midgut Altered gene expression related to juvenile hormone (JH) and silk protein synthesis Changes and <of beneficial bacteria in gut microbiome | Not evaluated | [286] |
Lep | Bm | Novaluron | 0.001 mg/L | Diet | L | Oviposition Expression of Ovarian Development Related Genes | <number of E <hatch rate <fertilization rate Slower development of germ cells <number of oocytes and oogonia <expression of Vg, Ovo gene, Otu gene, Sxl-L gene, EcR gene and JHBP2 gene | Not evaluated | [299] |
Lep | Bm | Phoxim | 0.013/0.032/0.079/0.316 µg/ml | Diet | L | Silk production Endocrine system | Silk gland damage >malondialdehyde, >SOD and POD activities <juvenile hormone <expression of fibroin synthesis gene | Not evaluated | [329] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanzot, A.; Copelotti, E.; Sezzi, E.; Mancini, S. Organic Edible Insects—What Would It Take? Animals 2025, 15, 2393. https://doi.org/10.3390/ani15162393
Zanzot A, Copelotti E, Sezzi E, Mancini S. Organic Edible Insects—What Would It Take? Animals. 2025; 15(16):2393. https://doi.org/10.3390/ani15162393
Chicago/Turabian StyleZanzot, Asia, Emma Copelotti, Erminia Sezzi, and Simone Mancini. 2025. "Organic Edible Insects—What Would It Take?" Animals 15, no. 16: 2393. https://doi.org/10.3390/ani15162393
APA StyleZanzot, A., Copelotti, E., Sezzi, E., & Mancini, S. (2025). Organic Edible Insects—What Would It Take? Animals, 15(16), 2393. https://doi.org/10.3390/ani15162393