Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = surface plasmon resonance (SPR) sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2463 KiB  
Article
Measurement of the Effective Refractive Index of Suspensions Containing 5 µm Diameter Spherical Polystyrene Microparticles by Surface Plasmon Resonance and Scattering
by Osvaldo Rodríguez-Quiroz, Donato Luna-Moreno, Araceli Sánchez-Álvarez, Gabriela Elizabeth Quintanilla-Villanueva, Oscar Javier Silva-Hernández, Melissa Marlene Rodríguez-Delgado and Juan Francisco Villarreal-Chiu
Chemosensors 2025, 13(7), 257; https://doi.org/10.3390/chemosensors13070257 - 15 Jul 2025
Viewed by 333
Abstract
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene [...] Read more.
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene particles (SPSP) in distilled water, based on the surface plasmon resonance (SPR) technique and Mie scattering theory. The reflectances of the samples are obtained with their resonance angles and depths that must be normalized and adjusted according to the reference of the air and the distilled water, to subsequently find their effective refraction index corresponding to the Mie scattering theory. The system has an optical sensor with a Kretschmann–Raether configuration, consisting of a semicircular prism, a thin gold film, and a glass cell for solution samples with different concentrations (0.00, 0.20, 0.05, 0.50, and 1.00%). The experimental result provided a good linear fit with an R2 = 0.9856 and a sensitivity of 7.2863 × 105 RIU/% (refractive index unit per percentage of fill fraction). The limits of detection (LOD) and limit of quantification (LOQ) were determined to be 0.001% and 0.0035%, respectively. The developed optomechatronic system and its applications based on the SPR and Scattering enabled the effective measurement of the refractive index and concentration of solutions containing 5 µm diameter SPSP in distilled water. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

34 pages, 6553 KiB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Viewed by 1036
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

14 pages, 3702 KiB  
Article
A High-Sensitivity U-Shaped Optical Fiber SPR Sensor Based on ITO Coating
by Chuhan Ye, Zhibo Li, Wenhao Kang and Lei Hou
Sensors 2025, 25(13), 3911; https://doi.org/10.3390/s25133911 - 23 Jun 2025
Viewed by 391
Abstract
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. [...] Read more.
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. The U-shaped structure optimizes evanescent wave–metal film interaction, further improving performance. In an external refractive index (RI) range of 1.334–1.374 RIU, the sensor achieves a sensitivity of 4333 nm/RIU (1.85× higher than traditional fiber sensors) and a figure of merit (FOM) of 21.7 RIU−1 (1.68× improvement). Repeatability tests show a low relative standard deviation (RSD) of 0.4236% for RI measurements, with a maximum error of 0.00018 RIU, confirming excellent stability. The ITO coating’s strong adhesion ensures long-term reliability. With its simple structure, ease of fabrication, and superior sensitivity/FOM, this SPR sensor is well-suited for high-precision biochemical detection in intelligent sensing systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

10 pages, 1560 KiB  
Article
The Synergistic Effect of Electric-Field and Adsorption Enhancement of Amino Acid Carbon Dots Significantly Improves the Detection Sensitivity of SPR Sensors
by Jing Ouyang, Xiantong Yu, Mengjie Wang, Longfei Wang, Zhao Li, Chaojun Shi, Hao Li, Yufeng Yuan, Jun Zhou and Min Chang
Sensors 2025, 25(13), 3903; https://doi.org/10.3390/s25133903 - 23 Jun 2025
Viewed by 349
Abstract
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this [...] Read more.
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this work developed an SPR sensor based on the synergistic effect of electric-field enhancement and adsorption enhancement by using amino acid-derived carbon dots (CDs). The results showed that the incorporation of amino acid CDs can generate a maximum electric-field enhancement of up to 6.44 × 105 V/m in the near-field region, which is 312% of that achieved by a bare gold film. And the adsorption kinetics results indicate that the active groups on the surface of amino acid CDs exhibit a notable adsorption enhancement effect for the target molecule (NaCl), with an adsorption capacity 335% higher than that of the bare gold film. This designed SPR sensor demonstrates a detection sensitivity of 167.28 a.u./RIU for NaCl solution, representing a 247.8% improvement compared to an SPR sensor without amino acid CDs under the same conditions. This SPR sensor shows promising potential for applications in biomedical and environmental detection fields. Full article
(This article belongs to the Special Issue Biomedical Applications of Optical Sensing Technology)
Show Figures

Figure 1

33 pages, 4158 KiB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 1 | Viewed by 699
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

33 pages, 571 KiB  
Review
Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis
by Stephen Rathinaraj Benjamin, Fábio de Lima, Paulo Iury Gomes Nunes, Rosa Fireman Dutra, Geanne Matos de Andrade and Reinaldo B. Oriá
Chemosensors 2025, 13(6), 220; https://doi.org/10.3390/chemosensors13060220 - 17 Jun 2025
Viewed by 788
Abstract
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic [...] Read more.
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic tools is further underscored by the potential of early intervention to improve treatment outcomes and slow disease progression. Recent advancements in biosensing technologies offer promising solutions for precise and non-invasive AD detection. Electrochemical and optical biosensors, in particular, provide high sensitivity, specificity, and real-time detection capabilities, making them valuable for identifying key biomarkers, including amyloid-β (Aβ) peptides and tau proteins. Additionally, integrating these biosensors with nanomaterials enhances their performance, stability, and detection limits, enabling improved diagnostic accuracy. Beyond nanomaterial-based sensors, emerging innovations in microfluidics, surface plasmon resonance (SPR), and artificial intelligence-assisted biosensing further contribute to the development of next-generation AD diagnostics. This review provides a comprehensive analysis of the latest advancements in biosensing technologies for AD, highlighting their mechanisms, advantages, and future perspectives in detecting biomarkers from biological fluids. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 13615 KiB  
Article
Real-Time SPR Biosensing to Detect and Characterize Fast Dissociation Rate Binding Interactions Missed by Endpoint Detection and Implications for Off-Target Toxicity Screening
by William Martelly, Rebecca L. Cook, Chidozie Victor Agu, Lydia R. Gushgari, Salvador Moreno, Sailaja Kesiraju, Mukilan Mohan and Bharath Takulapalli
Biomolecules 2025, 15(6), 882; https://doi.org/10.3390/biom15060882 - 17 Jun 2025
Viewed by 522
Abstract
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint [...] Read more.
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint approaches can suffer from false-negative results for biomolecular interactions with fast kinetics. By contrast, real-time detection techniques like surface plasmon resonance (SPR) monitor interactions as they form and disassemble, reducing the risk of false-negative results. By leveraging cell-free expressed proteins captured on either glass or SPR biosensors and using two different commercial antibodies with variable off-rates that both target HaloTag antigens as a model, we compare and contrast results from a fluorescence endpoint assay versus real-time sensor-integrated proteome on chip (SPOC®) SPR-based detection. In this study, we illustrate the limitations of the representative immunofluorescent endpoint assay when investigating transient interactions characterized by fast dissociation rates. We highlight the importance of choosing reagents well suited to the selected assay, as well as the importance of considering binding kinetics and protein ligand conformational states when interpreting results from binding assays, especially for applications as critical as the off-target screening of therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

25 pages, 8085 KiB  
Article
Finite Element Method-Based Modeling of a Novel Square Photonic Crystal Fiber Surface Plasmon Resonance Sensor with a Au–TiO2 Interface and the Relevance of Artificial Intelligence Techniques in Sensor Optimization
by Ayushman Ramola, Amit Kumar Shakya and Arik Bergman
Photonics 2025, 12(6), 565; https://doi.org/10.3390/photonics12060565 - 4 Jun 2025
Cited by 2 | Viewed by 651
Abstract
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to [...] Read more.
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to 1.37 and supports both x- polarized and y-polarized modes. It achieves a wavelength sensitivity of 15,800 nm/RIU and 14,300 nm/RIU, and amplitude sensitivities of 11,584 RIU−1 and 11,007 RIU−1, respectively, for the x-pol. and y-pol. The sensor also reports a resolution in the order of 10−6 RIU and a strong linearity of R2 ≈ 0.97 for both polarization modes, indicating its potential for precision detection in complex sensing environments. Beyond the sensor’s structural and performance innovations, this work also explores the future integration of artificial intelligence (AI) into PCF-SPR sensor design. AI techniques such as machine learning and deep learning offer new pathways for sensor calibration, material optimization, and real-time adaptability, significantly enhancing sensor performance and reliability. The convergence of AI with photonic sensing not only opens doors to smart, self-calibrating platforms but also establishes a foundation for next-generation sensors capable of operating in dynamic and remote applications. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

20 pages, 2102 KiB  
Article
The Detection of Different Cancer Types Using an Optimized MoS2-Based Surface Plasmon Resonance Multilayer System
by Talia Tene, Diego Fabián Vique López, Paulina Elizabeth Valverde Aguirre, Adriana Monserrath Monge Moreno and Cristian Vacacela Gomez
Sci 2025, 7(2), 76; https://doi.org/10.3390/sci7020076 - 3 Jun 2025
Cited by 1 | Viewed by 471
Abstract
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4 [...] Read more.
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4), and molybdenum disulfide (MoS2) for the optical detection of various cancer types. Four distinct sensor architectures (Sys1–Sys4) were optimized through the systematic tuning of Cu thickness, Si3N4 dielectric layer thickness, and the number of MoS2 monolayers to enhance sensitivity, angular shift, and spectral sharpness. The optimized systems were evaluated using refractive index data corresponding to six cancer types (skin, cervical, blood, adrenal, breast T1, and breast T2), with performance metrics including sensitivity, detection accuracy, quality factor, figure of merit, limit of detection, and comprehensive sensitivity factor. Among the configurations, Sys3 (BK7–Cu–Si3N4–MoS2) demonstrated the highest sensitivity, reaching 254.64 °/RIU for adrenal cancer, while maintaining a low detection limit and competitive figures of merit. Comparative analysis revealed that the MoS2-based designs, particularly Sys3, outperform conventional noble-metal architectures in terms of sensitivity while using earth-abundant, scalable materials. These results confirm the potential of Cu/Si3N4/MoS2-based SPR biosensors as practical and effective tools for label-free cancer diagnosis across multiple malignancy types. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

14 pages, 3264 KiB  
Article
Thickness and Wavelength Optimizations of a High-Performance SPR Sensor Employing a Silver Layer and Black Phosphorus in Principal Directions
by Jakub Chylek, Dalibor Ciprian and Petr Hlubina
Nanomaterials 2025, 15(11), 790; https://doi.org/10.3390/nano15110790 - 24 May 2025
Viewed by 591
Abstract
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an [...] Read more.
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU−1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1–351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU−1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

18 pages, 2419 KiB  
Article
Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film
by Kyeongmin Lee, Eun-Gyung Cho, Youngbo Choi, Yunsik Kim, Jin Hee Lee and Surin Hong
Pharmaceutics 2025, 17(5), 654; https://doi.org/10.3390/pharmaceutics17050654 - 16 May 2025
Viewed by 612
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy. Full article
(This article belongs to the Special Issue Extracellular Vesicle for Drug Delivery)
Show Figures

Figure 1

11 pages, 2174 KiB  
Article
Proof-of-Concept Study on Supercritical Fluid Chromatography Hyphenated with a Fast Optoelectronic Nose for Online Monitoring of Odorant Molecules
by Cyrille Santerre, David Touboul, Thierry Livache and Cyril Herrier
Processes 2025, 13(5), 1425; https://doi.org/10.3390/pr13051425 - 7 May 2025
Viewed by 578
Abstract
In this study, we explored the use of surface plasmon resonance (SPR) and Mach–Zehnder interferometry for detecting compounds in complex mixtures separated by supercritical fluid chromatography. Each molecule was individually injected and analyzed by supercritical fluid chromatography (SFC) in a 10% alcoholic solution. [...] Read more.
In this study, we explored the use of surface plasmon resonance (SPR) and Mach–Zehnder interferometry for detecting compounds in complex mixtures separated by supercritical fluid chromatography. Each molecule was individually injected and analyzed by supercritical fluid chromatography (SFC) in a 10% alcoholic solution. The fingerprints obtained via the sensors were then compared to the fingerprints of the same molecules present in a lemon essential oil (EO) at the same dilution. The results show a remarkable correlation between UV sensors and electronic noses (e-nose), enabling compound detection. The obtained signals are normalized and presented as radar charts to visualize the specific olfactory signatures of each molecule. The olfactory profiles of monoterpenes C10H16 such as α-pinene and limonene show notable differences, as do the C10H16O isomers (citral, geranial, and neral). Mach–Zehnder interferometry also allows for the discrimination of limonene enantiomers, a challenging task for current chromatography techniques. Statistical analysis confirms the ability of these technologies to differentiate compounds, including isomers. Even if UV detection is more sensitive than SPR, e-noses (SPR and Mach–Zehnder interferometers) offer the unique advantage of providing specific signatures for each compound, facilitating real-time identification. This study demonstrates the effectiveness of combining e-noses with SFC for rapid, non-destructive detection of volatile compounds. This concept can be extended to other terpenoids and volatile compounds, and hybridization with gas chromatography could be a future potential development. Full article
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Highly Sensitive and Tunable Graphene Metamaterial Perfect Absorber in the Near-Terahertz Band
by Siwen Zhang, Kele Chen, Tangyou Sun, Qianju Song, Zao Yi and Yougen Yi
Coatings 2025, 15(5), 512; https://doi.org/10.3390/coatings15050512 - 24 Apr 2025
Viewed by 679
Abstract
This paper presents a highly sensitive and tunable graphene-based metamaterial perfect absorber (MPA) operating in the near-terahertz band. The structure features a unique flower-like graphene pattern, consisting of a Au substrate, a SiO2 dielectric layer, and the patterned graphene. Multiple reflections of [...] Read more.
This paper presents a highly sensitive and tunable graphene-based metamaterial perfect absorber (MPA) operating in the near-terahertz band. The structure features a unique flower-like graphene pattern, consisting of a Au substrate, a SiO2 dielectric layer, and the patterned graphene. Multiple reflections of incident light between the gold and graphene layers increase the duration and intensity of the interaction, resulting in efficient absorption at specific frequencies. The design utilizes surface plasmon resonance (SPR) to achieve near-perfect absorption of 99.9947% and 99.6079% at 11.7475 THz and 15.8196 THz, respectively. By tuning the Fermi level and relaxation time of graphene, it is possible to precisely control the frequency and absorptivity of the absorption peak, thereby demonstrating the dynamic tunability of the absorber. The high symmetry and periodic arrangement of the structure ensures insensitivity to the polarization angle of the incident light in the range of 0° to 90°, making it extremely valuable in practical applications. In addition, the absorber exhibits very high sensitivity to changes in ambient refractive index with a maximum sensitivity of 3.205 THz/RIU, a quality factor (FOM) of 11.3011 RIU−1, and a Q-Factor of 48.61. It has broad application prospects in the fields of sensors, optoelectronic devices, and terahertz imaging. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

17 pages, 4386 KiB  
Article
Advanced SPR-Based Biosensors for Potential Use in Cancer Detection: A Theoretical Approach
by Talia Tene, Fabian Arias Arias, Darío Fernando Guamán-Lozada, María Augusta Guadalupe Alcoser, Lala Gahramanli, Cristian Vacacela Gomez and Stefano Bellucci
Sensors 2025, 25(9), 2685; https://doi.org/10.3390/s25092685 - 24 Apr 2025
Cited by 2 | Viewed by 621
Abstract
This study presents a numerical investigation of surface plasmon resonance (SPR) sensors based on multilayer configurations incorporating BK7, silver, silicon nitride (Si3N4), and black phosphorus (BP). Using the transfer matrix method, the optical performance of four architectures was evaluated [...] Read more.
This study presents a numerical investigation of surface plasmon resonance (SPR) sensors based on multilayer configurations incorporating BK7, silver, silicon nitride (Si3N4), and black phosphorus (BP). Using the transfer matrix method, the optical performance of four architectures was evaluated under refractive index perturbations consistent with values reported in prior theoretical and experimental studies. The sensor response was characterized through metrics such as angular sensitivity, resonance shift, full width at half maximum, attenuation, and derived figures including detection accuracy and limit of detection. Parametric optimization was performed for the thickness of each functional layer to enhance sensing performance. Among all configurations, those incorporating both Si3N4 and BP demonstrated the highest angular sensitivity, reaching up to 394.46°/RIU. These enhancements were accompanied by increased attenuation and spectral broadening, revealing trade-offs in sensor design. The results, based entirely on numerical modeling, provide a comparative framework for guiding SPR sensor optimization under idealized optical conditions. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 2342 KiB  
Systematic Review
Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis
by Elba Mauriz
Biosensors 2025, 15(4), 245; https://doi.org/10.3390/bios15040245 - 12 Apr 2025
Cited by 1 | Viewed by 730
Abstract
Surface plasmon resonance (SPR) aptasensors benefit from the SPR phenomenon in measuring aptamer interactions with specific targets. Integrating aptamers into SPR detection enables extensive applications in clinical analysis. Specifically, virus aptasensing platforms are highly desirable to face the ongoing challenges of virus outbreaks. [...] Read more.
Surface plasmon resonance (SPR) aptasensors benefit from the SPR phenomenon in measuring aptamer interactions with specific targets. Integrating aptamers into SPR detection enables extensive applications in clinical analysis. Specifically, virus aptasensing platforms are highly desirable to face the ongoing challenges of virus outbreaks. This study systematically reviews the latest advances in SPR aptasensors for virus detection according to PRISMA guidelines. The literature search recovered 322 original articles from the Scopus (n = 152), Web of Science (n = 83), and PubMed (n = 87) databases. The selected articles (29) deal with the binding events between the aptamers immobilized on the sensor surface and their target molecule: virus proteins or intact viruses according to different SPR configurations. The methodological quality of each study was assessed using QUADAS-2, and a meta-analysis was conducted with the CochReview Manager (RevMan) Edition7.12.0 Data were analyzed, focusing on the types of viruses, the virus target, and the reference method. The pooled sensitivity was 1.89 (95%, CI 1.29, 2.78, I2 = 49%). The analysis of different types of plasmonic sensors showed the best diagnostic results with the least heterogeneity for SPR conventional configurations: 3.23 (95% CI [1.80, 5.79]; I2 = 0%, p = 0.65). These findings show that even though plasmonic biosensors effectively analyze viruses through aptamer approaches, there are still big challenges to using them regularly for diagnostics. Practical considerations for measuring label-free interactions revealed functional capabilities, technological boundaries, and future outlooks of SPR virus aptasensing. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

Back to TopTop