Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Information Sources
2.2. Eligibility Criteria and Selection Process
2.3. Study Risk of Bias Assessment
2.4. Data Collection Process
2.5. Statistical Analysis
3. Results
3.1. Retrieved Studies
3.2. Quality Assessment
3.3. Model of Virus Target
3.4. Type and Origin of Aptamers
3.5. Sensing Detection Schemes and Assay Formats
3.6. Analytical Outcomes and Reference Methods
3.7. Sensitivity and Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Shang, M.; Guo, J.; Guo, J. Point-of-Care Testing of Infectious Diseases: Recent Advances. Sens. Diagn. 2023, 2, 1123–1144. [Google Scholar] [CrossRef]
- Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (accessed on 8 March 2025).
- CDC. Guidance for SARS-CoV-2 Rapid Testing in Point-of-Care Settings. Available online: https://www.cdc.gov/covid/php/lab/point-of-care-testing.html (accessed on 8 March 2025).
- Deeks, J.J.; Ashby, D.; Takwoingi, Y.; Perera, R.; Evans, S.J.W.; Bird, S.M. Lessons to Be Learned from Test Evaluations during the COVID-19 Pandemic: RSS Working Group’s Report on Diagnostic Tests. J. R. Stat. Soc. Ser. A Stat. Soc. 2024, 187, 659–709. [Google Scholar] [CrossRef]
- Chen, X.-F.; Zhao, X.; Yang, Z. Aptasensors for the Detection of Infectious Pathogens: Design Strategies and Point-of-Care Testing. Microchim. Acta 2022, 189, 443. [Google Scholar] [CrossRef]
- Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-Based Rapid Diagnosis for Point-of-Care Application. Microfluid. Nanofluid. 2023, 27, 15. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.-M.; Hashim, U. Aptamer-Based “Point-of-Care Testing”. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Akgonullu, S.; Ozgur, E.; Denizli, A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. Micromachines 2022, 13, 1441. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; Maleki, A.; Hejazi, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances on Nanomaterial Based Electrochemical and Optical Aptasensors for Detection of Cancer Biomarkers. TrAC Trends Anal. Chem. 2018, 100, 103–115. [Google Scholar] [CrossRef]
- Saberian-Borujeni, M.; Johari-Ahar, M.; Hamzeiy, H.; Barar, J.; Omidi, Y. Nanoscaled Aptasensors for Multi-Analyte Sensing. BioImpacts 2014, 4, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lan, J.; Liu, Y.; Li, L.; Yan, L.; Xia, Y.; Wu, F.; Li, C.; Li, S.; Chen, J. A Paper-Supported Aptasensor Based on Upconversion Luminescence Resonance Energy Transfer for the Accessible Determination of Exosomes. Biosens. Bioelectron. 2018, 102, 582–588. [Google Scholar] [CrossRef]
- Citartan, M.; Tang, T.-H. Recent Developments of Aptasensors Expedient for Point-of-Care (POC) Diagnostics. Talanta 2019, 199, 556–566. [Google Scholar] [CrossRef]
- Zahra, Q.U.A.; Khan, Q.A.; Luo, Z. Advances in Optical Aptasensors for Early Detection and Diagnosis of Various Cancer Types. Front. Oncol. 2021, 11, 632165. [Google Scholar] [CrossRef]
- Ghorbani, F.; Abbaszadeh, H.; Dolatabadi, J.E.N.; Aghebati-Maleki, L.; Yousefi, M. Application of Various Optical and Electrochemical Aptasensors for Detection of Human Prostate Specific Antigen: A Review. Biosens. Bioelectron. 2019, 142, 111484. [Google Scholar] [CrossRef]
- Song, M.; Khan, I.M.; Wang, Z. Research Progress of Optical Aptasensors Based on AuNPs in Food Safety. Food Anal. Methods 2021, 14, 2136–2151. [Google Scholar] [CrossRef]
- Baldrich, E. Aptamers: Versatile Tools for Reagentless Aptasensing. In Recognition Receptors in Biosensors; Zourob, M., Ed.; Springer: New York, NY, USA, 2010; pp. 675–722. ISBN 978-1-4419-0918-3. [Google Scholar]
- Aparna, G.M.; Tetala, K.K.R. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023, 13, 602. [Google Scholar] [CrossRef]
- Balogh, Z.; Lautner, G.; Bardóczy, V.; Komorowska, B.; Gyurcsányi, R.E.; Mészáros, T. Selection and Versatile Application of Virus-Specific Aptamers. FASEB J. 2010, 24, 4187–4195. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Das, S.; Gupta, A.; Xiong, Y.; T-V, V.; Kizer, M.E.; Duan, J.; Chandrasekaran, A.R.; Wang, X. Aptamers for Viral Detection and Inhibition. ACS Infect. Dis. 2022, 8, 667–692. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bhagwat, S.R.; Sharma, T.K.; Kumar, A. Analytical Techniques for Characterization of Biological Molecules – Proteins and Aptamers/Oligonucleotides. Bioanalysis 2019, 11, 103–117. [Google Scholar] [CrossRef]
- Xiao, C.-D.; Zhong, M.-Q.; Gao, Y.; Yang, Z.-L.; Jia, M.-H.; Hu, X.-H.; Xu, Y.; Shen, X.-C. A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection. Int. J. Mol. Sci. 2023, 24, 14344. [Google Scholar] [CrossRef]
- Sypabekova, M.; Bekmurzayeva, A.; Wang, R.; Li, Y.; Nogues, C.; Kanayeva, D. Selection, Characterization, and Application of DNA Aptamers for Detection of Mycobacterium Tuberculosis Secreted Protein MPT64. Tuberculosis 2017, 104, 70–78. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, Y.E.; Lee, J.E.; Lee, H.J. A Surface Plasmon Resonance Biosensor in Conjunction with a DNA Aptamer-Antibody Bioreceptor Pair for Heterogeneous Nuclear Ribonucleoprotein A1 Concentrations in Colorectal Cancer Plasma Solutions. Biosens. Bioelectron. 2020, 154, 112065. [Google Scholar] [CrossRef]
- Khan, N.; Song, E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef]
- Park, K.S.; Park, T.-I.; Lee, J.E.; Hwang, S.-Y.; Choi, A.; Pack, S.P. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. Biosensors 2024, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Saito, S. SELEX-Based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. Anal. Sci. 2021, 37, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lou, B.; Liu, Y.; Shi, M.; Chen, J.; Li, K.; Tan, Y.; Chen, L.; Wu, Y.; Wang, T.; Liu, X.; et al. Aptamer-Based Biosensors for Virus Protein Detection. TrAC Trends Anal. Chem. 2022, 157, 116738. [Google Scholar] [CrossRef]
- Zhdanov, G.; Gambaryan, A.; Akhmetova, A.; Yaminsky, I.; Kukushkin, V.; Zavyalova, E. Nanoisland SERS-Substrates for Specific Detection and Quantification of Influenza A Virus. Biosensors 2024, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, T.; Liu, Y.; Zhou, L.; Li, Y.; Luo, Y.; Xu, Y.; Zhao, L.; Song, W.; Jiang, D.; et al. Engineering Assembly of Plasmonic Virus-Like Gold SERS Nanoprobe Guided by Intelligent Dual-Machine Nanodevice for High-Performance Analysis of Tetracycline. Small 2024, 20, e2309502. [Google Scholar] [CrossRef]
- Bai, H.; Wang, R.; Hargis, B.; Lu, H.; Li, Y. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors 2012, 12, 12506–12518. [Google Scholar] [CrossRef]
- Lautner, G.; Balogh, Z.; Gyurkovics, A.; Gyurcsányi, R.E.; Mészáros, T. Homogeneous Assay for Evaluation of Aptamer-Protein Interaction. Analyst 2012, 137, 3929–3931. [Google Scholar] [CrossRef]
- Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S. A Fluorescent Aptasensor for H5N1 Influenza Virus Detection Based-on the Core-Shell Nanoparticles Metal-Enhanced Fluorescence (MEF). Biosens. Bioelectron. 2015, 66, 527–532. [Google Scholar] [CrossRef]
- Li, X.; Yin, C.; Wu, Y.; Zhang, Z.; Jiang, D.; Xiao, D.; Fang, X.; Zhou, C. Plasmonic Nanoplatform for Point-of-Care Testing Trace HCV Core Protein. Biosens. Bioelectron. 2020, 147, 111488. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface Plasmon Resonance Sensing of Nucleic Acids: A Review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Priego, P.; Mauriz, E.; Giarola, J.F.; Lechuga, L.M. Overcoming Challenges in Plasmonic Biosensors Deployment for Clinical and Biomedical Applications: A Systematic Review and Meta-Analysis. Sens. Bio-Sens. Res. 2024, 46, 100717. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Chang, C.-C. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors 2021, 11, 233. [Google Scholar] [CrossRef]
- Lee, J.; Takemura, K.; Park, E.Y. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection. Sensors 2017, 17, 2332. [Google Scholar] [CrossRef] [PubMed]
- PRISMA Statement. Available online: https://www.prisma-statement.org (accessed on 18 December 2024).
- Chapter PDFs of the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy (v2.0). Available online: https://training.cochrane.org/handbook-diagnostic-test-accuracy/current (accessed on 6 February 2025).
- Maddocks, G.M.; Peterson, K.L.; Downey, M.L.; Lee, B.H.; Lavoie, J.H.; Menegatti, S.; Daniele, M. Aptasensor for Detection of Influenza-A in Human Saliva. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1262–1265. [Google Scholar] [CrossRef]
- Novoseltseva, A.A.; Ivanov, N.M.; Novikov, R.A.; Tkachev, Y.V.; Bunin, D.A.; Gambaryan, A.S.; Tashlitsky, V.N.; Arutyunyan, A.M.; Kopylov, A.M.; Zavyalova, E.G. Structural and Functional Aspects of G-Quadruplex Aptamers Which Bind a Broad Range of Influenza a Viruses. Biomolecules 2020, 10, 119. [Google Scholar] [CrossRef]
- Leblebici, P.; Leirs, K.; Spasic, D.; Lammertyn, J. Encoded Particle Microfluidic Platform for Rapid Multiplexed Screening and Characterization of Aptamers against Influenza A Nucleoprotein. Anal. Chim. Acta 2019, 1053, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, G.H.; Kim, S.M.; Hong, K.; Kim, Y.; Park, C.; Sohn, H.; Min, J. Label-Free Localized Surface Plasmon Resonance Biosensor Composed of Multi-Functional DNA 3 Way Junction on Hollow Au Spike-like Nanoparticles (HAuSN) for Avian Influenza Virus Detection. Colloids Surf. B Biointerfaces 2019, 182, 110341. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.; Lee, B.H.; Song, C.-S.; Gu, M.B. Specific Detection of Avian Influenza H5N2 Whole Virus Particles on Lateral Flow Strips Using a Pair of Sandwich-Type Aptamers. Biosens. Bioelectron. 2019, 134, 123–129. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Seo, H.B.; Kim, B.C.; Kim, S.K.; Song, C.-S.; Gu, M.B. Highly Sensitive Sandwich-Type SPR Based Detection of Whole H5Nx Viruses Using a Pair of Aptamers. Biosens. Bioelectron. 2016, 86, 293–300. [Google Scholar] [CrossRef]
- Woo, H.-M.; Lee, J.-M.; Yim, S.; Jeong, Y.-J. Isolation of Single-Stranded DNA Aptamers That Distinguish Influenza Virus Hemagglutinin Subtype H1 from H5. PLoS ONE 2015, 10, e0125060. [Google Scholar] [CrossRef]
- Suenaga, E.; Kumar, P.K.R. An Aptamer That Binds Efficiently to the Hemagglutinins of Highly Pathogenic Avian Influenza Viruses (H5N1 and H7N7) and Inhibits Hemagglutinin-Glycan Interactions. Acta Biomater. 2014, 10, 1314–1323. [Google Scholar] [CrossRef]
- Shiratori, I.; Akitomi, J.; Boltz, D.A.; Horii, K.; Furuichi, M.; Waga, I. Selection of DNA Aptamers That Bind to Influenza A Viruses with High Affinity and Broad Subtype Specificity. Biochem. Biophys. Res. Commun. 2014, 443, 37–41. [Google Scholar] [CrossRef]
- Chang, T.-C.; Sun, A.Y.; Huang, Y.-C.; Wang, C.-H.; Wang, S.-C.; Chau, L.-K. Integration of Power-Free and Self-Contained Microfluidic Chip with Fiber Optic Particle Plasmon Resonance Aptasensor for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein. Biosensors 2022, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Kiruba Daniel, S.C.G.; Pai, P.S.; Sabbella, H.R.; Singh, K.; Rangaiah, A.; Gowdara Basawarajappa, S.; Thakur, C.S. Handheld, Low-Cost, Aptamer-Based Sensing Device for Rapid SARS-CoV-2 RNA Detection Using Novelly Synthesized Gold Nanoparticles. IEEE Sens. J. 2022, 22, 18437–18445. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Cheng, Y.; He, L.; Feng, Y.; Tian, Y.; Chen, Z.; Feng, Y.; Li, Y.; Xie, W.; Huang, W.; et al. T-Shaped Aptamer-Based LSPR Biosensor Using Ω-Shaped Fiber Optic for Rapid Detection of SARS-CoV-2. Anal. Chem. 2023, 95, 1599–1607. [Google Scholar] [CrossRef]
- Chen, R.; Kan, L.; Duan, F.; He, L.; Wang, M.; Cui, J.; Zhang, Z.; Zhang, Z. Surface Plasmon Resonance Aptasensor Based on Niobium Carbide MXene Quantum Dots for Nucleocapsid of SARS-CoV-2 Detection. Microchim. Acta 2021, 188, 316. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Giroux, E.; Jovic, M.; Martic-Milne, S. Localized Surface Plasmon Resonance Aptasensor for Selective Detection of SARS-CoV-2 S1 Protein. Analyst 2021, 146, 7207–7217. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Lunelli, L.; Vanzetti, L.; Carafa, V.; Altucci, L.; Zeni, L. SARS-CoV-2 Spike Protein Detection through a Plasmonic D-Shaped Plastic Optical Fiber Aptasensor. Talanta 2021, 233, 122532. [Google Scholar] [CrossRef]
- Hao, X.; St-Pierre, J.-P.; Zou, S.; Cao, X. Localized Surface Plasmon Resonance Biosensor Chip Surface Modification and Signal Amplifications toward Rapid and Sensitive Detection of COVID-19 Infections. Biosens. Bioelectron. 2023, 236, 115421. [Google Scholar] [CrossRef]
- Sun, R.; Zhou, Y.; Fang, Y.; Qin, Y.; Zheng, Y.; Jiang, L. DNA Aptamer-Linked Sandwich Structure Enhanced SPRi Sensor for Rapid, Sensitive, and Quantitative Detection of SARS-CoV-2 Spike Protein. Anal. Bioanal. Chem. 2024, 416, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Li, Q.; Han, C.; Sun, D.; Zhang, Z.; Fang, X.; Guo, Y.; Ge, F.; Ding, W.; Luo, Z.; et al. Customization of Aptamer to Develop CRISPR/Cas12a-Derived Ultrasensitive Biosensor. Talanta 2023, 256, 124312. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, C.; Ye, G.; Shen, C.; Shi, H.; Zhong, L.; Tian, Y.; Zhao, M.; Wu, P.; Hussain, A.; et al. Aptamers Targeting SARS-CoV-2 Nucleocapsid Protein Exhibit Potential Anti Pan-Coronavirus Activity. Signal Transduct. Target. Ther. 2024, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Ratanabunyong, S.; Aeksiri, N.; Yanaka, S.; Yagi-Utsumi, M.; Kato, K.; Choowongkomon, K.; Hannongbua, S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. ChemBioChem 2021, 22, 915–923. [Google Scholar] [CrossRef]
- Ratanabunyong, S.; Seetaha, S.; Hannongbua, S.; Yanaka, S.; Yagi-Utsumi, M.; Kato, K.; Paemanee, A.; Choowongkomon, K. Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. Molecules 2022, 27, 285. [Google Scholar] [CrossRef]
- Ratanabunyong, S.; Yagi-Utsumi, M.; Yanaka, S.; Kato, K.; Choowongkomon, K.; Hannongbua, S. Investigation of Rt1t49 Aptamer Binding to Human Immunodeficiency Virus 1 Reverse Transcriptase. J. Curr. Sci. Technol. 2021, 11, 51–59. [Google Scholar]
- Caglayan, M.O.; Üstündağ, Z. Spectrophotometric Ellipsometry Based Tat-Protein RNA-Aptasensor for HIV-1 Diagnosis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117748. [Google Scholar] [CrossRef]
- Romanucci, V.; Gaglione, M.; Messere, A.; Potenza, N.; Zarrelli, A.; Noppen, S.; Liekens, S.; Balzarini, J.; Di Fabio, G. Hairpin Oligonucleotides Forming G-Quadruplexes: New Aptamers with Anti-HIV Activity. Eur. J. Med. Chem. 2015, 89, 51–58. [Google Scholar] [CrossRef]
- Jalali, T.; Salehi-Vaziri, M.; Pouriayevali, M.H.; Gargari, S.L.M. Aptamer Based Diagnosis of Crimean-Congo Hemorrhagic Fever from Clinical Specimens. Sci. Rep. 2021, 11, 12639. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, H.J. An Aptamer-Aptamer Sandwich Assay with Nanorod-Enhanced Surface Plasmon Resonance for Attomolar Concentration of Norovirus Capsid Protein. Sens. Actuators B Chem. 2018, 273, 1029–1036. [Google Scholar] [CrossRef]
- Park, J.-W.; Jin Lee, S.; Choi, E.-J.; Kim, J.; Song, J.-Y.; Bock Gu, M. An Ultra-Sensitive Detection of a Whole Virus Using Dual Aptamers Developed by Immobilization-Free Screening. Biosens. Bioelectron. 2014, 51, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.R.; Crulhas, B.P.; Magro, M.; Vianello, F.; Pedrosa, V.A. A New Immunoassay of Hybrid Nanomater Conjugated to Aptamers for the Detection of Dengue Virus. Talanta 2019, 197, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Liu, Q.; Luo, X.; Zhao, J.; Zhang, Z.; He, J.; Ge, F.; Ding, W.; Luo, Z.; Jia, C.; et al. Development of a CRISPR/Cas12a-Mediated Aptasensor for Mpox Virus Antigen Detection. Biosens. Bioelectron. 2024, 257, 116313. [Google Scholar] [CrossRef] [PubMed]
Type of Virus | Target Virus | Aptamer Design | Assay Format | Instrument Configuration/Reference Method | Kinetics/Specificity | Limit of Detection (LOD)/Biological Sample |
---|---|---|---|---|---|---|
Influenza | Hemagglutinin (HA) protein | DNA aptamer derivatized with a thiol (SH-C6-) and a methylene blue modification | Affinity binding and detection | SPR/square wave voltammetry | KD = 1.79 × 10−8 M | LOD = 10 nM HA/artificial saliva [41] |
Recombinant HAs: H1, H3, H5, H7, and H9 | DNA aptamers and biotinylated derivatives G-Quadruplex | Affinity-binding HA immobilization | SPR/ELAA (with viral particles) | KD = 78 nM | N/a [42] | |
Influenza A nucleoprotein (infA NP) | DNA aptamers (magnetic SELEX) | Affinity binding The aptamer is immobilized using the biotin–streptavidin method | SPR as a reference method | KD = 17.7 ± 3.5 nM/BSA; influenza B nucleoprotein | N/a [43] | |
HA protein | Multi-functional DNA three-way junction (3WJ) tagged to an HA protein recognition aptamer | Detection: DNA3WJ aptamer immobilization | LSPR (enhancement effect by fluorescence dye) | N/a/ S protein from MERS-CoV coat protein) | LOD = 1 pM–100 nM /10-fold diluted chicken serum [44] | |
Whole avian influenza virus particles of H5N2 | GO-SELEX: aptamers, different target sites | Screening a cognate pair of aptamers: aptamer immobilization using the streptavidin–biotin complex method | SPR/circular dichroism (CD) spectrum analysis confocal laser scanning microscopy | N/a/ other avian influenza virus, infectious bronchitis virus, and Newcastle disease virus | LOD = 2.09 × 105 EID50/mL in the duck’s feces (lateral flow assay strips) [45] | |
H5Nx whole viruses | DNA aptamers. Multi-GO-SELEX method | Sandwich-based assay: Primary aptamer streptavidin-coated magnetic bead and biotin-labeled secondary aptamer on streptavidin-coated quantum dot AuNP | SPR/circular dichroism studies | N/a/ IF1, IF4, IF10, and IF21 | 200 EID50/mL/sample buffer [46] | |
HA subtype 1 | SELEX DNA aptamers HA1 subunit of subtype H1 (H1-HA1) | Biotinylated ssDNA aptamers immobilized on NeutrAvidin | SPR/ELISA | KD = 64.76 ± 18.24 nM/H5-HA1 and GST proteins | N/a [47] | |
Hemagglutinins (HAs): HPAI H5N1, A/H5N1/Indonesia/05/2005), and H7N7 (A/H7N7/Netherlands/219/2003 | RNA library in RNA binding buffer | Competitive assay Immobilization of biotinylated tetravalent glycan with different concentrations of aptamer | SPR | KD = 4–14 nM | N/a [48] | |
H5N1, H1N1, and H3N2 subtypes of influenza A virus (subtypes of influenza A viral particles antigenically distinct) | SELEX DNA aptamers | Aptamer immobilization onto the sensor chip via a 50-biotinylated oligo | SPR/ELAA | KD = 1.53–2.47 × 10−8 M/subtype viruses | ELAA [49] | |
SARS-CoV2 | Nucleocapsid protein (N-protein) | DNA aptamer SELEX: NP-A48 NP-A58; NP-A61; and GNP-A15 | Aptamer immobilization: ssDNA aptamer with terminal amine tagged to AuNP | fiber optic particle plasmon resonance (FOPPR)/SPR | KD = 0.49–4.38 nM (SPR) KD = 2.63–13.70 nM (FOPPR)/S protein; BSA | LOD = 2.8 nM (FOPPR) spiked negative samples (nasopharyngeal swabs) [50] |
SARS-CoV2 RNA colorimetric changes in the SPR peak in COVID-19 | (DNA)-based aptamer | Aptamer-functionalized AuNP mixture incubated with viral RNA extracts | SPR-colorimetric-based assay | N/a/ dengue virus | SARS-CoV2 N gene Ct = 25/16 clinical samples (thirteen positive and three negative samples) [51] | |
Nucleocapsid protein | T-apt@AuNPs, polyA-apt@AuNPs, and thiol-apt@AuNPs, T-shaped aptamer DNA1 containing an Np-A48 aptamer | Sandwich assay T-shaped aptamer (apt-Ag@AuNPs) for the amplification | Ω-shaped fiber optic LSPR | KD = 0.024 nM, (T-apt@AuNPs)/CPN, flu A, Flu B, P1, IgG, PSA, and BSA | LOD = 9.2–28 pM/39 healthy volunteers and 39 COVID-19-infected patients and cold-chain foods [52] | |
N-gene of SARS-CoV-2 | SARS-CoV-2-N58 aptamer (purchased) | Thiol-modified niobium carbide MXene quantum dots anchoring N-gene-targeted aptamer | SPR | N/a/ S2-RBD protein; BSA | LOD = 4.9 pg mL−1/human serum, seawater, and seafood [53] | |
S1 spike protein | DNA aptamer (purchased) | Immobilization of biotinylated aptamers | LSPR instrument equipped with a two-channel system | N/a | LOD = 0.26 nM, artificial saliva, and serum albumin [54] | |
Spike glycoprotein | DNA aptamer specific for the recognition of the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein | Aptameric sequence immobilized on a short PEG interface | SPR D-shaped plastic optical fiber (POFs)/AFM | KD = 5.8 nM/BSA, AH1N1 hemagglutinin protein MERS spike protein | LOD = 37 nM/human serum (1:50 v/v) [55] | |
SARS-CoV-2 SRBD or SARS-CoV-2 pseudo viral particles | DNA capturing aptamer/amino-capped aptamers | Poly (amidoamine) dendrimers conjugated to aptamer-modified chips | LSPR (nanoislands) | KD = 5.8 nM (previously characterized)/SARS-CoV SRBD and Middle East Respiratory Syndrome (MERS)-CoV SRBD | LOD = 21.9 pM [56] | |
S protein | DNA aptamer | DNA aptamer immobilized on gold nanoparticle-linked sandwich structure | SPRi | KD = 0.82 (±0.03) nM/ 1.27 (±0.4) nM/(MERS-S), lysozyme (Lys), (BSA), and human serum albumin (HAS | LOD = 0.32 nM [57] | |
COVID-19 S1 protein | Magnetic bead-assisted SELEX to discover ssDNA aptamers (five sequences) | Immobilized COVID-19 S1/binding kinetics for the S1 from wild immobilized Apt-S1-79s | SPR /CRISPR detection | KD = 0.87–35.95 nM | N/a [58] | |
Nucleocapsid protein | Detection of library affinity using SPR | Immobilization of the target protein binding between aptamers and NPs | SPR BIacore/Capillary electrophoresis | KD = 2.18 × 10−4–4.21 × 10−11 M/SARS; MERS | N/a [59] | |
HIV | Anti-HIV-1 reverse transcriptase | DNA aptamers were isolated as anti-HIV-1 RT inhibitors; DNA aptamers were screened against WT HIV-1 RT in an AuNP-based colorimetric assay | Affinities of the aptamer complexes WT HIV-1 RT: DNA aptamer as analyte | SPR/isothermal titration calorimetry | KD = 2.87 × 10−6/7.51 × 10−8 M | Cytotoxicity testing of DNA aptamer on HEK293T cells [60] |
K103N/Y181C double mutant HIV-1 reverse transcriptase | DNA aptamers | The binding affinity of HIV-1 RT–aptamer complexes | SPR/NMR | KD = 1.56 × 10−6–1.46 × 10−7 M | KY44 could inhibit pseudo-HIV particle infection in HEK293 cells [61] | |
HIV-1 RTs-RT1t49 aptamer complex | RT1t49 DNA aptamers | RT1t49 aptamer as analyte | SPR/isothermal titration calorimetry | KD values of 52.8 ± 0.22 and 65.8 ± 0.52 nM | N/a [62] | |
HIV-TAT(trans-activator of transcription) | RNA aptamer (already reported) | Anti-Tat aptamer immobilization | (SPReTIRE)/ellipsometry | N/a/bovine serum albumin (BSA) | LOD = 1 pM (about 1.5 pg/mL)/1.8 nM ellipsometry [63] | |
HIV-1 gp120 and HIV-1 gp417 | Bimolecular G-quadruplex aptamers based on Hotoda’s sequence | Binding capacity to HIV-1 gp120 and HIV-1 gp417 inhibition of HIV-1 infection in CEM cell cultures: gp120 and recombinant HIV-1(HxB2) gp417 immobilization/aptamer as analyte | SPR | The KD values could not be accurately determined | Stability of G-quadruplexes in human serum [64] | |
Crimean Fever | Nucleoprotein (NP) CCHF virus | SELEX ss DNA aptamers use an 80-nucleotide aptamer library | Biotin immobilization of NP on a pre-coated streptavidin chip | SPR | KD = 1.2 × 10−7–6.62 × 10−8 M/Dengue and Chikungunya viruses. | ELASA on 77 serum samples, including 49 positive 2.8 × 105 copies/μL [65] |
Norovirus | Norovirus capsid protein | Four different DNA aptamers (commercial) | Aptamer conjugated to gold nanorods immobilized onto a chip surface | SPR/ELISA | N/a (previous studies)/nonspecific control | LOD = 70 aM (buffer)/undiluted human serum samples (five positive and one negative) [66] |
Diarrhea virus | Whole virus | SELEX ssDNA aptamer (cloning and sequencing steps) | Aptamer-based sandwich assay: aptamer pairs conjugated with gold nanoparticles | SPR/PCR | KD = 4.08 × 104,TCID50/mL | Sandwich with AuNP (without AuNP: 500–10,000 TCID50/mL) [67] |
Dengue virus | Whole virus | Hairpin structure DNA aptamer (purchased) modified with SH group for binding with AuNPs | SAMN@MPA with AuNPs conjugated with immobilized aptamers | SPR/UV–visible spectrum | N/a/Zika and yellow fever viruses | Not measured, graphic for detection of dengue virus (real samples) [68] |
Mpox virus | A29 protein | DNA library of the A29 protein by magnetic bead-assisted SELEX. | Immobilized A39 protein and sandwich-type binding between the aptamers and the A29 | SPR/CRISPR | KD = 6.8 pM and 56.4 pM/SARS-CoV-2 nucleocapsid protein (N protein) and S1-RBD, human serum albumin (HSA), and cardiac troponin I | LOD = 0.28 ng mL−1/human serum and saliva [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauriz, E. Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis. Biosensors 2025, 15, 245. https://doi.org/10.3390/bios15040245
Mauriz E. Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis. Biosensors. 2025; 15(4):245. https://doi.org/10.3390/bios15040245
Chicago/Turabian StyleMauriz, Elba. 2025. "Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis" Biosensors 15, no. 4: 245. https://doi.org/10.3390/bios15040245
APA StyleMauriz, E. (2025). Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis. Biosensors, 15(4), 245. https://doi.org/10.3390/bios15040245