Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,105)

Search Parameters:
Keywords = surface plasmon resonance (SPR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3392 KiB  
Article
Denoising Algorithm for High-Resolution and Large-Range Phase-Sensitive SPR Imaging Based on PFA
by Zihang Pu, Xuelin Wang, Wanwan Chen, Zhexian Liu and Peng Wang
Sensors 2025, 25(15), 4641; https://doi.org/10.3390/s25154641 - 26 Jul 2025
Viewed by 306
Abstract
Phase-sensitive surface plasmon resonance (SPR) detection is widely employed in molecular dynamics studies and SPR imaging owing to its real-time capability, high sensitivity, and compatibility with imaging systems. A key research objective is to achieve higher measurement resolution of refractive index under optimal [...] Read more.
Phase-sensitive surface plasmon resonance (SPR) detection is widely employed in molecular dynamics studies and SPR imaging owing to its real-time capability, high sensitivity, and compatibility with imaging systems. A key research objective is to achieve higher measurement resolution of refractive index under optimal dynamic range conditions. We present an enhanced SPR phase imaging system combining a quad-polarization filter array for phase differential detection with a novel polarization pair, block matching, and 4D filtering (PPBM4D) algorithm to extend the dynamic range and enhance resolution. By extending the BM3D framework, PPBM4D leverages inter-polarization correlations to generate virtual measurements for each channel in the quad-polarization filter, enabling more effective noise suppression through collaborative filtering. The algorithm demonstrates 57% instrumental noise reduction and achieves 1.51 × 10−6 RIU resolution (1.333–1.393 RIU range). The system’s algorithm performance is validated through stepwise NaCl solution switching experiments (0.0025–0.08%) and protein interaction assays (0.15625–20 μg/mL). This advancement establishes a robust framework for high-resolution SPR applications across a broad dynamic range, particularly benefiting live-cell imaging and high-throughput screening. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 288
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

15 pages, 2463 KiB  
Article
Measurement of the Effective Refractive Index of Suspensions Containing 5 µm Diameter Spherical Polystyrene Microparticles by Surface Plasmon Resonance and Scattering
by Osvaldo Rodríguez-Quiroz, Donato Luna-Moreno, Araceli Sánchez-Álvarez, Gabriela Elizabeth Quintanilla-Villanueva, Oscar Javier Silva-Hernández, Melissa Marlene Rodríguez-Delgado and Juan Francisco Villarreal-Chiu
Chemosensors 2025, 13(7), 257; https://doi.org/10.3390/chemosensors13070257 - 15 Jul 2025
Viewed by 351
Abstract
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene [...] Read more.
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene particles (SPSP) in distilled water, based on the surface plasmon resonance (SPR) technique and Mie scattering theory. The reflectances of the samples are obtained with their resonance angles and depths that must be normalized and adjusted according to the reference of the air and the distilled water, to subsequently find their effective refraction index corresponding to the Mie scattering theory. The system has an optical sensor with a Kretschmann–Raether configuration, consisting of a semicircular prism, a thin gold film, and a glass cell for solution samples with different concentrations (0.00, 0.20, 0.05, 0.50, and 1.00%). The experimental result provided a good linear fit with an R2 = 0.9856 and a sensitivity of 7.2863 × 105 RIU/% (refractive index unit per percentage of fill fraction). The limits of detection (LOD) and limit of quantification (LOQ) were determined to be 0.001% and 0.0035%, respectively. The developed optomechatronic system and its applications based on the SPR and Scattering enabled the effective measurement of the refractive index and concentration of solutions containing 5 µm diameter SPSP in distilled water. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

23 pages, 8170 KiB  
Article
Diammonium Glycyrrhizinate Exerts Broad-Spectrum Antiviral Activity Against Human Coronaviruses by Interrupting Spike-Mediated Cellular Entry
by Shuo Wu, Ge Yang, Kun Wang, Haiyan Yan, Huiqiang Wang, Xingqiong Li, Lijun Qiao, Mengyuan Wu, Ya Wang, Jian-Dong Jiang and Yuhuan Li
Int. J. Mol. Sci. 2025, 26(13), 6334; https://doi.org/10.3390/ijms26136334 - 30 Jun 2025
Viewed by 365
Abstract
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce [...] Read more.
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce infections of several human coronaviruses, including HCoV-OC43, HCoV-229E, and SARS-CoV-2, as well as newly emerged variants, with EC50 values ranging from 115 to 391 μg/mL being recorded. Time-of-addition and pseudotype virus infection studies indicated that DG treatment dramatically inhibits the process of virus entry into cells. Furthermore, we demonstrated that DG broadly binds to the RBD of human coronaviruses, thereby blocking spike-mediated cellular entry, by using TR-FRET-based receptor-binding domain (RBD)-ACE2 interaction assay, capillary electrophoresis (CE), and surface plasmon resonance (SPR) assay. In support of this notion, studies of molecular docking and amino acid mutation showed that DG may directly bind to a conserved hydrophobic pocket of the RBD of coronaviruses. Importantly, intranasal administration of DG had a significant protective effect against viral infection in a HCoV-OC43 mouse model. Finally, we found that combinations of DG and other coronavirus inhibitors exhibited antiviral synergy. In summary, our studies strongly reveal that DG exerts broad-spectrum antiviral activity against human coronaviruses by interrupting spike-mediated cellular entry, demonstrating the pharmacological feasibility of using DG as a candidate for alternative treatment and prevention of coronavirus infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

34 pages, 6553 KiB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Viewed by 1075
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

14 pages, 3702 KiB  
Article
A High-Sensitivity U-Shaped Optical Fiber SPR Sensor Based on ITO Coating
by Chuhan Ye, Zhibo Li, Wenhao Kang and Lei Hou
Sensors 2025, 25(13), 3911; https://doi.org/10.3390/s25133911 - 23 Jun 2025
Viewed by 398
Abstract
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. [...] Read more.
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. The U-shaped structure optimizes evanescent wave–metal film interaction, further improving performance. In an external refractive index (RI) range of 1.334–1.374 RIU, the sensor achieves a sensitivity of 4333 nm/RIU (1.85× higher than traditional fiber sensors) and a figure of merit (FOM) of 21.7 RIU−1 (1.68× improvement). Repeatability tests show a low relative standard deviation (RSD) of 0.4236% for RI measurements, with a maximum error of 0.00018 RIU, confirming excellent stability. The ITO coating’s strong adhesion ensures long-term reliability. With its simple structure, ease of fabrication, and superior sensitivity/FOM, this SPR sensor is well-suited for high-precision biochemical detection in intelligent sensing systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

10 pages, 1560 KiB  
Article
The Synergistic Effect of Electric-Field and Adsorption Enhancement of Amino Acid Carbon Dots Significantly Improves the Detection Sensitivity of SPR Sensors
by Jing Ouyang, Xiantong Yu, Mengjie Wang, Longfei Wang, Zhao Li, Chaojun Shi, Hao Li, Yufeng Yuan, Jun Zhou and Min Chang
Sensors 2025, 25(13), 3903; https://doi.org/10.3390/s25133903 - 23 Jun 2025
Viewed by 358
Abstract
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this [...] Read more.
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this work developed an SPR sensor based on the synergistic effect of electric-field enhancement and adsorption enhancement by using amino acid-derived carbon dots (CDs). The results showed that the incorporation of amino acid CDs can generate a maximum electric-field enhancement of up to 6.44 × 105 V/m in the near-field region, which is 312% of that achieved by a bare gold film. And the adsorption kinetics results indicate that the active groups on the surface of amino acid CDs exhibit a notable adsorption enhancement effect for the target molecule (NaCl), with an adsorption capacity 335% higher than that of the bare gold film. This designed SPR sensor demonstrates a detection sensitivity of 167.28 a.u./RIU for NaCl solution, representing a 247.8% improvement compared to an SPR sensor without amino acid CDs under the same conditions. This SPR sensor shows promising potential for applications in biomedical and environmental detection fields. Full article
(This article belongs to the Special Issue Biomedical Applications of Optical Sensing Technology)
Show Figures

Figure 1

33 pages, 4158 KiB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 1 | Viewed by 880
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

33 pages, 571 KiB  
Review
Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis
by Stephen Rathinaraj Benjamin, Fábio de Lima, Paulo Iury Gomes Nunes, Rosa Fireman Dutra, Geanne Matos de Andrade and Reinaldo B. Oriá
Chemosensors 2025, 13(6), 220; https://doi.org/10.3390/chemosensors13060220 - 17 Jun 2025
Viewed by 814
Abstract
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic [...] Read more.
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic tools is further underscored by the potential of early intervention to improve treatment outcomes and slow disease progression. Recent advancements in biosensing technologies offer promising solutions for precise and non-invasive AD detection. Electrochemical and optical biosensors, in particular, provide high sensitivity, specificity, and real-time detection capabilities, making them valuable for identifying key biomarkers, including amyloid-β (Aβ) peptides and tau proteins. Additionally, integrating these biosensors with nanomaterials enhances their performance, stability, and detection limits, enabling improved diagnostic accuracy. Beyond nanomaterial-based sensors, emerging innovations in microfluidics, surface plasmon resonance (SPR), and artificial intelligence-assisted biosensing further contribute to the development of next-generation AD diagnostics. This review provides a comprehensive analysis of the latest advancements in biosensing technologies for AD, highlighting their mechanisms, advantages, and future perspectives in detecting biomarkers from biological fluids. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 13615 KiB  
Article
Real-Time SPR Biosensing to Detect and Characterize Fast Dissociation Rate Binding Interactions Missed by Endpoint Detection and Implications for Off-Target Toxicity Screening
by William Martelly, Rebecca L. Cook, Chidozie Victor Agu, Lydia R. Gushgari, Salvador Moreno, Sailaja Kesiraju, Mukilan Mohan and Bharath Takulapalli
Biomolecules 2025, 15(6), 882; https://doi.org/10.3390/biom15060882 - 17 Jun 2025
Viewed by 536
Abstract
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint [...] Read more.
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint approaches can suffer from false-negative results for biomolecular interactions with fast kinetics. By contrast, real-time detection techniques like surface plasmon resonance (SPR) monitor interactions as they form and disassemble, reducing the risk of false-negative results. By leveraging cell-free expressed proteins captured on either glass or SPR biosensors and using two different commercial antibodies with variable off-rates that both target HaloTag antigens as a model, we compare and contrast results from a fluorescence endpoint assay versus real-time sensor-integrated proteome on chip (SPOC®) SPR-based detection. In this study, we illustrate the limitations of the representative immunofluorescent endpoint assay when investigating transient interactions characterized by fast dissociation rates. We highlight the importance of choosing reagents well suited to the selected assay, as well as the importance of considering binding kinetics and protein ligand conformational states when interpreting results from binding assays, especially for applications as critical as the off-target screening of therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

15 pages, 2420 KiB  
Review
Applications of Surface Plasmon Resonance in Heparan Sulfate Interactome Research
by Payel Datta, Jonathan S. Dordick and Fuming Zhang
Biomedicines 2025, 13(6), 1471; https://doi.org/10.3390/biomedicines13061471 - 14 Jun 2025
Viewed by 503
Abstract
Surface plasmon resonance (SPR) is a powerful tool for analyzing biomolecular interactions and is widely used in basic biomedical research and drug discovery. Heparan sulfate (HS) is a linear complex polysaccharide and a key component of the extracellular matrix and cell surfaces. HS [...] Read more.
Surface plasmon resonance (SPR) is a powerful tool for analyzing biomolecular interactions and is widely used in basic biomedical research and drug discovery. Heparan sulfate (HS) is a linear complex polysaccharide and a key component of the extracellular matrix and cell surfaces. HS plays a pivotal role in maintaining cellular functions and tissue homeostasis by interacting with numerous proteins, making it essential for normal physiological processes and disease states. Deciphering the interactome of HS unlocks the mechanisms underlying its biological functions and the potential for novel HS-related therapeutics. This review presents an overview of the recent advances in the application of SPR technology to HS interactome research. We discuss methodological developments, emerging trends, and key findings that illustrate how SPR is expanding our knowledge of HS-mediated molecular interactions. Additionally, we highlight the potential of SPR-based approaches in identifying novel therapeutic targets and developing HS-mimetic drugs, thereby opening new avenues for intervention in HS-related diseases. Full article
Show Figures

Figure 1

25 pages, 3696 KiB  
Review
Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
by Yue Wu, Xing Xu, Yinchu Zhu, Jiaxin Wan, Xingbo Wang, Xin Zhou, Xiangjun Li and Weidong Zhou
Biosensors 2025, 15(6), 378; https://doi.org/10.3390/bios15060378 - 12 Jun 2025
Viewed by 1182
Abstract
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them [...] Read more.
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them unsuitable for rapid, on-site testing. Optical biosensors, known for their rapid analysis, portability, high sensitivity, and multiplexing capabilities, offer a promising solution for simultaneous multi-pathogenic identification. This paper explores recent advancements in the utilization of optical biosensors for multiple pathogenic detection. First, it provides an overview of key sensing principles, focusing on colorimetric, fluorescence-based, surface-enhanced Raman scattering (SERS), and surface plasmon resonance (SPR) techniques, as well as their applications in pathogenic detection. Then, the research progress and practical applications of optical biosensors for multiplex pathogenic detection are discussed in detail from three perspectives: microfluidic devices, nucleic acid amplification technology (NAAT), and nanomaterials. Finally, the challenges presented by optical biosensing technologies in multi-pathogen detection are discussed, along with future prospects and potential innovations in the field. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

25 pages, 8085 KiB  
Article
Finite Element Method-Based Modeling of a Novel Square Photonic Crystal Fiber Surface Plasmon Resonance Sensor with a Au–TiO2 Interface and the Relevance of Artificial Intelligence Techniques in Sensor Optimization
by Ayushman Ramola, Amit Kumar Shakya and Arik Bergman
Photonics 2025, 12(6), 565; https://doi.org/10.3390/photonics12060565 - 4 Jun 2025
Cited by 2 | Viewed by 665
Abstract
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to [...] Read more.
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to 1.37 and supports both x- polarized and y-polarized modes. It achieves a wavelength sensitivity of 15,800 nm/RIU and 14,300 nm/RIU, and amplitude sensitivities of 11,584 RIU−1 and 11,007 RIU−1, respectively, for the x-pol. and y-pol. The sensor also reports a resolution in the order of 10−6 RIU and a strong linearity of R2 ≈ 0.97 for both polarization modes, indicating its potential for precision detection in complex sensing environments. Beyond the sensor’s structural and performance innovations, this work also explores the future integration of artificial intelligence (AI) into PCF-SPR sensor design. AI techniques such as machine learning and deep learning offer new pathways for sensor calibration, material optimization, and real-time adaptability, significantly enhancing sensor performance and reliability. The convergence of AI with photonic sensing not only opens doors to smart, self-calibrating platforms but also establishes a foundation for next-generation sensors capable of operating in dynamic and remote applications. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

20 pages, 2102 KiB  
Article
The Detection of Different Cancer Types Using an Optimized MoS2-Based Surface Plasmon Resonance Multilayer System
by Talia Tene, Diego Fabián Vique López, Paulina Elizabeth Valverde Aguirre, Adriana Monserrath Monge Moreno and Cristian Vacacela Gomez
Sci 2025, 7(2), 76; https://doi.org/10.3390/sci7020076 - 3 Jun 2025
Cited by 1 | Viewed by 477
Abstract
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4 [...] Read more.
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4), and molybdenum disulfide (MoS2) for the optical detection of various cancer types. Four distinct sensor architectures (Sys1–Sys4) were optimized through the systematic tuning of Cu thickness, Si3N4 dielectric layer thickness, and the number of MoS2 monolayers to enhance sensitivity, angular shift, and spectral sharpness. The optimized systems were evaluated using refractive index data corresponding to six cancer types (skin, cervical, blood, adrenal, breast T1, and breast T2), with performance metrics including sensitivity, detection accuracy, quality factor, figure of merit, limit of detection, and comprehensive sensitivity factor. Among the configurations, Sys3 (BK7–Cu–Si3N4–MoS2) demonstrated the highest sensitivity, reaching 254.64 °/RIU for adrenal cancer, while maintaining a low detection limit and competitive figures of merit. Comparative analysis revealed that the MoS2-based designs, particularly Sys3, outperform conventional noble-metal architectures in terms of sensitivity while using earth-abundant, scalable materials. These results confirm the potential of Cu/Si3N4/MoS2-based SPR biosensors as practical and effective tools for label-free cancer diagnosis across multiple malignancy types. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

21 pages, 7343 KiB  
Article
Dihydromyricetin May Attenuate Skin Aging as a RAGE Inhibitor
by Fei Wang, Yuanzhi Jian, Fangzhi Xia, Liangchun Kuo and Junbo Wang
Nutrients 2025, 17(11), 1862; https://doi.org/10.3390/nu17111862 - 29 May 2025
Viewed by 743
Abstract
Background/Objectives: Dihydromyricetin (DHM), a flavonoid with abundant natural sources, potent bioactivity, and high safety, holds promise for translational applications, particularly in mitigating skin aging. However, its role and underlying mechanisms in counteracting skin aging induced by advanced glycation end products (AGEs) remain [...] Read more.
Background/Objectives: Dihydromyricetin (DHM), a flavonoid with abundant natural sources, potent bioactivity, and high safety, holds promise for translational applications, particularly in mitigating skin aging. However, its role and underlying mechanisms in counteracting skin aging induced by advanced glycation end products (AGEs) remain unclear. Methods: Eight-week-old male Sprague-Dawley (SD) rats were subcutaneously injected with 500 mg/kg D-galactose and administered DHM via gavage for 11 weeks. Additionally, senescent human skin fibroblasts (HFF-1) induced by AGEs were used for further investigation. Results: DHM treatment significantly alleviated D-galactose-induced skin aging in rats, with the most pronounced effects observed in the moderate-dose group (100 mg/kg). Compared to the aging group, DHM enhanced skin elasticity and preserved collagen levels. Moreover, DHM promoted cell proliferation in the skin. Further studies on AGE-induced senescent fibroblasts revealed that DHM markedly reduced multiple senescence-associated markers and stimulated cell proliferation by approximately a 1.5-fold increase. Transcriptomic analysis indicated that DHM upregulated genes related to the cell cycle and DNA repair while suppressing AGE-RAGE signaling and its downstream pathways. Notably, DHM downregulated AGER, the gene encoding the receptor for AGEs (RAGE). Molecular docking analysis demonstrated that DHM shares a binding site with other known RAGE inhibitors. Surface plasmon resonance (SPR) analysis further confirmed the high binding affinity of DHM to RAGE (KD = 28.7 μM), which was stronger and more stable than that of FPS-ZM1 (KD = 40.7 μM). Conclusions: DHM may attenuate glycation-induced skin aging in rats by functioning as a RAGE inhibitor, thereby suppressing AGE-RAGE signaling, delaying cellular senescence, and promoting cell proliferation. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop