Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (494)

Search Parameters:
Keywords = surface dipole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 207
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

20 pages, 2460 KiB  
Article
Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field
by Ya-Wen Li, Rui-Zhi Feng, Xiao-Jiang Li, Ai-Chuan Liu and En-Lin Wang
Molecules 2025, 30(15), 3115; https://doi.org/10.3390/molecules30153115 - 25 Jul 2025
Viewed by 173
Abstract
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) [...] Read more.
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) under external electric fields. The solvent effect of H2O on the double-proton transfer was evaluated by the integral equation formalism polarized continuum model. The results indicate that the influences of the external electric fields along the direction of the dipole moment on double-proton transfer are significant. The corresponding products are controlled by the direction of the external electric field. Due to the first-order Stark effect, some good linear relationships form between the changes of the structures, atoms in molecules (AIMs) results, surface electrostatic potentials, barriers of the transition state, and the external electric field strengths. From the gas to solvent phase, the barrier heights increased. The spatial order parameters (ϕ, ψ) of the conformational transformation could be quickly converged through the umbrella sampling and parameter averaging, and thus the free-energy landscape for the conformational transformation was obtained. Under the external electric field, there is competition between the double-proton transfer and conformational transformation. The external electric field greatly affects the cooperativity transfer, while it has little effect on the conformational transformation. This study is helpful in the selection and updating of anticoccidial drugs. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 279
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 175
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 900 KiB  
Hypothesis
Beyond Classical Multipoles: The Magnetic Metapole as an Extended Field Source
by Angelo De Santis and Roberto Dini
Foundations 2025, 5(3), 25; https://doi.org/10.3390/foundations5030025 - 14 Jul 2025
Viewed by 199
Abstract
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial [...] Read more.
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial variation, the metapole yields a magnetic field that decays as 1/r and is oriented along spherical surfaces. Unlike classical multipoles, the metapole cannot be described as a point source; rather, it corresponds to an extended or filamentary magnetic distribution as derived from Maxwell’s equations. We demonstrate that pairs of oppositely oriented metapoles (up/down) can, at large distances, produce magnetic fields resembling those of classical monopoles. A regularized formulation of the potential resolves singularities for the potential and the field. When applied in a bounded region, it yields finite field energy, enabling practical modeling applications. We propose that the metapole can serve as a conceptual and computational framework for representing large-scale magnetic field structures particularly where standard dipole-based models fall short. This construct may have utility in both geophysical and astrophysical contexts, and it provides a new tool for equivalent source modeling and magnetic field decomposition. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

24 pages, 7332 KiB  
Article
High-Performance Natural Dye-Sensitized Solar Cells Employing a New Semiconductor: Gd2Ru2O7 Pyrochlore Oxide
by Assohoun F. Kraidy, Abé S. Yapi, Joseph K. Datte, Michel Voue, Mimoun El Marssi, Anthony Ferri and Yaovi Gagou
Condens. Matter 2025, 10(3), 38; https://doi.org/10.3390/condmat10030038 - 14 Jul 2025
Viewed by 627
Abstract
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films [...] Read more.
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films were fabricated using the spin-coating technique, resulting in spherical grains with an estimated mean diameter of 0.2 µm, as observed via scanning electron microscopy (SEM). This innovative photoactive gadolinium ruthenate pyrochlore oxide demonstrated strong absorption in the visible range and excellent dye adhesion after just one hour of exposure to natural dye. X-ray diffraction confirmed the presence of the pyrochlore phase, where Raman spectroscopy identified various vibration modes characteristic of the pyrochlore structure. Incorporating Gd2Ru2O7 as the photoanode significantly enhanced the overall efficiency of the DSSCs. The device configuration FTO/compact-layer/Gd2Ru2O7/Hibiscus-sabdariffa/electrolyte(I/I3)/Pt achieved a high efficiency of 9.65%, an open-circuit voltage (Voc) of approximately 3.82 V, and a current density of 4.35 mA/cm2 for an active surface area of 0.38 cm2. A mesoporous TiO2-based DSSC was fabricated under the same conditions for comparison. Using impedance spectroscopy and cyclic voltammetry measurements, we provided evidence of the mechanism of conductivity and the charge carrier’s contribution or defect contributions in the DSSC cells to explain the obtained Voc value. Through cyclic voltammetry measurements, we highlight the redox activities of hibiscus dye and electrolyte (I/I3), which confirmed electrochemical processes in addition to a photovoltaic response. The high and unusual obtained Voc value was also attributed to the presence in the photoanode of active dipoles, the layer thickness, dye concentration, and the nature of the electrolyte. Full article
Show Figures

Figure 1

26 pages, 9032 KiB  
Article
Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics
by Isaac Kwesi Nooni, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Samuel Koranteng Fianko, Thomas Atta-Darkwa and Nana Agyemang Prempeh
Atmosphere 2025, 16(7), 828; https://doi.org/10.3390/atmos16070828 - 8 Jul 2025
Viewed by 512
Abstract
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather [...] Read more.
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather Forecasts Reanalysis v.5 (ERA5) reanalysis, TEMP and precipitation (PRE) from Climate Research Unit (CRU), and soil moisture (SM) and evapotranspiration (ET) from the Global Land Evaporation Amsterdam Model (GLEAM). In addition, four teleconnection indices were considered: El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). This study used the Mann–Kendall test and Sen’s slope estimator to analyze trends, alongside multiple linear regression to investigate the relationships between TEMP, RH, and key climatic variables—namely evapotranspiration (ET), soil moisture (SM), and precipitation (PRE)—as well as large-scale teleconnection indices (e.g., IOD, ENSO, PDO, and NAO) on annual and seasonal scales. The key findings are as follows: (1) mean annual TEMP exceeding 30 °C and RH less than 30% were concentrated in arid regions of the Sahelian–Sudano belt in West Africa (WAF), Central Africa (CAF) and North East Africa (NEAF). Semi-arid regions in the Sahelian–Guinean belt recorded moderate TEMP (25–30 °C) and RH (30–60%), while the Guinean coastal belt and Congo Basin experienced cooler, more humid conditions (TEMP < 20 °C, RH (60–90%). (2) Trend analysis using Mann–Kendal and Sen slope estimator analysis revealed spatial heterogeneity, with increasing TEMP and deceasing RH trends varying by region and season. (3) The warming rate was higher in arid and semi-arid areas, with seasonal rates exceeding annual averages (0.18 °C decade−1). Winter (0.27 °C decade−1) and spring (0.20 °C decade−1) exhibited the strongest warming, followed by autumn (0.18 °C decade−1) and summer (0.10 °C decade−1). (4) RH trends showed stronger seasonal decline compared to annual changes, with reduction ranging from 5 to 10% per decade in certain seasons, and about 2% per decade annually. (5) Pearson correlation analysis demonstrated a strong negative relationship between TEMP and RH with a correlation coefficient of r = − 0.60. (6) Significant associations were also observed between TEMP/RH and both climatic variables (ET, SM, PRE) and large scale-teleconnection indices (ENSO, IOD, PDO, NAO), indicating that surface conditions may reflect a combination of local response and remote climate influences. However, further analysis is needed to distinguish the extent to which local variability is independently driven versus being a response to large-scale forcing. Overall, this research highlights the physical mechanism linking TEMP and RH trends and their climatic drivers, offering insights into how these changes may impact different ecological and socio-economic sectors. Full article
(This article belongs to the Special Issue Precipitation in Africa (2nd Edition))
Show Figures

Figure 1

14 pages, 6545 KiB  
Article
Dynamics and Confinement Characteristics of the Last Closed Surface in a Levitated Dipole Configuration
by Zhao Wang, Teng Liu, Shuyi Liu, Junjie Du and Guoshu Zhang
Symmetry 2025, 17(7), 1057; https://doi.org/10.3390/sym17071057 - 4 Jul 2025
Viewed by 276
Abstract
Based on the magnetic configuration of the China Astro-Torus-1 (CAT-1) levitated dipole device, this study investigated the confinement performance of common discharge gas ions under E × B transverse transport conditions induced by electric fields. By adjusting L-coil parameters to shift the inject [...] Read more.
Based on the magnetic configuration of the China Astro-Torus-1 (CAT-1) levitated dipole device, this study investigated the confinement performance of common discharge gas ions under E × B transverse transport conditions induced by electric fields. By adjusting L-coil parameters to shift the inject location, it was found that when the loss boundary is in the outer weak-field region, most particles with large Larmor radii are lost after colliding with the wall, for particles with large pitch angles, the strongly anisotropic magnetic field causes particles across a broad range of energies to be lost through the X-point into the divertor. The study demonstrates that for particle kinetic energies between 100 and 300 eV, the CAT-1 device exhibits a loss cone angle θloss of approximately 58°, indicating favorable confinement performance. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 1610 KiB  
Article
Antimicrobial Action of Essential Oil of Tagetes minuta: Role of the Bacterial Membrane in the Mechanism of Action
by Anahí Bordón, Sergio A. Rodríguez, Douglas Siqueira de Almeida Chaves, Andrea C. Cutró and Axel Hollmann
Antibiotics 2025, 14(7), 632; https://doi.org/10.3390/antibiotics14070632 - 21 Jun 2025
Viewed by 550
Abstract
Background: The rise in multidrug-resistant bacteria has intensified the search for new antibiotics, drawing attention to essential oils (EOs) for their antimicrobial properties. For this reason, this study focuses on the antimicrobial action of the EO obtained from Tagetes minuta and its impact [...] Read more.
Background: The rise in multidrug-resistant bacteria has intensified the search for new antibiotics, drawing attention to essential oils (EOs) for their antimicrobial properties. For this reason, this study focuses on the antimicrobial action of the EO obtained from Tagetes minuta and its impact on bacterial membranes. Methods: The EO was chemically characterized by chromatography–mass spectrometry, and its antimicrobial activity and its effects on surface and bacterial membrane were assessed by using Zeta potential, membrane transition temperature (Tm) determination; and fluorescence spectroscopy with Laurdan and Di-8 ANEPPS. Results: Twenty-seven compounds could be identified, with (E)-Tagetone, (Z)-Ocimenone, and β-pinene as the most abundant. Afterward, the EO was tested against Escherichia coli (MIC and MBC = 17 mg/mL) and Staphylococcus aureus (MIC = 8.5 mg/mL; MBC > 17 mg/mL), showing antimicrobial action in both bacteria, being more effective against E. coli. Mechanistic studies revealed that the EO interacts with bacterial membranes, increasing the Zeta potential by more than 9 mV and enhancing membrane permeability up to 90%. These effects were further confirmed using model lipid membranes, where the EO induced significant changes in membrane properties, including a reduction in dipole potential and transition temperature, suggesting that some EO components could be inserted into the lipid bilayer, disrupting membrane integrity. Conclusions: The EO from T. minuta demonstrates efficient antimicrobial activity by compromising bacterial membrane structure, highlighting its potential as a natural antimicrobial agent. Full article
Show Figures

Graphical abstract

13 pages, 2740 KiB  
Article
PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation
by Yang Yi, Chengwei Wu, Xuzhao He, Wenjian Weng, Weiming Lin and Kui Cheng
Coatings 2025, 15(6), 703; https://doi.org/10.3390/coatings15060703 - 11 Jun 2025
Viewed by 353
Abstract
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, [...] Read more.
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, followed by melt-recrystallization to achieve high β-phase crystallinity. The substrates were then subjected to corona poling, a process involving high-voltage corona discharge to electrically polarize and align the molecular dipoles. Structural and electrical characterization revealed tunable microdomain surface potentials and piezoelectric coefficients, correlating with enhanced hydrophilicity. Notably, microdomain potential—produced by controlled polarization—was shown to directly regulate cellular responses. In vitro studies demonstrated that a corona-poled PVTF NP coating significantly improved bone marrow mesenchymal stem cell (BMSC) proliferation and early osteogenic differentiation. This work establishes a surface electropatterning approach and highlights the critical role of electrical heterogeneity in bone regeneration, offering a novel strategy for bioactive biomaterial design. Full article
Show Figures

Figure 1

13 pages, 4266 KiB  
Article
Exciting High-Order Plasmon Mode Using Metal-Insulator-Metal Bowtie Nanoantenna
by Xiaoxin Zhang, Rulin Guan, Qingxiu Ding, Chen Wang, Yaqiong Li, Dengchao Huang, Qigong Chen and Zheng Yang
Nanomaterials 2025, 15(12), 882; https://doi.org/10.3390/nano15120882 - 7 Jun 2025
Viewed by 479
Abstract
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective [...] Read more.
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective for applications such as surface-enhanced Raman scattering (SERS). However, the practical utility of conventional BNAs is often hindered by small hotspot areas and significant scattering losses at their peak near-field enhancement wavelengths. To overcome these limitations, we have designed a novel notch metal-insulator-metal bowtie nanoantenna (NMIM-BNA) structure. This innovative design integrates dielectric materials with Ag-BNA nanostructures and strategically positions arrays of silver (Ag) nanorods within the central nanogap. By coupling the larger NMIM-BNA framework with these smaller Ag nanorod arrays, higher-order plasmon modes (often referred to as dark modes) are effectively excited. Consequently, the NMIM-BNA exhibits substantial electric field enhancement, particularly at the Fano dip wavelength, arising from the efficient coupling of these higher-order plasmon modes with dipole plasmon modes. Compared to conventional Ag-BNA nanoantennas, our NMIM-BNA provides a significantly larger hotspot region and an enhanced near-field amplification factor, underscoring its strong potential for advanced SERS applications. Full article
Show Figures

Figure 1

13 pages, 3951 KiB  
Article
A 26.2:1 Bandwidth Ultra-Wideband Low-Profile Tightly Coupled Dipole Array with Integrated Feed Network
by Bailin Deng, Yu Yang, Xiuyuan Xu, Eryan Yan and Hongbin Chen
Sensors 2025, 25(11), 3418; https://doi.org/10.3390/s25113418 - 29 May 2025
Viewed by 574
Abstract
This article presents a novel tightly coupled dipole array (TCDA) with a bandwidth of 26.2:1 (VSWR < 3) across 0.20–5.23 GHz. By adding a new dual-stopband resistive frequency selective surface (RFSS) between the dipole and the floor, the short-circuit points formed by the [...] Read more.
This article presents a novel tightly coupled dipole array (TCDA) with a bandwidth of 26.2:1 (VSWR < 3) across 0.20–5.23 GHz. By adding a new dual-stopband resistive frequency selective surface (RFSS) between the dipole and the floor, the short-circuit points formed by the floor at the frequency points corresponding to λ = 2 h and h are both eliminated (h is the height from the antenna to the floor). A specially integrated feed network is also applied to significantly reduce the complexity and profile height to 0.05 λlow. The simulation and experimental results show that the designed TCDA has extremely wide bandwidth, good directivity and beam scanning potential. Compared with previous designs, it greatly extends the bandwidth, improves the gain, reduces the profile height, and simplifies the feeding method. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 651
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

20 pages, 6160 KiB  
Article
A Computational Approach to Increasing the Antenna System’s Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges
by David Vatamanu and Simona Miclaus
Sensors 2025, 25(10), 3235; https://doi.org/10.3390/s25103235 - 21 May 2025
Viewed by 944
Abstract
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, [...] Read more.
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, especially when obstacles interfere with the attempt to detect the presence of life. The sensitivity of a measurement system’s perception of vital signs is highly dependent on the monitoring systems and antennas that are used. The current work proposes a computational approach that aims to extract an empirical law of the dependence of the phase shift of the transmission coefficient (S21) on the sensitivity at reception, based upon a set of four parameters. These variables are as follows: (a) the frequency of the continuous wave utilized; (b) the antenna type and its gain/directivity; (c) the electric field strength distribution on the chest surface (and its average value); and (d) the type of material (dielectric properties) impacted by the incident wave. The investigated frequency range is (1–20) GHz, while the simulations are generated using a doublet of dipole or gain-convenient identical Yagi antennas. The chest surface is represented by a planar rectangle that moves along a path of only 3 mm, with a step of 0.3 mm, mimicking respiration movement. The antenna–target system is modeled in the computational space in each new situation considered. The statistics illustrate the multiple regression function, empirically extracted. This enables the subsequent building of a continuous-wave bio-radar Doppler system with controlled and improved sensitivity. Full article
Show Figures

Figure 1

20 pages, 8247 KiB  
Article
Three-Dimensional Borehole-to-Surface Electromagnetic Resistivity Anisotropic Forward Simulation Based on the Unstructured-Mesh Edge-Based Finite Element Method
by Baiwu Chen, Hui Cao, Mingchun Chen, Ruolong Ma and Sihao Wang
Appl. Sci. 2025, 15(10), 5307; https://doi.org/10.3390/app15105307 - 9 May 2025
Viewed by 442
Abstract
Geophysics is a discipline that studies the properties of subsurface media using physical methods, among which electromagnetic methods have long been an important technical approach in resource exploration. The anisotropy of resistivity in underground media objectively exists in electromagnetic exploration. However, most borehole-to-surface [...] Read more.
Geophysics is a discipline that studies the properties of subsurface media using physical methods, among which electromagnetic methods have long been an important technical approach in resource exploration. The anisotropy of resistivity in underground media objectively exists in electromagnetic exploration. However, most borehole-to-surface electromagnetic methods (BSEMs) currently process and interpret data based on the assumption of isotropy, which can lead to misinterpretations of observational data in regions where an isotropy is significant. To address this, we propose a 3D edge-based finite element method on unstructured meshes for simulating resistivity anisotropy in BSEMs. A principal-axis anisotropic tensor is introduced to model anisotropy, and the vertical-line transmitter is transformed into an equivalent set of point sources, enabling efficient computation. The accuracy and effectiveness of the proposed numerical algorithm are validated through comparisons with the solutions from Dipole1D and MARE2D. Furthermore, a comparative analysis of reservoir dynamic monitoring under isotropic and anisotropic conditions using the same model reveals that the relative errors in amplitude and phase exceed 40%, and anisotropy must be adequately considered in reservoir monitoring with borehole-to-surface electromagnetic methods. For reservoir models with varying extraction rates, this study further examines the influence of a transmitter’s position on the electromagnetic response characteristics in anisotropic reservoir dynamic monitoring. The results indicate that effective monitoring cannot be achieved when the transmitter is located above the reservoir; however, when the transmitter is positioned below the reservoir, the borehole-to-surface electromagnetic method can significantly enhance the monitoring of reservoir dynamics. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

Back to TopTop