Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Gridded Climate Data
2.3. Methods
3. Result
3.1. Evaluation of Climate Datasets
3.2. Spatial Variability
3.3. Spatial and Temporal Trends
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; et al. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Chapter 8; Available online: https://centaur.reading.ac.uk/101319/1/101319.pdf (accessed on 2 April 2025).
- O’Gorman, P.A.; Muller, C.J. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett. 2010, 5, 025207. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Change 2012, 110, 669–696. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.-N.-D.; Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef] [PubMed]
- Ekra, A.T.; Hamed, M.M.; Ali, Z.; Muhammad, M.K.I.B.; Khan, M.M.H.; Kamruzzaman, M.; Shahid, S. Changes in human heat discomfort and its drivers in Bangladesh. Urban Clim. 2024, 55, 101884. [Google Scholar] [CrossRef]
- Ganesh, G.A.; Sinha, S.L.; Verma, T.N.; Dewangan, S.K. Investigation of indoor environment quality and factors affecting human comfort: A critical review. Build. Environ. 2021, 204, 108146. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Benmarhnia, T.; Ebi, K.L.; Jay, O.; Lutsko, N.J.; Vanos, J.K. Humidity’s role in heat-related health outcomes: A heated debate. Environ. Health Perspect. 2023, 131, 055001. [Google Scholar] [CrossRef]
- Dwamena, H.A.; Tawiah, K.; Akuoko Kodua, A.S. The effect of rainfall, temperature, and relative humidity on the yield of cassava, yam, and maize in the Ashanti region of Ghana. Int. J. Agron. 2022, 2022, 9077383. [Google Scholar] [CrossRef]
- Do, S.K.; Nguyen, B.Q.; Tran, V.N.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Investigating the future flood and drought shifts in the transboundary srepok river basin using CMIP6 projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024. [Google Scholar]
- Wang, Y.; Liu, K.; Liu, Y.; Wang, D.; Liu, J. The impact of temperature and relative humidity dependent thermal conductivity of insulation materials on heat transfer through the building envelope. J. Build. Eng. 2022, 46, 103700. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z. Effective Moisture Temperature: Ventilation performance index accounting for effects of air temperature and relative humidity on thermal comfort. Build. Environ. 2023, 10, 110625. [Google Scholar] [CrossRef]
- Xu, X.; Yu, H.; Sun, Q.; Tam, V.W. A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed. Renew. Sustain. Energy Rev. 2023, 182, 113396. [Google Scholar] [CrossRef]
- Ahmed, O.; Sezer, N.; Ouf, M.; Wang, L.L.; Hassan, I.G. State-of-the-art review of occupant behavior modeling and implementation in building performance simulation. Renew. Sustain. Energy Rev. 2023, 185, 113558. [Google Scholar] [CrossRef]
- Chenoweth, D.A.; Schlaepfer, D.R.; Chambers, J.C.; Brown, J.L.; Urza, A.K.; Hanberry, B.; Board, D.; Crist, M.; Bradford, J.B. Ecologically relevant moisture and temperature metrics for assessing dryland ecosystem dynamics. Ecohydrology 2023, 16, e2509. [Google Scholar] [CrossRef]
- Tapas, M.R.; Etheridge, R.; Finlay, C.G.; Peralta, A.L.; Bell, N.; Xu, Y.; Lakshmi, V. A methodological framework for assessing sea level rise impacts on nitrate loading in coastal agricultural watersheds using SWAT+: A case study of the Tar-Pamlico River basin, North Carolina, USA. Sci. Total Environ. 2024, 951, 175523. [Google Scholar] [CrossRef]
- Nohrstedt, D.; Hileman, J.; Mazzoleni, M.; Di Baldassarre, G.; Parker, C.F. Exploring disaster impacts on adaptation actions in 549 cities worldwide. Nat. Commun. 2022, 13, 3360. [Google Scholar] [CrossRef] [PubMed]
- Guardaro, M.; Hondula, D.M.; Ortiz, J.; Redman, C. Adaptive capacity to extreme urban heat: The dynamics of differing narratives. Clim. Risk Manag. 2022, 35, 100415. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, E.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Ramanathan, V.; Collins, W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 1991, 351, 27–32. [Google Scholar] [CrossRef]
- Douville, H.; Qasmi, S.; Ribes, A.; Bock, O. Global warming at near-constant tropospheric relative humidity is supported by observations. Commun. Earth Environ. 2022, 3, 237. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Mingkhwan, R.; Kiangkoo, N.; Suwanmanee, S.; Sahanavin, N.; Kongpran, J.; Aung, H.W.; Tantrakarnapa, K. Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Sci. Rep. 2024, 14, 7800. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zha, Y. Mapping relative humidity, average and extreme temperature in hot summer over China. Sci. Total Environ. 2018, 615, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Cooper, F.; Fueglistaler, S. Statistical analysis of global variations of atmospheric relative humidity as observed by AIRS. J. Geophys. Res. Atmos. 2012, 117, D12315. [Google Scholar] [CrossRef]
- Moradi, I.; Arkin, P.; Ferraro, R.; Eriksson, P.; Fetzer, E. Diurnal variation of tropospheric relative humidity in tropical regions. Atmos. Chem. Phys. 2016, 16, 6913–6929. [Google Scholar] [CrossRef]
- Putatunda, I. Multiscale temporal analysis and trends of relative humidity over India and Indian Ocean. J. Atmos. Sol.-Terr. Phys. 2021, 218, 105551. [Google Scholar] [CrossRef]
- Dai, A. Recent Climatology, Variability, and Trends in Global Surface Humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef]
- Willett, K.; Jones, P.; Thorne, P.; Gillett, N. A comparison of large scale changes in surface humidity over land in observations and CMIP3 GCMS. Environ. Res. Lett. 2010, 5, 025210. [Google Scholar] [CrossRef]
- Willett, K.M.; Gillett, N.P.; Jones, P.D.; Thorne, P.W. Attribution of observed surface humidity changes to human influence. Nature 2007, 449, 710–712. [Google Scholar] [CrossRef]
- Willett, K.M.; Jones, P.D.; Gillett, N.P.; Thorne, P.W. Recent changes in surface humidity: Development of the HadCRUH dataset. J. Clim. 2008, 21, 5364–5383. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zhang, H.; Huang, X. Quantitative reconstruction of the relative humidity by a coupled δ18O-δ2H approach during the Younger Dryas in central China. Quat. Sci. Rev. 2023, 299, 107879. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakatsuka, T.; Yamazaki, K.; Takagi, K. Summer relative humidity in northern Japan inferred from δ18O values of the tree ring in (1776–2002 A.D.): Influence of the paleoclimate indices of atmospheric circulation. J. Geophys. Res. Atmos. 2008, 113, D18103. [Google Scholar] [CrossRef]
- Davis, R.E.; McGregor, G.R.; Enfield, K.B. Humidity: A review and primer on atmospheric moisture and human health. Environ. Res. 2016, 144, 106–116. [Google Scholar] [CrossRef]
- Fasullo, J.T. Robust land–ocean contrast in energy and water cycle feedbacks. J. Clim. 2010, 23, 4677–4693. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Mortuza, M.R.; Selmi, S.; Khudri, M.M.; Ankur, A.K.; Rahman, M.M. Evaluation of temporal and spatial trends in relative humidity and dew point temperature in Bangladesh. Arab. J. Geosci. 2014, 7, 5037–5050. [Google Scholar] [CrossRef]
- Fattah, M.A.; Gupta, S.D.; Farouque, M.Z.; Ghosh, B.; Morshed, S.R.; Chakraborty, T.; Kafy, A.A.; Rahman, M.T. Spatiotemporal characterization of relative humidity trends and influence of climatic factors in Bangladesh. Heliyon 2023, 9, e19991. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, Q.; Ying, Y. Trends in Precipitable Water and Relative Humidity in China: 1979–2005. J. Appl. Meteorol. Climatol. 2011, 50, 1985–1994. [Google Scholar] [CrossRef]
- Asadi, M.; Karami, M. Modeling of relative humidity trends in Iran. Model. Earth Syst. Environ. 2022, 8, 1035–1045. [Google Scholar] [CrossRef]
- Um, M.-J.; Kim, Y. Spatial analysis of relative humidity during ungauged periods in a mountainous region. Theor. Appl. Climatol. 2017, 129, 1157–1166. [Google Scholar] [CrossRef]
- Farooq, Z.; Kumar, R. Spatial and temporal trend analysis of relative humidity in the Himalayan region: A case study. Arab. J. Geosci. 2021, 14, 2237. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing influence of Indian Ocean dipole on precipitation over central equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [Google Scholar] [CrossRef]
- Nooni, I.; Ogou, F.; Saidou Chaibou, A.A.; Prempeh, N.; Atta-Darkwa, T.; Paing, K.; Fianko, S.K.; Jin, Z.; Yu, X. Links Between Teleconnection Patterns and Mean Precipitation in Africa and the Arabian Peninsula from 1903 to 2023. Int. J. Climatol. 2025, e70001. [Google Scholar] [CrossRef]
- MacLeod, D.; Kolstad, E.W.; Michaelides, K.; Singer, M.B. Sensitivity of rainfall extremes to unprecedented Indian Ocean Dipole events. Geophys. Res. Lett. 2024, 51, e2023GL105258. [Google Scholar] [CrossRef]
- Berihu, T.; Chen, W.; Wang, L. Unravelling atmospheric factors associated with long rain precipitation variability in East Africa. Clim. Dyn. 2025, 63, 111. [Google Scholar] [CrossRef]
- Lüdecke, H.-J.; Müller-Plath, G.; Wallace, M.G.; Lüning, S. Decadal and multidecadal natural variability of African rainfall. J. Hydrol. Reg. Stud. 2021, 34, 100795. [Google Scholar] [CrossRef]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, R.I.; Wheeler, K.G.; Gedney, N.; Hickman, J.E.; Madani, N.; Folwell, S.S.; Abdo, G.; et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- Park, S.; Kang, D.; Yoo, C.; Im, J.; Lee, M.I. Recent ENSO Influence on East African Drought during Rainy Seasons through the Synergistic Use of Satellite and Reanalysis Data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 17–26. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K. An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic oscillation. Geophys. Monogr.-Am. Geophys. Union 2003, 134, 1–36. [Google Scholar]
- Adamu, M.; Gallant, A.; McGregor, S. Decadal-scale variations in extreme precipitation and implications for seasonal scale drought. Clim. Dyn. 2022, 58, 1–16. [Google Scholar] [CrossRef]
- Adamu, M.; McGregor, S.; Gallant, A. Sea surface temperature driven modulation of decadal co-variability in mean and extreme precipitation. Environ. Res. Lett. 2024, 19, 034045. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather. Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett. 2000, 27, 3353–3356. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Husak, G.; Michaelsen, J. The East African monsoon system: Seasonal climatologies and recent variations. In The Monsoons and Climate Change: Observations and Modeling; Springer: Cham, Switzerland, 2016; pp. 163–185. [Google Scholar]
- Nooni, I.K.; Ogou, F.K.; Hagan, D.F.T.; Saidou Chaibou, A.A.; Prempeh, N.A.; Nakoty, F.M.; Jin, Z.; Lu, J. The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021. Atmosphere 2024, 15, 542. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 global reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 150, 4014–4048. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Malsy, M.; aus der Beek, T.; Flörke, M. Evaluation of large-scale precipitation data sets for water resources modelling in Central Asia. Environ. Earth Sci. 2015, 73, 787–799. [Google Scholar] [CrossRef]
- Gulakhmadov, A.; Chen, X.; Gulakhmadov, M.; Kobuliev, Z.; Gulahmadov, N.; Peng, J.; Li, Z.; Liu, T. Evaluation of the CRU TS3.1, APHRODITE_V1101, and CFSR Datasets in Assessing Water Balance Components in the Upper Vakhsh River Basin in Central Asia. Atmosphere 2021, 12, 1334. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Abbaspour, N.; Kamali, B.; Abbaspour, K.C. A toolkit for climate change analysis and pattern recognition for extreme weather conditions–Case study: California-Baja California Peninsula. Environ. Model. Softw. 2017, 96, 181–198. [Google Scholar] [CrossRef]
- Touseef, M.; Chen, L.; Yang, K.; Chen, Y. Long-Term Rainfall Trends and Future Projections over Xijiang River Basin, China. Adv. Meteorol. 2020, 2020, 6852148. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.; De Jeu, R.; Gash, J.; Holmes, T.; Dolman, A. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Diaz, H.F.; Markgraf, V. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Bayen, A.M.; Siauw, T. An Introduction to MATLAB® Programming and Numerical Methods for Engineers; Academic Press: Boston, MA, USA, 2015. [Google Scholar]
- Sein, Z.M.M.; Zhi, X.; Ogou, F.K.; Nooni, I.K.; Paing, K.H. Evaluation of coupled model intercomparison project phase 6 models in simulating precipitation and its possible relationship with sea surface temperature over Myanmar. Front. Environ. Sci. 2022, 10, 993802. [Google Scholar] [CrossRef]
- Schulzweida, U. CDO User Guide (Version 2.2.1); Max Planck Institute for Meteorology: Hamburg, Germany, 2023. [Google Scholar]
- Zuo, C.; Luo, L.; Liu, W. Effects of increased humidity on physiological responses, thermal comfort, perceived air quality, and Sick Building Syndrome symptoms at elevated indoor temperatures for subjects in a hot-humid climate. Indoor Air 2021, 31, 524–540. [Google Scholar] [CrossRef]
- Yu, Y.J.; Tan, J.G.; Wang, H.; Lin, C.C. The Effect of Relative Humidity on Physiological Equivalent Temperature in Hot Environment. Adv. Mater. Res. 2013, 779–780, 1266–1271. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Jiqin, H.; Gelata, F.T.; Chaka Gemeda, S. Application of MK trend and test of Sen’s slope estimator to measure impact of climate change on the adoption of conservation agriculture in Ethiopia. J. Water Clim. Change 2023, 14, 977–988. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Gong, T.; Hagan, D.F.T.; Wang, Y.; Jiang, T.; Su, B. Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theor. Appl. Climatol. 2019, 138, 1493–1510. [Google Scholar] [CrossRef]
- Agarwal, S.; Suchithra, A.S.; Gurjar, S.P. Analysis and Interpretation of Rainfall Trend using Mann- Kendall’s and Sen’s Slope Method. Indian J. Ecol. 2021, 48, 453–457. [Google Scholar]
- Rebi, A.; Hussain, A.; Hussain, I.; Cao, J.; Ullah, W.; Abbas, H.; Ullah, S.; Zhou, J. Spatiotemporal Precipitation Trends and Associated Large-Scale Teleconnections in Northern Pakistan. Atmosphere 2023, 14, 871. [Google Scholar] [CrossRef]
- Griffith, D.A.; Griffith, D.A. Spatial Filtering; Springer: Berlin/Heidelberg, Germany, 2003; pp. 91–130. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Pearson, K. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. In Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character; The Royal Society: Lonon, UK, 1896; pp. 253–318. [Google Scholar]
- Sarpong, L.; Li, Y.; Cheng, Y.; Nooni, I.K. Temporal characteristics and trends of nitrogen loadings in lake Taihu, China and its influencing mechanism at multiple timescales. J. Environ. Manag. 2023, 344, 118406. [Google Scholar] [CrossRef]
- Loua, R.T.; Bencherif, H.; Mbatha, N.; Bègue, N.; Hauchecorne, A.; Bamba, Z.; Sivakumar, V. Study on temporal variations of surface temperature and rainfall at conakry airport, Guinea: 1960–2016. Climate 2019, 7, 93. [Google Scholar] [CrossRef]
- Funk, C.; Michaelsen, J.; Marshall, M.T. Mapping recent decadal climate variations in precipitation and temperature across Eastern Africa and the Sahel. In Remote Sensing of Drought; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Collins, J.M. Temperature Variability over Africa. J. Clim. 2011, 24, 3649–3666. [Google Scholar] [CrossRef]
- Nicholson, S.E. The ITCZ and the seasonal cycle over equatorial Africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Nooni, I.K.; Hagan, D.F.T.; Wang, G.; Ullah, W.; Li, S.; Lu, J.; Bhatti, A.S.; Shi, X.; Lou, D.; Prempeh, N.A. Spatiotemporal characteristics and trend analysis of two evapotranspiration-based drought products and their mechanisms in sub-Saharan Africa. Remote Sens. 2021, 13, 533. [Google Scholar] [CrossRef]
- Onyutha, C. Trends and variability of temperature and evaporation over the African continent: Relationships with precipitation. Atmósfera 2021, 34, 267–287. [Google Scholar] [CrossRef]
- Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. [Google Scholar] [CrossRef]
- Nicholson, S.E. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim. Dyn. 2009, 32, 1155–1171. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Glob. Planet. Change 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Ayoade, J. Introduction to Climatology for the Tropics; Wiley: Chichester, UK, 1983. [Google Scholar]
- Suzuki, T. Seasonal variation of the ITCZ and its characteristics over central Africa. Theor. Appl. Climatol. 2011, 103, 39–60. [Google Scholar] [CrossRef]
- Mamalakis, A.; Randerson, J.T.; Yu, J.-Y.; Pritchard, M.S.; Magnusdottir, G.; Smyth, P.; Levine, P.A.; Yu, S.; Foufoula-Georgiou, E. Zonally contrasting shifts of the tropical rain belt in response to climate change. Nat. Clim. Change 2021, 11, 143–151. [Google Scholar] [CrossRef]
- Longandjo, G.-N.T.; Rouault, M. Revisiting the Seasonal Cycle of Rainfall over Central Africa. J. Clim. 2024, 37, 1015–1032. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Pierrehumbert, R.T.; Brogniez, H.; Roca, R. Chapter 6 On the Relative Humidity of the Atmosphere. In The Global Circulation of the Atmosphere; Tapio, S., Adam, H.S., Eds.; Princeton University Press: Princeton, NJ, USA, 2008; pp. 143–185. [Google Scholar]
- Oueslati, B.; Camberlin, P.; Zoungrana, J.; Roucou, P.; Diallo, S. Variability and trends of wet season temperature in the Sudano-Sahelian zone and relationships with precipitation. Clim. Dyn. 2018, 50, 1067–1090. [Google Scholar] [CrossRef]
- Sambou, M.-J.G.; Pohl, B.; Janicot, S.; Landry Famien, A.M.; Roucou, P.; Badiane, D.; Gaye, A.T. Heat waves in spring from Senegal to Sahel: Evolution under climate change. Int. J. Climatol. 2021, 41, 6238–6253. [Google Scholar] [CrossRef]
- Demissie, T.; Gebrechorkos, S.H. Spatio-Temporal Trends in Precipitation, Temperature, and Extremes: A Study of Malawi and Zambia (1981–2021). Sustainability 2024, 16, 3885. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Nash, D.J.; Chase, B.M.; Grab, S.W.; Shanahan, T.M.; Verschuren, D.; Asrat, A.; Lézine, A.-M.; Umer, M. Temperature variability over Africa during the last 2000 years. Holocene 2013, 23, 1085–1094. [Google Scholar] [CrossRef]
- Lorenz, R.; Davin, E.L.; Seneviratne, S.I. Modeling land-climate coupling in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res. Atmos. 2012, 117, D20109. [Google Scholar] [CrossRef]
- Avissar, R. Recent advances in the representation of land-atmosphere interactions in general circulation models. Rev. Geophys. 1995, 33, 1005–1010. [Google Scholar] [CrossRef]
- Eludoyin, O.M.; Adelekan, I.O.; Webster, R.; Eludoyin, A.O. Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int. J. Climatol. 2013, 34, 2000–2018. [Google Scholar] [CrossRef]
- Saley, I.A.; Salack, S.; Sanda, I.S.; Moussa, M.S.; Bonkaney, A.L.; Ly, M.; Fodé, M. The possible role of the Sahel Greenbelt on the occurrence of climate extremes over the West African Sahel. Atmos. Sci. Lett. 2019, 20, e927. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Ingram, W.; Tsushima, Y.; Satoh, M.; Roberts, M.; Vidale, P.L.; O’Gorman, P.A. Relative humidity changes in a warmer climate. J. Geophys. Res. Atmos. 2010, 115, D09104. [Google Scholar] [CrossRef]
- Cho, J.; Lee, Y.-W.; Lee, H.-S. The effect of precipitation and air temperature on land-cover change in the Sahel. Water Environ. J. 2015, 29, 439–445. [Google Scholar] [CrossRef]
- Ghil, M.; Lucarini, V. The physics of climate variability and climate change. Rev. Mod. Phys. 2020, 92, 035002. [Google Scholar] [CrossRef]
- Trenberth, K.E. The definition of el nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- Alexander, L.V.; Uotila, P.; Nicholls, N.; Lynch, A. Influence of ENSO on global temperature and precipitation extremes. Geophys. Res. Lett. 2010, 37, L16810. [Google Scholar] [CrossRef]
- Viitanen, H.; Toratti, T.; Makkonen, L. Development of service life model for wooden structures. In Proceedings of the 12th International Conference on Durability of Building Materials and Components, XII DBMC, Porto, Portugal, 12–15 April 2011; pp. 495–502. [Google Scholar]
RH | Condition Range | Implication for Human Comfort |
---|---|---|
Low RH | <30% | Drier conditions, low moisture availability. Often leads to discomfort due to skin dryness, high evaporation. |
Moderate RH | 30–60% | Standard, comfortable range. Optimal for human comfort. |
High RH | 60–90% | Wetter conditions, high moisture availability, likelihood of precipitation. Often lead to discomfort in hot conditions as it impedes the evaporation of sweat. |
Very high RH | >90% | Saturation (air holds large amounts of moisture), often occurs during monsoon seasons in tropics and coastal areas. Extremely uncomfortable in hot conditions, makes the temperature feel much warmer. |
Predictor Variables | Coefficient (β) | Std. Error | t-Value | p-Value | Significance |
---|---|---|---|---|---|
Intercept | 21.1958 | 0.037 | 573.529 | 0.000 | |
ENSO | −0.0235 | 0.054 | −0.433 | 0.668 | Not significant |
IOD | 0.0580 | 0.077 | 0.757 | 0.454 | Not significant |
NAO | −0.2599 | 0.080 | −3.233 | 0.003 | Significant |
PDO | 0.2269 | 0.164 | 1.385 | 0.175 | Not significant |
Predictor Variables | Coefficient (β) | Std. Error | t-Value | p-Value | Significance |
---|---|---|---|---|---|
Intercept | −0.1179 | 0.178 | −0.663 | 0.512 | Not significant |
ENSO | 0.2357 | 0.263 | 0.900 | 0.374 | Not significant |
IOD | 0.0955 | 0.369 | 0.259 | 0.797 | Not significant |
NAO | −0.1509 | 0.387 | −0.390 | 0.699 | Not significant |
PDO | −0.9587 | 0.788 | −1.216 | 0.232 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nooni, I.K.; Ogou, F.K.; Saidou Chaibou, A.A.; Fianko, S.K.; Atta-Darkwa, T.; Prempeh, N.A. Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics. Atmosphere 2025, 16, 828. https://doi.org/10.3390/atmos16070828
Nooni IK, Ogou FK, Saidou Chaibou AA, Fianko SK, Atta-Darkwa T, Prempeh NA. Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics. Atmosphere. 2025; 16(7):828. https://doi.org/10.3390/atmos16070828
Chicago/Turabian StyleNooni, Isaac Kwesi, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Samuel Koranteng Fianko, Thomas Atta-Darkwa, and Nana Agyemang Prempeh. 2025. "Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics" Atmosphere 16, no. 7: 828. https://doi.org/10.3390/atmos16070828
APA StyleNooni, I. K., Ogou, F. K., Saidou Chaibou, A. A., Fianko, S. K., Atta-Darkwa, T., & Prempeh, N. A. (2025). Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics. Atmosphere, 16(7), 828. https://doi.org/10.3390/atmos16070828