Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field
Abstract
1. Introduction
2. Theory
2.1. Finite Temperature String (FTS)
2.2. Polarization and Stark Effect of Molecules Under External Electric Field
3. Results and Discussion
3.1. Cooperativity Transfer of Intermolecular Double-Proton Under External Electric Field
3.1.1. Structure of Transition State
3.1.2. AIM Analysis for Transition State
3.1.3. Electrostatic Potentials
3.1.4. Frequency
3.1.5. Barrier Heights of Transition State and Rate Constant
3.1.6. Solvation Effect
3.2. FTS of Conformational Transformation Under External Electric Field
3.2.1. Initial String and Convergence
3.2.2. Potential of Mean Force (PMF)
3.2.3. Free Energy Landscape
3.3. Comparison of Double-Proton Transfer and Conformation Transformation
4. Calculation and Simulation Details
4.1. Chemical Kinetics Calculation Details
4.2. Simulation Details of FTS
5. Conclusions
- (1)
- Due to the first-order Stark effect induced by the dipole moment, the external electric fields parallel to the direction of the molecular dipole moment had a significant influence on the structures, AIMs, and surface ESPs of the transition states of the double-proton cooperativity transfer, accompanied by some significant linear relationships between them and the strengths of the external electric fields. The corresponding products were controlled by the direction of the external electric field. From the gas to solvent phase, the barrier heights increased.
- (2)
- Umbrella sampling FTS and parameter averaging can quickly converge the OPs (ϕ, ψ), thereby obtaining the PMF and free-energy landscape of the conformational transformation.
- (3)
- Under the external electric field, the barrier height of the intermolecular double-proton cooperativity transfer was close to that of the conformational transformation, indicating the competition between them. The external electric field affected greatly the double-proton transfer, while it had little effect on the free energy landscape of the conformational transformation.
- (4)
- Two mechanisms are important for the drug, and they are both helpful in the selection of anticoccidial drugs. In order to increase the activity of anticoccidial drugs, polarity groups should be added to make the proton cooperativity transfer easy, and the branched chain of the molecule should be increased to make the conformational transformation to be easy.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labet, V.; Neveux, G.A.; Alikhani, E.M. How to search for and reveal a hidden intermediate? The ELF topological description of non-synchronicity in double proton transfer reactions under oriented external electric field. J. Mol. Model. 2024, 30, 367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Ding, L.X.; Qu, Z.S. Effect of External Electric Field on Nitrogen Activation on a Trimetal Cluster. Chemphyschem 2024, 25, e202300961. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, K.; Shaik, S.; Ramanan, R. Two-Way Catalysis in a Diels—Alder Reaction Limits Inhibition Induced by an External Electric Field. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307579. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yan, Z.; Li, X.; Chung, L.W. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. J. Phys. Chem. Lett. 2023, 14, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Antoine, G.; Vanessa, L.; Esmail, M.A. Influence of an Oriented External Electric Field on the Mechanism of Double Proton Transfer between Pyrazole and Guanidine: From an Asynchronous Plateau Transition State to a Synchronous or Stepwise Mechanism. J. Phys. Chem. A 2022, 126, 3057–3071. [Google Scholar] [CrossRef] [PubMed]
- Takekawa, G.; Nakasone, Y.; Kamiya, Y.; Asanuma, H.; Terazima, M. Reaction and interaction dynamics of azobenzene-tethered DNA with T7 RNA polymerase. Phys. Chem. Chem. Phys. 2025, 27, 3302–3312. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, A. Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation. Nat. Commun. 2025, 16, 786. [Google Scholar] [CrossRef] [PubMed]
- Lushchekina, S.; Weiner, L.; Ashani, Y.; Emrizal, R.; Firdaus-Raih, M.; Silman, I.; Sussman, J.L. Why is binding of a divalent metal cation to a structural motif containing four carboxylate residues not accompanied by a conformational change? Protein Sci. 2024, 33, e5206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, Y.; Yang, Z.; Liu, W.; Zhong, S.; Bai, J.; Guo, X. Unveiling the Mechanism of Deprotonation and Proton Transfer of DNA Polymerase Catalysis via Single-Molecule Conductance. Adv. Sci. 2024, 12, e2408112. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, M.; Chiba, Y.; Saito, K.; Ishikita, H. Proton transfer and conformational changes along the hydrogen bond network in heliorhodopsin. Commun. Biol. 2022, 5, 1336. [Google Scholar] [CrossRef] [PubMed]
- Sindrila, B.D.; Arindam, B.; Amalendu, C. A QM/MM simulation study of transamination reaction at the active site of aspartate aminotransferase: Free energy landscape and proton transfer pathways. J. Comput. Chem. 2020, 41, 2684–2694. [Google Scholar] [CrossRef] [PubMed]
- Davydov, R.; Khadka, N.; Yang, Z.Y.; Fielding, A.J.; Lukoyanov, D.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements). Isr. J. Chem. 2016, 56, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.J.; Milic, M.; Targos, K.; Franz, A.K. NMR quantification of H-bond donating ability for bioactive functional groups and isosteres. Eur. J. Med. Chem. 2020, 207, 112693. [Google Scholar] [CrossRef] [PubMed]
- Bandrauk, A.D.; Sedik, E.S.; Matta, C.F. Effect of Absolute Laser Phase on Reaction Paths in Laser-Induced Chemical Reactions. J. Chem. Phys. 2004, 121, 7764–7775. [Google Scholar] [CrossRef] [PubMed]
- Bandrauk, A.D.; Sedik, E.S.; Matta, C.F. Laser Control of Reaction Paths in Ion-molecule Reactions. Mol. Phys. 2006, 104, 95–102. [Google Scholar] [CrossRef]
- Nagle, J.F.; Morowitz, H.J. Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. USA 1978, 75, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Shinobu, A.; Agmon, N. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis. J. Phys. Chem. A 2009, 113, 7253–7266. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, V.K.; Girvin, M.E. Structural changes linked to proton translocation by subunit of the ATP synthase. Nature 1999, 402, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Podolyan, Y.; Gorb, L.; Leszczynski, J. Ab Initio Study of the Prototropic Tautomerism of Cytosine and Guanine and Their Contribution to Spontaneous Point Mutations. Int. J. Mol. Sci. 2003, 4, 410–421. [Google Scholar] [CrossRef]
- Abedi, R.; Shekaari, H.; Mokhtarpour, M.; Faraji, S. Determination of osmotic coefficients and activity coefficients of calcium d-pantothenate, cefazolin sodium, and ceftriaxone sodium drugs in aqueous solutions of amino acids by using vapor pressure osmometry at 310.15 K. J. Chem. Thermodyn. 2023, 181, 107024. [Google Scholar] [CrossRef]
- Shukla, S.; Jakowski, J.; Kadian, S.; Narayan, R.J. Computational approaches to delivery of anticancer drugs with multidimensional nanomaterials. Comput. Struct. Biotechnol. J. 2023, 21, 4149–4158. [Google Scholar] [CrossRef] [PubMed]
- Saikia, J.; Devi, T.G.; Karlo, T. Study of the molecular interaction between hormone and anti-cancer drug using DFT and vibrational spectroscopic methods. J. Mol. Struct. 2022, 1250, 131889. [Google Scholar] [CrossRef]
- Sardari, D.; Verga, N. Calculation of Externally Applied Electric Field Intensity for Disrupion of Cancer Cell Proliferation. Electromagn. Biol. Med. 2010, 29, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Masterson, A.N.; Hati, S.; Ren, G.; Liyanage, T.; Manicke, N.E.; Goodpaster, J.V.; Sardar, R. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Anal. Chem. 2021, 93, 2578–2588. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.; Chillawar, R.R.; Tadi, K.K.; Motghare, R.V. Molecular Imprinted Polymer Based Impedimetric Sensor for Trace Level Determination of Digoxin in Biological and Pharmaceutical Samples. Curr. Anal. Chem. 2018, 14, 474–482. [Google Scholar] [CrossRef]
- De Las Rivas, J.; Alonso-López, D.; Arroyo, M.M. Human Interactomics: Comparative Analysis of Different Protein Interaction Resources and Construction of a Cancer Protein-Drug Bipartite Network. Adv. Protein Chem. Struct. Biol. 2018, 111, 263–282. [Google Scholar] [PubMed]
- Zhong, J.; Jiang, X.M. Recent progress in nuclear magnetic resonance spectrum for drug research and development. Spectrosc. Spectr. Anal. 2015, 35, 282. (In Chinese) [Google Scholar]
- Kaduk, J.A.; Gindhart, A.M.; Gates-Rector, S.; Blanton, T.N. Crystal structure of nequinate, C22H23NO4. Powder Diffr. 2022, 37, 211–215. [Google Scholar] [CrossRef]
- Shalini, S.T.; Prathiviraj, R.; Senthilraja, P. Metagenomic analysis and bioactive profiling of kombucha fermentation: Antioxidant, antibacterial activities, and molecular docking insights into gastric cancer therapeutics. Toxicol. Res. 2024, 13, tfae224. [Google Scholar] [CrossRef] [PubMed]
- Pietruk, K.; Olejnik, M.; Posyniak, A. Coccidiostats in milk: Development of a multi-residue method and transfer of salinomycin and lasalocid from contaminated feed. Food Addit. Contam. Part A 2018, 35, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Moloney, M.; O’mahony, J.; O’kennedy, R.; Danaher, M. Determination of 20 coccidiostats in milk, duck muscle and non-avian muscle tissue using UHPLC-MS/MS. Food Addit. Contam. Part A 2013, 30, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Hayashi, H.; Sasamoto, T.; Kanda, M.; Kusano, T.; Matsushima, Y.; Kanai, S.; Takeba, K.; Nagayama, T. Determination of nequinate and buquinolate in livestock products using liquid chromatography-tandem mass spectrometry. J. Food Hyg. Soc. Jpn. 2011, 52, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Fodey, T.L.; Crooks, S.R.H.; Moloney, M.; O’Mahony, J.; Delahaut, P.; O’Kennedy, R.; Danaher, M. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 2014, 97, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Kart, A.; Bilgili, A. Ionophore antibiotics: Toxicity, mode of action and neurotoxic aspect of carboxylic ionophores. J. Anim. Vet. Adv. 2008, 7, 748–751. [Google Scholar]
- Sołek, P.; Stępniowska, A.; Koszła, O.; Jankowski, J.; Ognik, K. Antibiotics/coccidiostat exposure induces gut-brain axis remodeling for Akt/mTOR activation and BDNF-mediated neuroprotection in APEC-infected turkeys. Poult. Sci. 2025, 104, 104636. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, J.; Wei, S.; Wang, C.; Zhang, L.; Wang, M.; Liu, Y.; Fei, C.; Xue, F.; Zhang, K. Determination of ethanamizuril, a novel triazine coccidiostat, in rat plasma by ultra-performance liquid chromatography system-tandem mass spectrometry and its application in a toxicological study. Biomed. Chromatogr. 2019, 33, e4652. [Google Scholar] [CrossRef] [PubMed]
- Arabi, A.A.; Matta, C.F. Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Phys. Chem. Chem. Phys. 2011, 13, 13738–13748. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.B.; Wang, Y.; Feng, W.L. Mechanism of pyrolysis of coccidiostat and benzoylformic acid and calculations of thermal rate constants. Acta Phys.-Chim. Sin. 1999, 15, 431–435. [Google Scholar]
- Trolle, G.B.; Kubečka, J.; Elm, J. Modeling local aerosol surface environments: Clustering of XAAAXXX analogs, water, and Na+, Cl− ions. Acs Omega 2025, 10, 1470–1485. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Stuyver, T. Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry; The Royal Society of Chemistry: London, UK, 2021. [Google Scholar]
- Shaik, S.; Ramanan, R.; Danovich, D.; Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 2018, 47, 5125–5145. [Google Scholar] [CrossRef] [PubMed]
- Angelov, I.; Zaharieva, L.; Antonov, L. Effects and Influence of External Electric Fields on the Equilibrium Properties of Tautomeric Molecules. Molecules 2023, 28, 695. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, L.; Angelov, I.; Antonov, L. Stationary External Electric Field—Mimicking the Solvent Effect on the Ground-State Tautomerism and Excited-State Proton Transfer in 8-(Benzo[d]thiazol-2-yl)quinolin-7-ol. Molecules 2024, 29, 3506. [Google Scholar] [CrossRef] [PubMed]
- Joll, K.; Schienbein, P.; Rosso, K.M.; Blumberger, J. Mechanism of Fe(II) Chemisorption on hematite(001) revealed by reactive neural network potential molecular dynamics. J. Phys. Chem. Lett. 2025, 16, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Dehnari, E.; Jamshidi, Z.; Taherinia, D. Electron transfer kinetics in ferrocene-terminated self-assembled monolayers: The effect of ferrocene surface coverage variation. Electrochim. Acta 2025, 514, 145619. [Google Scholar] [CrossRef]
- Sweeny, B.C.; Ard, S.G.; Viggiano, A.A.; Shuman, N.S. Activation of CH4 and C2H6 by Al2O2+ from 300 to 600 K. Int. J. Mass. Spectrom. 2025, 508, 117384. [Google Scholar] [CrossRef]
- Trang, V.M.; Ha, N.X.; Son, N.T. Antioxidative potential of 3-methoxyluteolin: Density functional theory (DFT), molecular docking, and dynamics-a combined experimental and computational study. Chem. Biodivers. 2024, 11, e202402993. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.; Ventura, A.; Lindgren, E.; Fleming, F.; Santos, A.; Barbosa, A. A detailed analysis of the key steps of the cyclopentene autoignition mechanism from calculated RRKM rate constants associated with ignition delay time simulations. Combust. Flame 2025, 272, 113862. [Google Scholar] [CrossRef]
- Joyal-Desmarais, K.; Stojanovic, J.; Kennedy, E.B.; Enticott, J.C.; Boucher, V.G.; Vo, H.; Košir, U.; Lavoie, K.L.; Bacon, S.L. How well do covariates perform when adjusting for sampling bias in online COVID-19 research? Insights from multiverse analyses. Eur. J. Epidemiol. 2022, 37, 1233–1250. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Dong, L.; Lin, M.; Liu, M.; Gong, Z.; Xu, W.; Alonge, G.; Li, S. Monitoring of a nearshore small dolphin species using passive acoustic platforms and supervised machine learning techniques. Front. Mar. Sci 2020, 7, 00267. [Google Scholar] [CrossRef]
- Sundar, V.S. Estimating rare events in biochemical systems using conditional sampling. J. Chem. Phys 2017, 146, 044117. [Google Scholar] [CrossRef] [PubMed]
- Zinovjev, K.; Tunon, I. Adaptive finite temperature string method in collective variables. J. Phys. Chem. A 2017, 121, 9764–9772. [Google Scholar] [CrossRef] [PubMed]
- Weinan, E.; Ren, W.; Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 2002, 66, 052301. [Google Scholar] [CrossRef]
- Ren, F.-D.; Liu, Y.-Z.; Ding, K.-W.; Chang, L.-L.; Cao, D.-L.; Liu, S. Finite temperature string by K-means clustering sampling with order parameter as collective variables for molecular crystal: Application to polymorphic transformation between β-CL-20 and ε-CL-20. Phys. Chem. Chem. Phys. 2024, 26, 3500–3515. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Wang, X.L.; Zhang, Q.; Wang, X.; Chang, L.; Zhang, Z. Experimental and theoretical investigation of external electric-field-induced crystallization of TKX-50 from solution by finite-temperature string with order parameters as collective variables for ionic crystals. Molecules 2024, 29, 1159. [Google Scholar] [CrossRef] [PubMed]
- Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G. String method in collective variables: Minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 2006, 125, 024106. [Google Scholar] [CrossRef] [PubMed]
- Gordy, W.; Cook, R.L. Microwave Molecular Spectra; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Kochel, A.; Łydżba-Kopczyńska, B.; Filarowski, A. Very Strong Hydrogen Bond in Nitrophthalic Cocrystals. Molecules 2024, 29, 3565. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Kochel, A.; Filarowski, A. Inter-vs. Intra-Molecular Hydrogen Bond in Complexes of Nitrophthalic Acids with Pyridine. Int. J. Mol. Sci. 2023, 24, 5248. [Google Scholar] [CrossRef] [PubMed]
- Casanova, F.; Nascimento, L.G.L.; Silva, N.F.; de Carvalho, A.F.; Gaucheron, F. Interactions between caseins and food-derived bioactive molecules: A review. Food Chem. 2021, 359, 129820. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Meng, X.; Tang, X.; Zhang, J.; Zhang, Z.; He, Y. A novel allosteric driver mutation of β-glucuronidase promotes head and neck squamous cell carcinoma progression through STT3B-mediated PD-L1 N-glycosylation. Medcomm 2025, 6, e70062. [Google Scholar] [CrossRef] [PubMed]
- Bilkan, M.T.; Sahin, O.; Yurdakul, S. Experimental and DFT studies of solvent effects on molecular structure and physical properties of dipyridylamine pyridine based ligand. J. Mol. Struct. 2017, 1133, 580–590. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applicationsto isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvationmodels. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Mallik, B.S. Proton transfer from water to anion: Free energy profile from first principles metadynamics simulations. J. Mol. Liq. 2016, 219, 810–814. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Punnathanam, S.N.; Ayappa, K.G. Finite temperature string method with umbrella sampling using path collective variables: Application to secondary structure change in a protein. Soft Matter 2022, 18, 7593–7603. [Google Scholar] [CrossRef] [PubMed]
- Das, R.S.; Tiwari, B.K.; Selli, S.; Kelebek, H.; Garcia-Vaquero, M. Exploring pilot scale ultrasound-microwave assisted extraction of organic acids and phytochemicals from brown seaweed Alaria esculenta. Algal Res. 2025, 86, 103896. [Google Scholar] [CrossRef]
- Guo, N.; Yan, Y.; Li, Q.; Yang, Y. Pyruvic acid improves cold-storage quality of plum fruit by stimulating cyanide-resistant respiration and regulating sugar metabolism. Sci. Hortic. 2025, 340, 113926. [Google Scholar] [CrossRef]
- Frisch, M.J.E.A.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules. a Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Maragliano, L.; Vanden-Einden, E. On-the-fly string method for minimum free energy paths calculation. Chem. Phys. Lett. 2007, 446, 182–190. [Google Scholar] [CrossRef]
- Phillips, J.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef]
Field (×108 Vm−1) | Im(v) a | ∆G298.15K a | ∆G298.15K b | ∆G298.15K c | κ298.15K | k298.15K c |
---|---|---|---|---|---|---|
No field | 1517.8 1426.3 d | 16.3 17.4 d | 16.0 18.2 d | 17.3 (15.2 e) 17.4 d | 2.18 | 1.83 × 109 1.09 × 109 d |
41.14 (+x) | 1283.6 1255.7 d | 13.6 14.7 d | 14.3 14.9 d | 5.7 (6.8 e) 6.0 d | 1.71 | 6.32 × 1016 4.89 × 1016 d |
35.97 (+x) | 1316.3 | 14.0 | 14.7 | 6.5 | 1.56 | 8.19 × 1015 |
30.84 (+x) | 1388.9 | 14.5 | 15.0 | 6.8 | 1.27 | 2.06 × 1015 |
25.70 (+x) | 1418.8 | 14.8 | 15.2 | 7.7 | 1.96 | 1.35 × 1015 |
20.56 (+x) | 1452.2 | 15.3 | 15.3 | 8.5 | 1.87 | 7.29 × 1014 |
15.42 (+x) | 1480.5 | 15.9 | 15.6 | 9.1 | 2.03 | 2.87 × 1013 |
10.28 (+x) | 1496.3 | 15.9 | 15.7 | 11.3 | 2.11 | 3.91 × 1011 |
5.14 (+x) | 1513.7 | 16.0 | 15.8 | 15.1 | 2.16 | 2.68 × 1010 |
5.14 (−x) | 1528.2 | 16.4 | 16.2 | 17.4 | 2.21 | 1.66 × 109 |
10.28 (−x) | 1566.9 | 16.6 | 16.3 | 17.6 | 2.18 | 1.01 × 109 |
15.42 (−x) | 1593.1 | 17.0 | 16.7 | 17.9 | 2.16 | 9.89 × 108 |
20.56 (−x) | 1601.5 | 17.4 | 16.8 | 18.2 | 2.19 | 8.11 × 107 |
25.70 (−x) | 1623.7 | 17.8 | 17.2 | 18.4 | 2.32 | 6.3 × 107 |
30.84 (−x) | 1638.2 | 18.0 | 17.4 | 18.9 | 2.18 | 1.95 × 107 |
35.97 (−x) | 1671.6 | 18.6 | 17.5 | 19.6 | 2.15 | 7.78 × 106 |
41.14 (−x) | 1689.8 1652.7 d | 18.9 18.9 d | 18.0 18.8 d | 19.9 20.1 d (17.3 e) | 2.33 | 5.11 × 105 1.99 × 105 d |
41.14 (+y) | 1566.7 | 14.1 | 14.2 | 19.4 | 2.57 | 8.52 × 106 |
35.97 (+y) | 1540.7 | 14.4 | 14.4 | 19.3 | 2.40 | 9.91 × 106 |
30.84 (+y) | 1532.7 | 14.7 | 14.6 | 18.4 | 2.51 | 6.96 × 107 |
25.70 (+y) | 1535.7 | 15.0 | 14.8 | 18.2 | 2.63 | 1.06 × 108 |
20.56 (+y) | 1563.5 | 15.5 | 15.3 | 18.0 | 2.28 | 8.85 × 108 |
15.42 (+y) | 1542.6 | 15.8 | 15.3 | 17.8 | 2.17 | 9.98 × 108 |
10.28 (+y) | 1523.8 | 16.0 | 15.8 | 17.5 | 2.15 | 2.66 × 109 |
5.14 (+y) | 1508.0 | 16.2 | 15.9 | 17.3 | 2.19 | 8.18 × 109 |
5.14 (−y) | 1506.6 | 16.3 | 16.3 | 17.1 | 2.26 | 9.25 × 109 |
10.28 (−y) | 1495.0 | 16.5 | 16.4 | 17.0 | 2.12 | 9.99 × 109 |
15.42 (−y) | 1492.5 | 16.9 | 16.6 | 16.9 | 2.18 | 1.01 × 1010 |
20.56 (−y) | 1482.3 | 17.2 | 16.8 | 16.5 | 2.32 | 1.93 × 1010 |
25.70 (−y) | 1473.6 | 17.3 | 17.0 | 16.2 | 2.05 | 2.01 × 1010 |
30.84 (−y) | 1435.2 | 18.1 | 17.3 | 15.2 | 2.17 | 2.21 × 1010 |
35.97 (−y) | 1426.8 | 18.3 | 17.8 | 15.2 | 2.33 | 2.97 × 1010 |
41.14 (−y) | 1418.9 | 18.8 | 18.0 | 14.3 | 2.25 | 8.50 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-W.; Feng, R.-Z.; Li, X.-J.; Liu, A.-C.; Wang, E.-L. Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field. Molecules 2025, 30, 3115. https://doi.org/10.3390/molecules30153115
Li Y-W, Feng R-Z, Li X-J, Liu A-C, Wang E-L. Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field. Molecules. 2025; 30(15):3115. https://doi.org/10.3390/molecules30153115
Chicago/Turabian StyleLi, Ya-Wen, Rui-Zhi Feng, Xiao-Jiang Li, Ai-Chuan Liu, and En-Lin Wang. 2025. "Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field" Molecules 30, no. 15: 3115. https://doi.org/10.3390/molecules30153115
APA StyleLi, Y.-W., Feng, R.-Z., Li, X.-J., Liu, A.-C., & Wang, E.-L. (2025). Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field. Molecules, 30(15), 3115. https://doi.org/10.3390/molecules30153115