Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = supramolecular receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5237 KiB  
Article
A Detailed Thermodynamic Description of Ion Pair Binding by a Calix[4]arene Derivative Containing Urea and Amide Functionalities
by Marija Cvetnić, Tamara Rinkovec, Robert Vianello, Gordan Horvat, Nikola Bregović and Vladislav Tomišić
Molecules 2025, 30(11), 2464; https://doi.org/10.3390/molecules30112464 - 4 Jun 2025
Viewed by 703
Abstract
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents [...] Read more.
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents a difficult task that is rarely resolved due to various coupled processes. Here, we present a comprehensive study of ion pair (NaCl, NaHSO4, and NaH2PO4) binding by a ureido–amide calix[4]arene host in acetonitrile using a series of experimental techniques and molecular dynamics simulations. We devoted particular attention to characterizing the side processes (ion association and salt precipitation) and included them in the models describing ion pair complex formation. For this purpose, a multimethod approach (potentiometry, conductometry, ITC, flame AES) was employed, generating reliable data which provided insight into the thermodynamic effect of each included equilibrium. Positive cooperativity was observed in the context of NaCl and NaHSO4 binding by the studied calixarene. Computational results related to the NaCl complex in acetonitrile revealed that favorable Coulombic interactions, changes in affinity for solvent molecule inclusion, and intramolecular hydrogen bonding contributed to cation-induced cooperativity. Full article
Show Figures

Graphical abstract

8 pages, 4572 KiB  
Communication
Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene
by Manuel Stapf, Wilhelm Seichter and Monika Mazik
Molbank 2025, 2025(2), M2008; https://doi.org/10.3390/M2008 - 16 May 2025
Viewed by 987
Abstract
Representatives of the hexasubstituted benzene derivatives, also known as hexa-hosts, have been the subject of extensive studies in solution and in the solid state, including the investigation of their ability to act as artificial receptors for various substrates, as well as detailed conformational [...] Read more.
Representatives of the hexasubstituted benzene derivatives, also known as hexa-hosts, have been the subject of extensive studies in solution and in the solid state, including the investigation of their ability to act as artificial receptors for various substrates, as well as detailed conformational analyses. In this paper, we describe the X-ray crystal structure of hexakis(acetoxymethyl)benzene (1), a member of the above class of compounds. The molecules of 1 adopt an aaabbb conformation, in which three side-arms point to the same face of the central benzene ring, while the other three point in the opposite direction. As the compound lacks strong hydrogen bond donors, C–H···O hydrogen bonds connect the molecules to a three-dimensional supramolecular network. According to the Hirshfeld surface analysis, the H∙∙∙O/O∙∙∙H interactions represent the major contribution of the molecular Hirshfeld surface. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Graphical abstract

18 pages, 7058 KiB  
Article
Molecular Structure and GPR35 Receptor Docking of 1,3-Phenylene Bis-Oxalamide Derivatives
by Juan Saulo González-González, José Martín Santiago-Quintana, José Luis Madrigal-Angulo, Lina Barragán-Mendoza, Nancy E. Magaña-Vergara, Efrén V. García-Báez, Itzia Irene Padilla-Martínez and Francisco Javier Martínez-Martínez
Crystals 2025, 15(4), 371; https://doi.org/10.3390/cryst15040371 - 17 Apr 2025
Viewed by 511
Abstract
A series of three 1,3-phenylene bis-oxamides 3ac, structurally related to the GPR35 receptor-agonist drug lodoxamide, has been synthesized by reacting the 1,3-phenylene bis-oxalamates 2a and 2b with amines. The obtained compounds were characterized by 1H and 13C NMR, [...] Read more.
A series of three 1,3-phenylene bis-oxamides 3ac, structurally related to the GPR35 receptor-agonist drug lodoxamide, has been synthesized by reacting the 1,3-phenylene bis-oxalamates 2a and 2b with amines. The obtained compounds were characterized by 1H and 13C NMR, and IR spectroscopy, they showed characteristic signals for the aromatic, N―H, and C=O groups. Molecular structure was determined using single-crystal X-ray diffraction. The supramolecular architecture is driven by N―H···O=C, N―H···N, C—H···π, and O=C···O=C interactions depicting a supramolecular helix (3a) and tapes (3bc). Intermolecular interactions were studied using Hirshfeld surface analysis, where N―H∙∙∙X (X = N, O) hydrogen bonding represents 30.2% to the surface of 3a and 17.8–18.8% to the surface of 3bc. The most energetic interactions involve the amide N—H∙∙∙O hydrogen bonding, contributing in the −113.9 to −97.0 kJ mol−1 range to the crystal energy, being more dispersive than electrostatic in nature. The molecular docking study was performed to evaluate the binding ability of 3ac compounds to the GPR35 receptor, showing a favorable binding in a similar way to lodoxamide. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

26 pages, 6566 KiB  
Review
The B30.2/SPRY-Domain: A Versatile Binding Scaffold in Supramolecular Assemblies of Eukaryotes
by Peer R. E. Mittl and Hans-Dietmar Beer
Crystals 2025, 15(3), 281; https://doi.org/10.3390/cryst15030281 - 19 Mar 2025
Viewed by 845
Abstract
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and [...] Read more.
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and 700 eukaryotic proteins, usually fused to other domains. The B30.2 domain represents a scaffold, which, through six variable loops, binds different unrelated peptides or endogenous low-molecular-weight compounds. At the cellular level, B30.2 proteins engage in supramolecular assemblies with important signaling functions. In humans, B30.2 domains are often found in E3-ligases, such as tripartite motif (Trim) proteins, SPRY domain-containing SOCS box proteins, Ran binding protein 9 and −10, Ret-finger protein-like, and Ring-finger proteins. The B30.2 protein recognizes the target and recruits the E2-conjugase by means of the fused domains, often involving specific adaptor proteins. Further well-studied B30.2 proteins are the methyltransferase adaptor protein Ash2L, some butyrophilins, and Ryanodine Receptors. Although the affinity of an isolated B30.2 domain to its ligand might be weak, it can increase strongly due to avidity effects upon recognition of oligomeric targets or in the context of macromolecular machines. Full article
(This article belongs to the Special Issue Protein Crystallography: The State of the Art)
Show Figures

Graphical abstract

25 pages, 22861 KiB  
Article
Interaction of Avapritinib with Congo Red in Pancreatic Cancer Cells: Molecular Modeling and Biophysical Studies
by Małgorzata Lasota, Daniel Jankowski, Anna Wiśniewska, Łukasz Szeleszczuk, Anna Misterka-Kozaka, Marta Kaczor-Kamińska, Marta Zarzycka, Maksym Patena and Tomasz Brzozowski
Int. J. Mol. Sci. 2025, 26(5), 1980; https://doi.org/10.3390/ijms26051980 - 25 Feb 2025
Viewed by 896
Abstract
Pancreatic cancer is a malignant tumor with one of the worst prognoses among solid tumors, characterized by resistance to treatment. Therefore, there is an urgent need for new methods of targeted therapy. Previous studies have shown that the overexpression of receptor tyrosine kinases [...] Read more.
Pancreatic cancer is a malignant tumor with one of the worst prognoses among solid tumors, characterized by resistance to treatment. Therefore, there is an urgent need for new methods of targeted therapy. Previous studies have shown that the overexpression of receptor tyrosine kinases such as c-KIT or PDGFR can increase proliferation, migration, and invasion of cancer cells. The aim of our study was to analyze aggregates between a supramolecular carrier (Congo red, CR) and a tyrosine kinase inhibitor (BLU-258) as well as to investigate the effect of the free inhibitor and its aggregate with Congo red (CR-BLU-258) on selected properties of pancreatic cells, including these cells’ viability and three-dimensional cell spheroid cultures. To better understand the interactions between Congo red and BLU-258, we used molecular modeling in addition to biophysical methods. These attempts allowed us to determine the optimal molar ratio, which we used for in vitro studies on pancreatic cancer cell lines. A significantly greater decrease in the viability of the tested 3D cultures was observed after 48 h of incubation with CR-BLU-258, which resulted in a lower IC50 value for the tested co-aggregate compared with BLU-258 alone. Moreover, a higher resistance of PANC-1 and BxPC3 spheroid cells to the tested compounds was noted compared with the 2D culture model. A significantly lower response was observed in 3D cell cultures (BxPC3 and PANC-1) treated with BLU-258 alone compared with the 2D culture. Thus, our results showed that both BLU-258 (alone) and in its co-aggregate with Congo red exhibit anticancer activity, inhibiting the growth of pancreatic cancer cells and reducing their viability, survival, and migration. Both tested compounds also affected the phosphorylation of the selected signaling proteins. We conclude that the selected tyrosine kinase inhibitor (alone) and in its co-aggregate with Congo red exhibit anticancer activity and should be considered as a novel effective therapy against pancreatic cancer. Full article
Show Figures

Figure 1

17 pages, 4704 KiB  
Review
The Versatile Applications of Calix[4]resorcinarene-Based Cavitands
by Kaiya Wang, Kejia Yan, Qian Liu, Zhiyao Wang and Xiao-Yu Hu
Molecules 2024, 29(24), 5854; https://doi.org/10.3390/molecules29245854 - 11 Dec 2024
Cited by 4 | Viewed by 1708
Abstract
The advancement of synthetic host–guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the [...] Read more.
The advancement of synthetic host–guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the creation of intricately organized architectures. Within the realm of macrocycles, these cavitands stand out as privileged scaffolds owing to their synthetic adaptability, excellent topological structures, and unique recognition properties. So far, extensive investigations have been conducted on various applications of calix[4]resorcinarene-based cavitands. In this review, we will elaborate on their diverse functions, including catalysis, separation and purification, polymeric materials, sensing, battery materials, as well as drug delivery. This review aims to provide a holistic understanding of the multifaceted roles of calix[4]resorcinarene-based cavitands across various applications, shedding light on their contributions to advancing the field of supramolecular chemistry. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

13 pages, 2510 KiB  
Article
Sandwich-Type Electrochemical Aptasensor with Supramolecular Architecture for Prostate-Specific Antigen
by Anabel Villalonga, Raúl Díaz, Irene Ojeda, Alfredo Sánchez, Beatriz Mayol, Paloma Martínez-Ruiz, Reynaldo Villalonga and Diana Vilela
Molecules 2024, 29(19), 4714; https://doi.org/10.3390/molecules29194714 - 5 Oct 2024
Cited by 4 | Viewed by 1399
Abstract
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface [...] Read more.
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface as the transduction element. The proposed sensing strategy employed an enzyme-modified aptamer as the signalling element to develop a sandwich-type aptasensor for detecting prostate-specific antigen (PSA). To achieve this, screen-printed carbon electrodes (SPCEs) with electrodeposited reduced graphene oxide (RGO) and gold nanoferns (AuNFs) were modified with the CD derivative to subsequently anchor the adamantane-modified anti-PSA aptamer via supramolecular associations. The sensing mechanism involves the affinity recognition of PSA molecules on the aptamer-enriched electrode surface, followed by the binding of an anti-PSA aptamer–horseradish peroxidase complex as a labelling element. This sandwich-type arrangement produces an analytical signal upon the addition of H2O2 and hydroquinone as enzyme substrates. The aptasensor successfully detected the biomarker within a concentration range of 0.5 ng/mL to 50 ng/mL, exhibiting high selectivity and a detection limit of 0.11 ng/mL in PBS. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications)
Show Figures

Graphical abstract

21 pages, 2568 KiB  
Review
Tumor Cell Communications as Promising Supramolecular Targets for Cancer Chemotherapy: A Possible Strategy
by Irina Alekseenko, Lyudmila Zhukova, Liya Kondratyeva, Anton Buzdin, Igor Chernov and Eugene Sverdlov
Int. J. Mol. Sci. 2024, 25(19), 10454; https://doi.org/10.3390/ijms251910454 - 27 Sep 2024
Viewed by 1398
Abstract
Fifty-two years have passed since President Nixon launched the “War on Cancer”. Despite unparalleled efforts and funds allocated worldwide, the outlined goals were not achieved because cancer treatment approaches such as chemotherapy, radiation therapy, hormonal and targeted therapies have not fully met the [...] Read more.
Fifty-two years have passed since President Nixon launched the “War on Cancer”. Despite unparalleled efforts and funds allocated worldwide, the outlined goals were not achieved because cancer treatment approaches such as chemotherapy, radiation therapy, hormonal and targeted therapies have not fully met the expectations. Based on the recent literature, a new direction in cancer therapy can be proposed which targets connections between cancer cells and their microenvironment by chemical means. Cancer–stromal synapses such as immunological synapses between cancer and immune cells provide an attractive target for this approach. Such synapses form ligand–receptor clusters on the interface of the interacting cells. They share a common property of involving intercellular clusters of spatially proximate and cooperatively acting proteins. Synapses provide the space for the focused intercellular signaling molecules exchange. Thus, the disassembly of cancer–stromal synapses may potentially cause the collapse of various tumors. Additionally, the clustered arrangement of synapse components offers opportunities to enhance treatment safety and precision by using targeted crosslinking chemical agents which may inactivate cancer synapses even in reduced concentrations. Furthermore, attaching a cleavable cell-permeable toxic agent(s) to a crosslinker may further enhance the anti-cancer effect of such therapeutics. The highlighted approach promises to be universal, relatively simple and cost-efficient. We also hope that, unlike chemotherapeutic and immune drugs that interact with a single target, by using supramolecular large clusters that include many different components as a target, the emergence of a resistance characteristic of chemo- and immunotherapy is extremely unlikely. Full article
(This article belongs to the Special Issue Advances and Perspectives in Molecular Tumor Therapy)
Show Figures

Figure 1

14 pages, 3776 KiB  
Article
Multi-Hydrogen Bonding on Quaternized-Oligourea Receptor Facilitated Its Interaction with Bacterial Cell Membranes and DNA for Broad-Spectrum Bacteria Killing
by Xiaojin Yan, Fan Yang, Guanghao Lv, Yuping Qiu, Xiaoying Jia, Qirong Hu, Jia Zhang, Jing Yang, Xiangyuan Ouyang, Lingyan Gao and Chuandong Jia
Molecules 2024, 29(16), 3937; https://doi.org/10.3390/molecules29163937 - 21 Aug 2024
Cited by 1 | Viewed by 1282
Abstract
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series [...] Read more.
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series of quaternary ammonium functionalized urea-based anion receptors were studied. While the monodentate mono-urea M1, bisurea M2, and trisurea M3 failed to break through the cell membrane barrier and thus could not kill bacteria, the extended bidentate dimers D1D3 presented gradually increased membrane penetrating capabilities, DNA conformation perturbation abilities, and broad-spectrum antibacterial activities against E. coli, P. aeruginosa, S. aureus, E. faecalis, and S. epidermidis. Full article
(This article belongs to the Special Issue Host–Guest Inclusion Complexes and Their Miscellaneous Applications)
Show Figures

Graphical abstract

8 pages, 1560 KiB  
Communication
Synthesis of an Anion Receptor Using 3,6-Diaminophenanthrene as a Scaffold
by Lau Halgreen and Hennie Valkenier
Molbank 2024, 2024(3), M1853; https://doi.org/10.3390/M1853 - 19 Jul 2024
Viewed by 1184
Abstract
The synthesis of phosphate receptors represents an important avenue of research given the ubiquity of phosphate in biological and environmental systems. While many molecular scaffolds suitable for smaller anions are available either commercially or via reported synthetic routes, scaffolds suitable for larger anions [...] Read more.
The synthesis of phosphate receptors represents an important avenue of research given the ubiquity of phosphate in biological and environmental systems. While many molecular scaffolds suitable for smaller anions are available either commercially or via reported synthetic routes, scaffolds suitable for larger anions such as phosphate are less common. In this work, we present a clear and straightforward synthesis of the basic molecular scaffold 3,6-diaminophenanthrene and of a novel 3,6-bisureidophenanthrene anion receptor prepared from this scaffold. Of the seven synthetic steps using readily available starting materials and reagents, only a single chromatographic purification step was required. The different interactions of the 3,6-bisureidophenanthrene-based anion receptor with phosphate and chloride are demonstrated. We expect that this convenient synthesis of the 3,6-diaminophenanthrene building block will pave the way for applications in many different fields of research, from materials science to supramolecular chemistry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

48 pages, 5365 KiB  
Review
Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis
by Nicolò Riboni, Erika Ribezzi, Federica Bianchi and Maria Careri
Molecules 2024, 29(12), 2802; https://doi.org/10.3390/molecules29122802 - 12 Jun 2024
Cited by 2 | Viewed by 2441
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged [...] Read more.
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications. Full article
(This article belongs to the Special Issue Applications of Solid-Phase Microextraction and Related Techniques)
Show Figures

Graphical abstract

10 pages, 2145 KiB  
Communication
Calixarene-Based Supramolecular Sensor Array for Pesticide Discrimination
by Yeye Chen, Jia-Hong Tian, Han-Wen Tian, Rong Ma, Ze-Han Wang, Yu-Chen Pan, Xin-Yue Hu and Dong-Sheng Guo
Sensors 2024, 24(12), 3743; https://doi.org/10.3390/s24123743 - 8 Jun 2024
Cited by 5 | Viewed by 2586
Abstract
The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum [...] Read more.
The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields. Full article
(This article belongs to the Special Issue Sensing in Supramolecular Chemistry)
Show Figures

Figure 1

10 pages, 1954 KiB  
Article
Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions
by Ya-Zhi Chen, Ying-Chun He, Li Yan, Wei Zhao and Biao Wu
Molecules 2024, 29(11), 2445; https://doi.org/10.3390/molecules29112445 - 22 May 2024
Cited by 1 | Viewed by 1510
Abstract
Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at [...] Read more.
Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42− electrostatics and the ion–dipole interaction of the lithium–receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

20 pages, 5432 KiB  
Article
Host–Guest Interaction Study of Olmesartan Medoxomil with β-Cyclodextrin Derivatives
by Minodora Andor, Claudia Temereancă, Laura Sbârcea, Adriana Ledeți, Dana Emilia Man, Cristian Mornoș, Amalia Ridichie, Denisa Cîrcioban, Gabriela Vlase, Paul Barvinschi, Angela Caunii, Renata-Maria Văruţ, Cristina Maria Trandafirescu, Valentina Buda, Ionuț Ledeți and Matilda Rădulescu
Molecules 2024, 29(10), 2209; https://doi.org/10.3390/molecules29102209 - 8 May 2024
Cited by 4 | Viewed by 1800
Abstract
Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated β-cyclodextrin [...] Read more.
Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated β-cyclodextrin (RM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD), was carried out to overcome the limitation related to OLM solubility, which, in turn, is expected to result in an improved biopharmaceutical profile. Supramolecular entities were evaluated by means of thermoanalytical techniques (TG—thermogravimetry; DTG—derivative thermogravimetry), spectroscopic methods including powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier-transform infrared (UATR-FTIR) and UV spectroscopy, saturation solubility studies, and by a theoretical approach using molecular modeling. The phase solubility method reveals an AL-type diagram for both inclusion complexes, indicating a stoichiometry ratio of 1:1. The values of the apparent stability constant indicate the higher stability of the host–guest system OLM/RM-β-CD. The physicochemical properties of the binary systems are different from those of the parent compounds, emphasizing the formation of inclusion complexes between the drug and CDs when the kneading method was used. The molecular encapsulation of OLM in RM-β-CD led to an increase in drug solubility, thus the supramolecular adduct can be the subject of further research to design a new pharmaceutical formulation containing OLM, with improved bioavailability. Full article
(This article belongs to the Special Issue Molecular Encapsulation)
Show Figures

Graphical abstract

12 pages, 2864 KiB  
Article
Voltammetric Sensing of Chloride Based on a Redox-Active Complex: A Terpyridine-Co(II)-Dipyrromethene Functionalized Anion Receptor Deposited on a Gold Electrode
by Kamila Malecka-Baturo, Mathias Daniels, Wim Dehaen, Hanna Radecka, Jerzy Radecki and Iwona Grabowska
Molecules 2024, 29(9), 2102; https://doi.org/10.3390/molecules29092102 - 2 May 2024
Cited by 1 | Viewed by 1442
Abstract
A redox-active complex containing Co(II) connected to a terpyridine (TPY) and dipyrromethene functionalized anion receptor (DPM-AR) was created on a gold electrode surface. This host-guest supramolecular system based on a redox-active layer was used for voltammetric detection of chloride anions in aqueous solutions. [...] Read more.
A redox-active complex containing Co(II) connected to a terpyridine (TPY) and dipyrromethene functionalized anion receptor (DPM-AR) was created on a gold electrode surface. This host-guest supramolecular system based on a redox-active layer was used for voltammetric detection of chloride anions in aqueous solutions. The sensing mechanism was based on the changes in the redox activity of the complex observed upon binding of the anion to the receptor. The electron transfer coefficient (α) and electron transfer rate constant (k0) for the modified gold electrodes were calculated based on Cyclic Voltammetry (CV) experiments results. On the other hand, the sensing abilities were examined using Square Wave Voltammetry (SWV). More importantly, the anion receptor was selective to chloride, resulting in the highest change in Co(II) current intensity and allowing to distinguish chloride, sulfate and bromide. The proposed system displayed the highest sensitivity to Cl with a limit of detection of 0.50 fM. The order of selectivity was: Cl > SO42− > Br, which was confirmed by the binding constants (K) and reaction coupling efficiencies (RCE). Full article
(This article belongs to the Special Issue Advanced Electrochemical Methods in Molecular Detection)
Show Figures

Figure 1

Back to TopTop