Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions
Abstract
:1. Introduction
2. Results and Discussion
3. General Synthetic and Solid–Liquid Extraction Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, J.; Arshadi, F.; Mofidi, Z.; Mohseni-Dargah, M.; Kök, C.; Assefi, M.; Soozanipour, A.; Zargar, M.; Asadnia, M.; Boroumand, Y.; et al. Direct lithium extraction: A new paradigm for lithium production and resource utilization. Desalination 2024, 575, 117249. [Google Scholar] [CrossRef]
- Reich, R.; Slunitschek, K.; Danisi, R.M.; Eiche, E.; Kolb, J. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines. Min. Proc. Ext. Met. Rev. 2022, 44, 261–280. [Google Scholar] [CrossRef]
- Haddad, A.Z.; Hackl, L.; Akuzum, B.; Pohlman, G.; Magnan, J.-F.; Kostecki, R. How to make lithium extraction cleaner, faster and cheaper—In six steps. Nature 2023, 616, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Nie, X.-Y.; Sun, S.-Y.; Sun, Z.; Song, X.; Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Swain, B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review. J. Chem. Technol. Biotechnol. 2016, 91, 2549–2562. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zeng, X.; Deng, T.; Wang, J. Membranes for separation of alkali/alkaline earth metal ions: A review. Sep. Purif. Technol. 2021, 278, 119640. [Google Scholar] [CrossRef]
- Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad Korayem, A.; Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 2019, 10, 5793. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Zhao, W.; Wu, B. Separation of sulfate anion from aqueous solution governed by recognition chemistry: A minireview. Front. Chem. 2022, 10, 905563. [Google Scholar] [CrossRef] [PubMed]
- Lein, G.M.; Cram, D.J. Spherand complexation and decomplexation rates with sodium and lithium picrates, and activation parameters for decomplexation. J. Chem. Soc. Chem. Commun. 1982, 5, 301–304. [Google Scholar] [CrossRef]
- Cram, D.J.; Lein, G.M. Host-guest complexation. 36. spherand and lithium and sodium ion complexation rates and equilibria. J. Am. Chem. Soc. 1985, 107, 3657–3668. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Xue, Z.; Mao, L.; Sun, J.; Shao, F.; Qi, M.; Jing, Y.; Jia, Y. Extraction separation of lithium isotopes with Bromobenzene-15-crown-5/ionic liquids system: Experimental and theoretical study. J. Mol. Liq. 2022, 364, 120020. [Google Scholar] [CrossRef]
- Bezdomnikov, A.A.; Sharov, V.E.; Demina, L.I.; Skrebtsov, M.I.; Ilyukhin, A.B.; Tsivadze, A.Y. Specific features of lithium solvent extraction from perchlorate media with benzo-15-crown-5. Polyhedron 2023, 244, 116612. [Google Scholar] [CrossRef]
- Xu, C.; Tran, Q.; Wojtas, L.; Liu, W. Harnessing ion–dipole interactions: A simple and effective approach to high-performance lithium receptors. J. Mater. Chem. A 2023, 11, 12214–12222. [Google Scholar] [CrossRef]
- Talanova, G.G.; Elkarim, N.S.A.; Talanov, V.S.; Hanes, R.E.; Hwang, H.-S.; Bartsch, R.A.; Rogers, R.D. The “picrate effect” on extraction selectivities of aromatic group-containing crown ethers for alkali metal cations. J. Am. Chem. Soc. 1999, 121, 11281–11290. [Google Scholar] [CrossRef]
- Lehn, J.M. Cryptate inclusion complexes, effects on solute-solute and solute-solvent interactions and on ionic reactivity. Pure Appl. Chem. 1980, 52, 2303–2319. [Google Scholar] [CrossRef]
- Mahoney, J.M.; Beatty, A.M.; Smith, B.D. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor. Inorg. Chem. 2004, 43, 7617–7621. [Google Scholar] [CrossRef]
- Park, I.W.; Yoo, J.; Adhikari, S.; Park, J.S.; Sessler, J.L.; Lee, C.H. Calix[4]pyrrole-based heteroditopic ion-pair receptor that displays anion-modulated, cation-binding behavior. Chem. Eur. J. 2012, 18, 15073–15078. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.; Brewster, J.T.; Lynch, V.M.; Kim, S.K.; Sessler, J.L. Hemispherand-strapped calix[4]pyrrole: An ion-pair receptor for the recognition and extraction of lithium nitrite. J. Am. Chem. Soc. 2016, 138, 9779–9782. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Williams, N.J.; Oh, J.H.; Lynch, V.M.; Kim, S.K.; Moyer, B.A.; Sessler, J.L. Selective solid-liquid and liquid-liquid extraction of lithium chloride using strapped calix[4]pyrroles. Angew. Chem. Int. Ed. 2018, 57, 11924–11928. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-I.; Kim, H.; Kim, Y.; Choi, M.-G.; Jang, W.-D. Strapped calix[4]pyrrole as a lithium salts selective receptor through separated ion-pair binding. Chem. Commun. 2020, 56, 10541–10544. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jones, L.O.; Hwang, I.; Allen, M.J.; Tao, D.; Lynch, V.M.; Freeman, B.D.; Khashab, N.M.; Schatz, G.C.; Page, Z.A.; et al. Selective separation of lithium chloride by organogels containing strapped calix[4]pyrroles. J. Am. Chem. Soc. 2021, 143, 20403–20410. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yeon, Y.; Lee, A.; Lynch, V.M.; He, Q.; Sessler, J.L.; Kim, S.K. Tetraamidoindolyl calix[4]arene as a selective ion pair receptor for LiCl. Org. Chem. Front. 2022, 9, 6888–6893. [Google Scholar] [CrossRef]
- Vilar, R. Anion Recognition and Templation in Coordination Chemistry. Eur. J. Inorg. Chem. 2008, 2008, 357–367. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, M.; Wu, L.; Guan, Y.; Pan, Y.; Jiang, J.; Lin, C.; Wang, L. Squaramide-based tripodal receptors for selective recognition of sulfate anion. Chem. Commun. 2013, 49, 2025–2027. [Google Scholar] [CrossRef]
- Valls, A.; Altava, B.; Burguete, M.I.; Escorihuela, J.; Martí-Centelles, V.; Luis, S.V. Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Org. Chem. Front. 2019, 6, 1214–1225. [Google Scholar] [CrossRef]
- Chen, L.; Berry, S.N.; Wu, X.; Howe, E.N.W.; Gale, P.A. Advances in Anion Receptor Chemistry. Chem 2020, 6, 61–141. [Google Scholar] [CrossRef]
- Jagleniec, D.; Wilczek, M.; Romański, J. Tripodal, Squaramide-Based Ion Pair Receptor for Effective Extraction of Sulfate Salt. Molecules 2021, 26, 2751. [Google Scholar] [CrossRef]
- Jia, C.; Wu, B.; Li, S.; Huang, X.; Zhao, Q.; Li, Q.S.; Yang, X.J. Highly efficient extraction of sulfate ions with a tripodal hexaurea receptor. Angew. Chem. Int. Ed. 2011, 50, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Jia, C.; Zhang, H.; Zhao, Y.; Yang, X.-J.; Wu, B. Selective recognition of choline phosphate by tripodal hexa-urea receptors with dual binding sites: Crystal and solution evidence. Chem. Sci. 2019, 10, 2483–2488. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Yu, S.-N.; Zhao, W.; Liang, L.; Gong, Y.; Yuan, L.; Tang, J.; Yang, X.-J.; Wu, B. Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors. Inorg. Chem. Front. 2022, 9, 6091–6101. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Chen, S.-Q.; Liang, L.; Zhao, W.; Yang, X.-J.; Wu, B. pH-Dependent phosphate separation using a tripodal hexaurea receptor. Chem. Commun. 2023, 59, 12923–12926. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y. A conductance study of alkali metal ion–18-crown-6 complexes in N,N-dimethylformamide. Bull. Chem. Soc. Jpn. 1981, 54, 3133–3136. [Google Scholar] [CrossRef]
- Pasgreta, E.; Puchta, R.; Galle, M.; van Eikema Hommes, N.; Zahl, A.; van Eldik, R. Ligand-Exchange Processes on Solvated Lithium Cations: DMSO and Water/DMSO Mixtures. ChemPhysChem 2007, 8, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Liu, W.; Das Partha, J.; Colquhoun Howard, M.; Stoddart, J.F. Whither second-sphere coordination? CCS Chem. 2021, 4, 755–784. [Google Scholar] [CrossRef]
Li+ | Na+ | K+ | Rb+ | Cs+ | |
---|---|---|---|---|---|
b Control | 2% | 2% | 3% | 1% | 3% |
LNO2 | 100% | 62% | 23% | 17% | 27% |
LMe | 100% | 50% | 18% | 30% | 64% |
LC6 | 100% | 48% | 8% | 15% | 38% |
c TLC6 | 80% | 33% | 17% | 15% | 6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Z.; He, Y.-C.; Yan, L.; Zhao, W.; Wu, B. Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions. Molecules 2024, 29, 2445. https://doi.org/10.3390/molecules29112445
Chen Y-Z, He Y-C, Yan L, Zhao W, Wu B. Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions. Molecules. 2024; 29(11):2445. https://doi.org/10.3390/molecules29112445
Chicago/Turabian StyleChen, Ya-Zhi, Ying-Chun He, Li Yan, Wei Zhao, and Biao Wu. 2024. "Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions" Molecules 29, no. 11: 2445. https://doi.org/10.3390/molecules29112445
APA StyleChen, Y. -Z., He, Y. -C., Yan, L., Zhao, W., & Wu, B. (2024). Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions. Molecules, 29(11), 2445. https://doi.org/10.3390/molecules29112445