Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,199)

Search Parameters:
Keywords = supply chain performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

22 pages, 337 KiB  
Review
Contract Mechanisms for Value-Based Technology Adoption in Healthcare Systems
by Aydin Teymourifar
Systems 2025, 13(8), 655; https://doi.org/10.3390/systems13080655 - 3 Aug 2025
Viewed by 47
Abstract
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and [...] Read more.
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and waste associated with the adoption of health technology. This narrative review examines the dual impact of healthcare technology and evaluates how contract mechanisms can serve as strategic tools for promoting cost-effective, outcome-oriented integration. Drawing from healthcare management, and supply chain literature, this paper analyzes various payment and contract models, including performance-based, bundled, cost-sharing, and revenue-sharing agreements, through the lens of stakeholder alignment. It explores how these mechanisms influence provider behavior, patient access, and system sustainability. The study contends that well-designed contract mechanisms can align stakeholder incentives, reduce inefficiencies, and support the delivery of high-value care across diverse healthcare settings. We provide concrete examples to illustrate how various contract mechanisms impact the integration of health technologies in practice. Full article
(This article belongs to the Special Issue Operations Management in Healthcare Systems)
19 pages, 2280 KiB  
Article
A Swap-Integrated Procurement Model for Supply Chains: Coordinating with Long-Term Wholesale Contracts
by Min-Yeong Ryu and Pyung-Hoi Koo
Mathematics 2025, 13(15), 2495; https://doi.org/10.3390/math13152495 - 3 Aug 2025
Viewed by 109
Abstract
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption [...] Read more.
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption in the real world, theoretical studies on swap-based procurement remain limited. This study proposes an integrated model that combines buyer-to-buyer swap agreements with long-term wholesale contracts under demand uncertainty. The model quantifies the expected swap quantity between parties and embeds it into the profit function to derive optimal order quantities. Numerical experiments are conducted to compare the performance of the proposed strategy with that of a baseline wholesale contract. Sensitivity analyses are performed on key parameters, including demand asymmetry and swap prices. The numerical analysis indicates that the swap-integrated procurement strategy consistently outperforms procurement based on long-term wholesale contracts. Moreover, the results reveal that under the swap-integrated strategy, the optimal order quantity must be adjusted—either increased or decreased—depending on the demand scale of the counterpart and the specified swap price, deviating from the optimal quantity under traditional long-term contracts. These findings highlight the potential of swap-integrated procurement strategies as practical coordination mechanisms across both private and public sectors, offering strategic value in contexts such as vaccine distribution, fresh produce, and other critical products. Full article
(This article belongs to the Special Issue Theoretical and Applied Mathematics in Supply Chain Management)
Show Figures

Figure 1

22 pages, 1620 KiB  
Article
Economic Resilience in Intensive and Extensive Pig Farming Systems
by Lorena Giglio, Tine Rousing, Dagmara Łodyga, Carolina Reyes-Palomo, Santos Sanz-Fernández, Chiara Serena Soffiantini and Paolo Ferrari
Sustainability 2025, 17(15), 7026; https://doi.org/10.3390/su17157026 - 2 Aug 2025
Viewed by 263
Abstract
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and [...] Read more.
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and natural resources. This study is focused on the analysis of the economic resilience of intensive and extensive farming systems, based on data collected from 56 farms located in Denmark, Poland, Italy and Spain. Productive and economic performances of these farms are analyzed, and economic resilience is assessed through a survey including a selection of indicators, belonging to different themes: [i] resilience of resources, [ii] entrepreneurship, [iii] propensity to extensification. The qualitative data from the questionnaire allow for an exploration of how production systems relate to the three dimensions of resilience. Different levels of resilience were found and discussed for intensive and extensive farms. The findings suggest that intensive farms benefit from high standards and greater bargaining power within the supply chain. Extensive systems can achieve profitability through value-added strategies and generally display good resilience. Policies that support investment and risk reduction are essential for enhancing farm resilience and robustness, while strengthening farmer networks can improve adaptability. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 - 1 Aug 2025
Viewed by 208
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

28 pages, 4980 KiB  
Review
Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions
by Heera Jayan, Ruiyun Zhou, Chanjun Sun, Chen Wang, Limei Yin, Xiaobo Zou and Zhiming Guo
Foods 2025, 14(15), 2706; https://doi.org/10.3390/foods14152706 - 1 Aug 2025
Viewed by 244
Abstract
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered [...] Read more.
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered significant interest for their numerous advantages in the development of food safety monitoring systems. The adaptable characteristics of gas sensors make them ideal for integration into production lines, while the flexibility of certain sensor types allows for incorporation into packaging materials. Various types of gas sensors have been developed for their distinct properties and are utilized in a wide range of applications. Metal-oxide semiconductors and optical sensors are widely studied for their potential use as gas sensors in food quality assessments due to their ability to provide visual indicators to consumers. The advancement of new nanomaterials and their integration with advanced data acquisition techniques is expected to enhance the performance and utility of sensors in sustainable practices within the food supply chain. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

26 pages, 2081 KiB  
Article
Tariff-Sensitive Global Supply Chains: Semi-Markov Decision Approach with Reinforcement Learning
by Duygu Yilmaz Eroglu
Systems 2025, 13(8), 645; https://doi.org/10.3390/systems13080645 - 1 Aug 2025
Viewed by 179
Abstract
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), [...] Read more.
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 370
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

19 pages, 1072 KiB  
Article
Efficient and Reliable Identification of Probabilistic Cloning Attacks in Large-Scale RFID Systems
by Chu Chu, Rui Wang, Nanbing Deng and Gang Li
Micromachines 2025, 16(8), 894; https://doi.org/10.3390/mi16080894 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag [...] Read more.
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag information by readers, thereby threatening personal privacy and corporate security and incurring significant economic losses. Although some efforts have been made to detect cloning attacks, the presence of missing tags in RFID systems can obscure cloned ones, resulting in a significant reduction in identification efficiency and accuracy. To address these problems, we propose the block-based cloned tag identification (BCTI) protocol for identifying cloning attacks in the presence of missing tags. First, we introduce a block indicator to sort all tags systematically and design a block mechanism that enables tags to respond repeatedly within a block with minimal time overhead. Then, we design a superposition strategy to further reduce the number of verification times, thereby decreasing the execution overhead. Through an in-depth analysis of potential tag response patterns, we develop a precise method to identify cloning attacks and mitigate interference from missing tags in probabilistic cloning attack scenarios. Moreover, we perform parameter optimization of the BCTI protocol and validate its performance across diverse operational scenarios. Extensive simulation results demonstrate that the BCTI protocol meets the required identification reliability threshold and achieves an average improvement of 24.01% in identification efficiency compared to state-of-the-art solutions. Full article
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 194
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

31 pages, 4963 KiB  
Article
Individual Action or Collaborative Scientific Research Institutions? Agricultural Support from Enterprises from the Perspective of Subsidies
by Ziyi Zhang, Yantong Zhong, Guitao Zhang, Tianyu Zhai, Zongru Li and Shuaicheng Lin
Sustainability 2025, 17(15), 6873; https://doi.org/10.3390/su17156873 - 29 Jul 2025
Viewed by 188
Abstract
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory [...] Read more.
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory to model a contract farming supply chain under two agricultural assistance modes: enterprise-led (EL) and collaborative assistance with scientific research institutions (CI). We further propose two government subsidy mechanisms: subsidies to enterprises and subsidies to scientific research institutions. The models analyze optimal decisions, supply chain performance, and subsidy efficiency, validated through numerical experiments. Key findings reveal the following: (1) The CI mode enhances agricultural output and farmer revenue but may reduce enterprise profits, deterring collaboration. (2) Government subsidies incentivize enterprise–institution collaboration. Subsidizing scientific research institutions typically improves agricultural productivity and economic benefits more effectively than subsidizing enterprises. (3) Synergistic effects exist among the government subsidy coefficient, cost coefficient of technical assistance, consumer preferences for agricultural quality, and profit-sharing ratio. The latter three parameters significantly influence subsidy model selection. This research provides policy insights for enhancing agricultural assistance efficiency and sustainable contract farming development. Full article
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 450
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

32 pages, 2875 KiB  
Article
Achieving Sustainable Supply Chains: Applying Group Concept Mapping to Prioritize and Implement Sustainable Management Practices
by Thompson McDaniel, Edit Süle and Gyula Vastag
Logistics 2025, 9(3), 99; https://doi.org/10.3390/logistics9030099 - 28 Jul 2025
Viewed by 410
Abstract
Background: Sustainability in supply chain management (SCM) practices is becoming increasingly important as environmental responsibility and social concerns, as well as enterprises’ competitiveness in terms of innovation, risk, and economic performance, become increasingly urgent. This paper aims to identify and prioritize concepts [...] Read more.
Background: Sustainability in supply chain management (SCM) practices is becoming increasingly important as environmental responsibility and social concerns, as well as enterprises’ competitiveness in terms of innovation, risk, and economic performance, become increasingly urgent. This paper aims to identify and prioritize concepts for implementing sustainable supply chains, drawing on sustainable supply chain management (SSCM) and green supply chain management (GSCM) techniques. Corporate supply chain managers across various industries, markets, and supply chain segments brainstormed management practices to enhance the sustainability of their supply chains. Four industry sectors were surveyed across five different value chain segments. Methods: A group concept mapping (GCM) approach incorporating multi-dimensional scaling (MDS) and hierarchical cluster analysis (HCA) was used. A hierarchy of practices is proposed, and hypotheses are developed about achievability and impact. Results: A decision-making matrix prioritizes eight solution concepts based on two axes: impact (I) and ease of implementation (EoI). Conclusions: Eight concepts are prioritized based on the optimal effectiveness of implementing the solutions. Pattern matching reveals differences between emerging and developed markets, as well as supply chain segments, that decision-makers should be aware of. By analyzing supply chains from a multi-part perspective, this research goes beyond empirical studies based on a single industry, geographic region, or example case. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

33 pages, 1238 KiB  
Article
Crisis Response Modes in Collaborative Business Ecosystems: A Mathematical Framework from Plasticity to Antifragility
by Javaneh Ramezani, Luis Gomes and Paula Graça
Mathematics 2025, 13(15), 2421; https://doi.org/10.3390/math13152421 - 27 Jul 2025
Viewed by 387
Abstract
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a [...] Read more.
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a unified mathematical framework to evaluate four crisis response modes—plasticity, resilience, transformative resilience, and antifragility—within complex adaptive networks. Grounded in complex systems and collaborative network theory, our model formalizes both internal organizational capabilities (e.g., adaptability, learning, innovation, structural flexibility) and strategic interventions (e.g., optionality, buffering, information sharing, fault-injection protocols), linking them to pre- and post-crisis performance via dynamic adjustment functions. A composite performance score is defined across four dimensions (Innovation, Contribution, Prestige, and Responsiveness to Business Opportunities), using capability–strategy interaction matrices, weighted performance change functions, and structural transformation modifiers. The sensitivity analysis and scenario simulations enable a comparative evaluation of organizational configurations, strategy impacts, and phase-transition thresholds under crisis. This indicator-based formulation provides a quantitative bridge between resilience theory and practice, facilitating evidence-based crisis management in networked business environments. Full article
(This article belongs to the Special Issue Optimization Models for Supply Chain, Planning and Scheduling)
Show Figures

Figure 1

Back to TopTop