Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = sulfate transporters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14945 KB  
Article
Study on the Transport Law and Corrosion Behavior of Sulfate Ions of a Solution Soaking FA-PMPC Paste
by Yuying Hou, Qiang Xu, Tao Li, Sha Sa, Yante Mao, Caiqiang Xiong, Xiamin Hu, Kan Xu and Jianming Yang
Materials 2026, 19(1), 202; https://doi.org/10.3390/ma19010202 - 5 Jan 2026
Viewed by 184
Abstract
To study the sulfate corrosion behavior of potassium magnesium phosphate cement (PMPC) paste, the sulfate content, strength, and length of PMPC specimens were measured at different corrosion ages under 5% Na2SO4 solution soaking conditions, and the phase composition and microstructure [...] Read more.
To study the sulfate corrosion behavior of potassium magnesium phosphate cement (PMPC) paste, the sulfate content, strength, and length of PMPC specimens were measured at different corrosion ages under 5% Na2SO4 solution soaking conditions, and the phase composition and microstructure were analyzed. The conclusion is as follows: In PMPC specimens subjected to one-dimensional SO42− corrosion, the relation between the diffusion depth of SO42− (h) and the SO42− concentration (c (h, t)) can be referred by a polynomial very well. The sulfate diffusion coefficient (D) of PMPC specimens was one order of magnitude lower than Portland cement concrete (on the order of 10−7 mm2/s). The surface SO42− concentration c (0, t), the SO42− computed corrosion depth h00, and D of FM2 specimen containing 20% fly ash (FA) were all less than those of the FM0 specimen (reference). At 360-day immersion ages, the c (0, 360 d) and h00 in FM2 were obviously smaller than those in FM0, and the D of FM2 was 64.2% of FM0. The strengths of FM2 specimens soaked for 2 days (the benchmark strength) were greater than those of FM0 specimens. At 360-day immersion ages, the residual flexural/compressive strength ratios (360-day strength/benchmark strength) of FM0 and FM2 specimens were all larger than 95%. The volume linear expansion rates (Sn) of PMPC specimens continued to increase with the immersion age, and Sn of FM2 specimen was only 49.5% of that of the FM0 specimen at 360-day immersion ages. The results provide an experimental basis for the application of PMPC-based materials. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

16 pages, 3645 KB  
Article
Foliar-Applied Selenium–Zinc Nanocomposite Drives Synergistic Effects on Se/Zn Accumulation in Brassica chinensis L.
by Mengna Tao, Yusong Yao, Lian Zhang, Jie Zeng, Bingxu Cheng and Chuanxi Wang
Nanomaterials 2026, 16(1), 56; https://doi.org/10.3390/nano16010056 - 31 Dec 2025
Viewed by 251
Abstract
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn [...] Read more.
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn co-biofortification in Brassica chinensis L., using a controlled pot experiment that integrated physiological, metabolic, molecular, and rhizosphere analyses. Application of Nano-ZSe at 0.18 mg·kg−1 (Based on soil weight) not only increased shoot biomass by 28.4% but also elevated Se and Zn concentrations in edible tissues by 7.00- and 1.66-fold (within the safe limits established for human consumption), respectively, compared to the control. Mechanistically, Nano-ZSe reprogrammed the ascorbate-glutathione redox system and redirected carbon flux through the tricarboxylic acid cycle, suppressing acetyl-CoA biosynthesis and reducing abscisic acid accumulation. This metabolic rewiring promoted stomatal opening, thereby enhancing foliar nutrient uptake. Simultaneously, Nano-ZSe triggered the coordinated upregulation of BcSultr1;1 (a sulfate/selenium transporter) and BcZIP4 (a Zn2+ transporter), enabling synchronized translocation and the tissue-level co-accumulation of Se and Zn. Beyond plant physiology, Nano-ZSe improved soil physicochemical properties, enriched rhizosphere microbial diversity, and increased crop yield and economic returns. Collectively, this work demonstrates that nano-enabled dual-nutrient delivery systems can bridge nutritional and agronomic objectives through integrated physiological, molecular, and rhizosphere-mediated mechanisms, offering a scalable and environmentally sustainable pathway toward functional food production and the mitigation of hidden hunger. Full article
(This article belongs to the Section Nanotechnology in Agriculture)
Show Figures

Graphical abstract

17 pages, 6867 KB  
Article
Electrodeposition of Copper–Nickel Foams: From Separate Phases to Solid Solution
by Eduard E. Levin, Victoria P. Chertkova and Natalia A. Arkharova
Crystals 2026, 16(1), 20; https://doi.org/10.3390/cryst16010020 - 27 Dec 2025
Viewed by 233
Abstract
Copper-based electrocatalytic materials with high surface area are essential for various processes, such as water splitting and the electroreduction of carbon dioxide and nitrates. Three-dimensional nanostructured electrodes offer distinct advantages in these applications due to their expansive surface area, which enhances charge transfer [...] Read more.
Copper-based electrocatalytic materials with high surface area are essential for various processes, such as water splitting and the electroreduction of carbon dioxide and nitrates. Three-dimensional nanostructured electrodes offer distinct advantages in these applications due to their expansive surface area, which enhances charge transfer and mass transport. For bimetallic systems, however, the phase state, whether a solid solution or a mechanical mixture of metals, is critically important for catalytic performance. This study explores the formation of Cu-Ni solid solutions via electrodeposition using the dynamic hydrogen bubble template method. Two types of electrolyte were employed: sulfate-based and citrate-based. Through characterization by X-ray diffraction, scanning electron microscopy, elemental mapping, and X-ray fluorescence spectroscopy, we demonstrate that metallic foams deposited from sulfate solutions are heterogeneous, with poor control over nickel content. In contrast, the use of citrate-based solutions allows the nickel content in the deposits to be effectively controlled by varying the solution composition, thereby enabling the formation of a solid solution. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 1764 KB  
Article
Insights into Transport Function of the Murine Organic Anion-Transporting Polypeptide OATP1B2 by Comparison with Its Rat and Human Orthologues
by Saskia Floerl, Annett Kuehne and Yohannes Hagos
Toxics 2026, 14(1), 10; https://doi.org/10.3390/toxics14010010 - 20 Dec 2025
Viewed by 407
Abstract
Organic anion-transporting polypeptides (OATPs) are key transporters of hepatic uptake for endogenous compounds and xenobiotics. Human OATP1B1 and OATP1B3 are well-studied due to their role in drug–drug interactions. In contrast, data on murine OATP1B2, the rodent orthologue of these transporters, are limited, despite [...] Read more.
Organic anion-transporting polypeptides (OATPs) are key transporters of hepatic uptake for endogenous compounds and xenobiotics. Human OATP1B1 and OATP1B3 are well-studied due to their role in drug–drug interactions. In contrast, data on murine OATP1B2, the rodent orthologue of these transporters, are limited, despite its importance in early drug development. Here, we systematically compared the transport characteristics of mouse and rat OATP1B2 under identical experimental conditions. The Km values for estrone-3-sulfate (E1S) and taurocholate (TCA) were 242 and 73 µM for mOATP1B2 and 90 and 16 µM for rOATP1B2. Nine clinically relevant drugs were evaluated for inhibitory effects, showing strong correlation between species. Cyclosporine A, ritonavir, odevixibat, rosuvastatin, and rifampicin markedly inhibited uptake. Rifampicin demonstrated species-specific differences, with higher IC50 values for mOATP1B2 (E1S: 9.6 µM; TCA: 7.7 µM) than rOATP1B2 (E1S: 1.1 µM; TCA: 2.4 µM). A comparison of the rodent data with the human orthologues revealed similar inhibition patterns but distinct substrate selectivity: hOATP1B1 showed high affinity for E1S but negligible TCA uptake, while hOATP1B3 transported TCA weakly but not E1S. This study provides insights into species-specific differences in OATP-mediated hepatic uptake and is therefore valuable for the interpretation of preclinical studies and their transfer to human pharmacology. Full article
(This article belongs to the Special Issue Drug Metabolism and Toxicological Mechanisms—2nd Edition)
Show Figures

Graphical abstract

17 pages, 2190 KB  
Article
Expression of Ion Transporters Is Altered in Experimental Ulcerative Colitis: Anti-Inflammatory Effects of Nobiletin
by Asmaa Al-Failakawi, Aishah Al-Jarallah, Muddanna Rao and Islam Khan
Biophysica 2025, 5(4), 63; https://doi.org/10.3390/biophysica5040063 - 15 Dec 2025
Viewed by 282
Abstract
We investigated the roles and regulation of contractile and sodium ion transporter proteins in the pathogenesis of diarrhea in the acute ulcerative colitis. Acute ulcerative colitis was induced in male Sprague-Dawley rats using dextran sulfate sodium (DSS) in drinking water for seven days. [...] Read more.
We investigated the roles and regulation of contractile and sodium ion transporter proteins in the pathogenesis of diarrhea in the acute ulcerative colitis. Acute ulcerative colitis was induced in male Sprague-Dawley rats using dextran sulfate sodium (DSS) in drinking water for seven days. The effects of nobiletin, a citrus flavonoid, were also examined. Increased myeloperoxidase activity, colon mass, and inflammatory cell infiltration were associated with damage to goblet cells and the epithelial cell lining indicating the development of acute ulcerative colitis. SERCA-2 calcium pump expression remained unchanged, whereas the phospholamban (PLN) regulatory peptide was reduced and its phosphorylated form (PLN-P) increased, suggesting a post-translational increase in SERCA-2 activity in the inflamed colon. Higher levels of IP3 were associated with a decrease in the Gαq protein levels without altering phospholipase C expression, suggesting that IP3 regulation is independent of Gαq protein signaling. In addition, the expression of sodium/hydrogen exchanger isoforms NHE-1, NHE-3 and carbonic anhydrase-1 and sodium pump activity were decreased in the inflamed colon. Nobiletin treatment of colitis selectively reversed the inflammatory and oxidative stress markers, including superoxide dismutase and catalase without restoring the expression of ion transporters. This study highlights alterations in the expression of ion transporters and their regulatory proteins in acute ulcerative colitis. These changes in the ion transporters are likely to reduce NaCl absorption and alter contractility, thereby contributing to the pathogenesis of diarrhea in the present model of acute ulcerative colitis. Nobiletin selectively ameliorates acute colitis in this model. Full article
Show Figures

Graphical abstract

28 pages, 1342 KB  
Article
Biofortification of Durum Wheat Grain: Interactions Between Micronutrients as Affected by Potential Biofortification Enhancers and Surfactants
by Despina Dimitriadi, Georgios P. Stylianidis, Ioannis Tsirogiannis, Styliani Ν. Chorianopoulou and Dimitris L. Bouranis
Plants 2025, 14(24), 3759; https://doi.org/10.3390/plants14243759 - 10 Dec 2025
Viewed by 373
Abstract
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at [...] Read more.
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at addressing EMi deficiencies in human populations that emphasize cost-effectiveness and sustainability. All EMis are usually applied foliarly as sulfates, which indicates sulfur (S)-assisted biofortification. The formation of EMi complexes provides solubility as well as protection during long-distance transport. Several small molecules are possible candidates as ligands—the S-containing amino acids cysteine and methionine among them—linking EMi homeostasis to S homeostasis, which represents another aspect of S-assisted biofortification. In this study, we delve into the S-assisted agronomic biofortification strategy by applying sulfate micronutrients coupled with a sulfur-containing amino acid and we explore the effect of the selected accompanying cation (Zn, Fe, Mn, or Cu) on the EMi metallome of the grain, along with the biofortification effectiveness, whilst the type of the incorporated surface active agent seems to affect this approach. A field experiment was conducted for two years with durum wheat cultivation subjected to various interventions at the initiation of the dough stage, aiming to biofortify the grain with EMis provided as sulfate salts coupled with cysteine or methionine as potential biofortification enhancers. The mixtures were applied alone or in combination with commercial surfactants of the organosilicon ethoxylate (SiE) type or the alcohol ethoxylate (AE) type. The performance of two relevant preparations, FytoAmino-Bo (FABo) and Phillon, has been studied, too. The interventions affected the accumulation of the EMi metallome into the grains, along with the interactions of the EMis within this metallome. Several interventions increased the EMi metallome of the grain and affected the contribution of each EMi to this metallome. Many interventions have increased Zn and Fe, while they have decreased Mn and Cu. An increase in Zn corresponded (i) to a decrease in Cu, (ii) to an increase or no increase in Fe, and (iii) to a variable change in Mn. Cys increased the metallome by 34% and Zn and Fe within it. ZnSO4 and FeSO4 increased the metallome by 5% and 9%, whilst MnSO4 and CuSO4 increased the metallome by 36% and 33%, respectively. The additives improved the contribution to increasing the metallome in most cases. Without surfactant, the efficacy ranking proved to be MnSO4 > CuSO4 > ZnSO4 > FeSO4. The use of SW7 sustained the order CuSO4 > MnSO4 > ZnSO4 > FeSO4. The use of Saldo switched the order to CuSO4 > ZnSO4 > FeSO4 > MnSO4. In the case of Phillon, the order was CuSO4 > FeSO4 > ZnSO4 > MnSO4. The effect of Cys or Met was case-specific. The differentiations in the intensity of both the agronomic performance (grain weight, grain weight per spike, and yield) and the biofortification performance (concentrations vs. accumulations of each EMi within the grain) among the various combinations of EMis and additives are depicted by adopting a grading scale, which highlighted the intensity of the acclimation reaction of the biofortified grain to the applied intervention. Full article
Show Figures

Figure 1

29 pages, 1134 KB  
Review
Particle Size as a Key Driver of Black Carbon Wet Removal: Advances and Insights
by Yumeng Qiao, Jiajia Wang, Li Wang and Baiqing Xu
Atmosphere 2025, 16(11), 1309; https://doi.org/10.3390/atmos16111309 - 20 Nov 2025
Viewed by 1046
Abstract
Black carbon (BC), as a potent light-absorbing aerosol, is mainly removed from the atmosphere through wet deposition. The efficiency of this process depends on the capacity of BC particles to serve as cloud condensation nuclei (CCN) or ice nuclei (IN). Newly emitted BC [...] Read more.
Black carbon (BC), as a potent light-absorbing aerosol, is mainly removed from the atmosphere through wet deposition. The efficiency of this process depends on the capacity of BC particles to serve as cloud condensation nuclei (CCN) or ice nuclei (IN). Newly emitted BC particles are typically small in size and highly hydrophobic, which limits their activation potential. However, atmospheric aging processes involving interactions with sulfates, nitrates, or organic matter enhance their hydrophilicity and nucleation capacity. Particle size serves as the critical link between aging and removal processes. Larger or coated BC particles are more readily activated and removed, while smaller particles require higher supersaturation levels. Both observations and models indicate that uncertainties in BC particle size distribution and aging processes lead to significant discrepancies in lifetime and transport estimates. This paper reviews recent research on the size dependence of wet removal of BC, evaluates current observational and modeling results, and proposes key research priorities to more accurately constrain its role in the climate system. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

17 pages, 10025 KB  
Review
Recent Advances in Sewer Biofilms: A Perspective on Bibliometric Analysis
by Linjun Zhang, Jinbiao Liu, Guoqiang Song, Shuchang Huang, Claudia Li and Jaka Sunarso
Water 2025, 17(22), 3319; https://doi.org/10.3390/w17223319 - 20 Nov 2025
Viewed by 564
Abstract
The long-distance transport of wastewater in sewers inevitably leads to the formation of biofilms on the inner wall of sewers. Numerous studies have focused on analyzing the hydrogen sulfide, methane production, and emission patterns associated with sewer biofilms in sewer systems. This study [...] Read more.
The long-distance transport of wastewater in sewers inevitably leads to the formation of biofilms on the inner wall of sewers. Numerous studies have focused on analyzing the hydrogen sulfide, methane production, and emission patterns associated with sewer biofilms in sewer systems. This study employed bibliometric methods to analyze the research progress in the field of sewer biofilms from 1995 to 2025, and revealed the associated development trend, international cooperation network, and research hotspots. The results demonstrate a substantial increase in the number of annual publications over the past decade, with China and Australia as the primary contributors. The journal Water Research has been found to exert a significant influence. The research hotspots concentrate on the generation and control of hydrogen sulfide and methane, sewer corrosion mechanisms, and microbial community dynamics, with chemical dosing, sulfate-reducing bacteria, and biofilm metabolism as the key directions. The evolution of keywords demonstrates that early research focused on organic matter transformation, and in recent years, there has been a shift towards microbial ecology and wastewater epidemiology, along with other emerging areas. Recent years have seen China as well as China’s institution and authors emerge as the primary contributors in the sewer biofilm field, a development attributable to the country’s policy support, which has precipitated the development of green technologies and smart monitoring systems. This study demonstrates the necessity of international cooperation and provides theoretical references and technological directions for future sewer biofilms research. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 3641 KB  
Article
SLC30A3 as a Zinc Transporter-Related Biomarker and Potential Therapeutic Target in Alzheimer’s Disease
by Ruyu Bai, Zhiyun Cheng and Yong Diao
Genes 2025, 16(11), 1380; https://doi.org/10.3390/genes16111380 - 13 Nov 2025
Viewed by 808
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with unclear pathogenic mechanisms. Dysregulated zinc metabolism contributes to AD pathology. This study aimed to identify zinc metabolism-related hub genes to provide potential biomarkers and therapeutic targets for AD. Methods: We performed an integrative [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with unclear pathogenic mechanisms. Dysregulated zinc metabolism contributes to AD pathology. This study aimed to identify zinc metabolism-related hub genes to provide potential biomarkers and therapeutic targets for AD. Methods: We performed an integrative analysis of multiple transcriptomic datasets from AD patients and normal controls. Differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were combined to identify hub genes. We then conducted Gene Set Enrichment Analysis (GSEA), immune cell infiltration analysis (CIBERSORT), and receiver operating characteristic (ROC) curve analysis to assess the hub gene’s biological function, immune context, and diagnostic performance. Drug-gene interactions were predicted using the DrugBank database. Results: We identified a single key zinc transporter–related hub gene, SLC30A3, which was significantly downregulated in AD and demonstrated potential diagnostic value (AUC 0.70–0.80). Lower SLC30A3 expression was strongly associated with impaired synaptic plasticity (long-term potentiation, long-term depression, calcium signaling pathway, and axon guidance), mitochondrial dysfunction (the citrate cycle and oxidative phosphorylation), and pathways common to major neurodegenerative diseases (Parkinson’s disease, AD, Huntington’s disease, and amyotrophic lateral sclerosis). Furthermore, SLC30A3 expression correlated with specific immune infiltrates, particularly the microglia-related chemokine CX3CL1. Zinc chloride and zinc sulfate were identified as potential pharmacological modulators. Conclusions: Our study systematically identifies SLC30A3 as a novel biomarker in AD, linking zinc dyshomeostasis to synaptic failure, metabolic impairment, and neuroimmune dysregulation. These findings offer a new basis for developing targeted diagnostic and therapeutic strategies for AD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

18 pages, 3724 KB  
Article
Stability and Thermophysical Property Enhancement of MoS2-Based Water Nanofluids Using Cationic CTAB and Anionic SLS Surfactants
by Sanae Bayou, Chaouki El Moujahid, Hammadi El Farissi, Claudia Roman, Oumaima Ettalibi and Tarik Chafik
ChemEngineering 2025, 9(6), 123; https://doi.org/10.3390/chemengineering9060123 - 6 Nov 2025
Viewed by 680
Abstract
In this study, molybdenum disulfide (MoS2)-based water nanofluids were prepared and stabilized using two surfactants with opposite charges: the cationic cetyltrimethylammonium bromide (CTAB) and the anionic sodium lauryl sulfate (SLS). Different MoS2:surfactant ratios (1:1, 1:2, and 1:3) were examined [...] Read more.
In this study, molybdenum disulfide (MoS2)-based water nanofluids were prepared and stabilized using two surfactants with opposite charges: the cationic cetyltrimethylammonium bromide (CTAB) and the anionic sodium lauryl sulfate (SLS). Different MoS2:surfactant ratios (1:1, 1:2, and 1:3) were examined to identify the optimal formulation ensuring stable dispersion. Stability was evaluated through dynamic light scattering (DLS), zeta potential, and UV–Vis spectroscopy analyses. The results showed that the MoS2:SLS (1:3) nanofluid achieved the highest stability, characterized by a zeta potential of −38 mV and a mean particle size of approximately 290 nm. Thermophysical properties were then investigated for nanoparticle concentrations of 0.05, 0.1, and 0.2 wt%. The 0.1 wt% nanofluid exhibited the best performance, showing a thermal conductivity enhancement of about 49% and an increased specific heat capacity compared with pure water. This improvement is attributed to uniform nanoparticle dispersion and enhanced phonon transport. Overall, the results demonstrate that the anionic SLS surfactant at a 1:3 ratio effectively enhances the stability as well as the thermal performance of MoS2–water nanofluids, making them promising candidates for thermal management and energy systems applications. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

20 pages, 4476 KB  
Article
Effects of Permeability and Pyrite Distribution Heterogeneity on Pyrite Oxidation in Flooded Lignite Mine Dumps
by Tobias Schnepper, Michael Kühn and Thomas Kempka
Water 2025, 17(21), 3157; https://doi.org/10.3390/w17213157 - 4 Nov 2025
Viewed by 681
Abstract
The role of sedimentary heterogeneity in reactive transport processes is becoming increasingly important as closed open-pit lignite mines are converted into post-mining lakes or pumped hydropower storage reservoirs. Flooding of the open pits introduces constant oxygen-rich inflows that reactivate pyrite oxidation within internal [...] Read more.
The role of sedimentary heterogeneity in reactive transport processes is becoming increasingly important as closed open-pit lignite mines are converted into post-mining lakes or pumped hydropower storage reservoirs. Flooding of the open pits introduces constant oxygen-rich inflows that reactivate pyrite oxidation within internal mine dumps. A reactive transport model coupling groundwater flow, advection–diffusion–dispersion, and geochemical reactions was applied to a 2D cross-section of a water-saturated mine dump to determine the processes governing pyrite oxidation. Spatially correlated fields representing permeability and pyrite distributions were generated via exponential covariance models reflecting the end-dumping depositional architecture, supported by a suite of scenarios with systematically varied correlation lengths and variances. Simulation results covering a time span of 100 years quantify the impact of heterogeneous permeability fields that result in preferential flow paths, which advance tracer breakthrough by ~15 % and increase the cumulative solute outflux up to 139 % relative to the homogeneous baseline. Low initial pyrite concentrations (0.05 wt %) allow for deeper oxygen penetration, extending oxidation fronts over the complete length of the modeling domain. Here, high initial pyrite concentrations (0.5 wt %) confine reactions close to the inlet. Kinetic oxidation allows for more precise simulation of redox dynamics, while equilibrium assumptions substantially reduce the computational time (>10×), but may oversimplify the redox system. We conclude that reliable risk assessments for post-mining redevelopment should not simplify numerical models by assuming average homogeneous porosity and mineral distributions, but have to incorporate site-specific spatial heterogeneity, as it critically controls acid generation, sulfate mobilization, and the timing of contaminant release. Full article
Show Figures

Figure 1

15 pages, 4539 KB  
Article
Dysfunctional Chondroitin 4-O-Sulfotransferase-1 Impairs Cellular Redox State and Promotes Tau Aggregation
by Satomi Nadanaka, Yuto Imamoto, Toru Takarada, Masafumi Tanaka and Hiroshi Kitagawa
Cells 2025, 14(21), 1686; https://doi.org/10.3390/cells14211686 - 28 Oct 2025
Viewed by 720
Abstract
Chondroitin sulfate (CS) chains on the cell surface are sulfated in various patterns, and this structure is the basis of CS function. We aimed to investigate the role of chondroitin 4-O-sulfotransferase-1 (C4ST-1), the enzyme responsible for the 4-sulfation of CS, in [...] Read more.
Chondroitin sulfate (CS) chains on the cell surface are sulfated in various patterns, and this structure is the basis of CS function. We aimed to investigate the role of chondroitin 4-O-sulfotransferase-1 (C4ST-1), the enzyme responsible for the 4-sulfation of CS, in redox homeostasis and protein aggregation in mouse neuroblastoma Neuro2a and neural progenitor C17.2 cells. Results showed that C4ST-1 deficiency significantly reduced 4-sulfated CS, which led to markedly decreased intracellular glutathione levels and increased reactive oxygen species production. Mechanistically, C4ST-1 loss reduced the CS modification of neurocan, decreased the stability of the cystine transporter xCT, and decreased intracellular glutathione levels. This redox imbalance promoted protein aggregation and caused lysosomal membrane damage, indicating a failure of protein quality control. Although C4ST-1 deficiency alone did not cause tau protein aggregation, it significantly accelerated the aggregation of a familial tauopathy mutant following the introduction of seeds. These findings suggest that C4ST-1-mediated CS sulfation regulates the intracellular redox state and tau pathology. Thus, C4ST-1 may serve as a therapeutic target for neurodegenerative diseases. Full article
Show Figures

Graphical abstract

19 pages, 6246 KB  
Article
Molecular Evolution of Plant SULTR Proteins and Expression Analysis of HvSULTR Under Heat Stress in Barley
by Chunmeng Zhu, Xuan Chen, Li Hao, Wessam A. Abdelrady, Tao Tong, Fenglin Deng, Fanrong Zeng, Zhong-Hua Chen, Xiaojian Wu and Wei Jiang
Plants 2025, 14(20), 3165; https://doi.org/10.3390/plants14203165 - 15 Oct 2025
Viewed by 700
Abstract
Sulfur metabolism plays an important role in plant growth and environmental adaptation. Sulfate transporters (SULTRs) are essential players that mediate sulfur acquisition and distribution in many plants, thereby influencing the cellular redox homeostasis under abiotic stress. In this study, we identified [...] Read more.
Sulfur metabolism plays an important role in plant growth and environmental adaptation. Sulfate transporters (SULTRs) are essential players that mediate sulfur acquisition and distribution in many plants, thereby influencing the cellular redox homeostasis under abiotic stress. In this study, we identified 16 putative HvSULTRs genes in barley at the genome-wide level. The conservation and divergence of the SULTR gene family were assessed through a phylogenetic tree and gene structure analysis, revealing that these genes are closely distributed along the chromosomes. Furthermore, the expression pattern of SULTRs in multiple tissues, including flower, root, leaf, stem, seeds, female, male, root meristem, and apical meristem, were analyzed among ten land plants using a public database. Interestingly, the expression of HvSULTR2, HvSULTR4, and HvSULTR5 was upregulated after four days of heat treatment, suggesting their importance in barley’s adaptive response to heat stress. In addition, HvSULTR11 was confirmed to be localized at the plasma membrane and display functional interactions with Hv14-3-3A/Hv14-3-3D. In addition, haplotypes of the HvSULTR11 based on SNP (Single Nucleotide Polymorphism) were divided into ten types across 123 barley varieties. Together, these results provide a new clue to clarify the molecular mechanism of SULTRs in stress response and a new candidate gene resource to enhance the stress (e.g., heat and drought) tolerance in barley. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

17 pages, 1854 KB  
Article
Application of Two-Compartment Bipolar Membrane Electrodialysis for Treatment of Waste Na2SO4 Solution
by Young-Jae Lee, Min-Hyuk Seo, Jae-Hyuk Chang, Jun-Hee Kim and Jae-Woo Ahn
Membranes 2025, 15(10), 312; https://doi.org/10.3390/membranes15100312 - 14 Oct 2025
Viewed by 1980
Abstract
This study evaluated the performance of a constant-current two-compartment bipolar membrane electrodialysis (BMED) system comprising cation exchange membranes and bipolar membranes for the recovery of sodium hydroxide (NaOH) from sodium sulfate (Na2SO4) solution. Key operating parameters, current density, feed [...] Read more.
This study evaluated the performance of a constant-current two-compartment bipolar membrane electrodialysis (BMED) system comprising cation exchange membranes and bipolar membranes for the recovery of sodium hydroxide (NaOH) from sodium sulfate (Na2SO4) solution. Key operating parameters, current density, feed concentration, initial base concentration, and solution volume, were systematically varied to investigate their effects on ion transport, NaOH concentration, current efficiency, and energy consumption. At 450 A/m2 with 1.30 M Na2SO4, 0.10 M initial NaOH, and 1.00 L solution volume, the system achieved a NaOH recovery yield of 69.21%, a final concentration of 2.13 M, a current efficiency of 36.39%, and an energy consumption of 1.82 kWh/kg Na2SO4 processed, corresponding to 4.72 kWh/kg NaOH produced, indicating optimal energy efficiency and process stability. To maximize concentration, the highest NaOH concentration of 2.85 M was obtained at the same current density by reducing the initial NaOH volume to 0.50 L, although this led to increased water transport and higher energy consumption (2.31 kWh/kg Na2SO4; 5.99 kWh/kg NaOH), compromising process efficiency. Full article
(This article belongs to the Special Issue Electrochemical Membrane and Membrane Processes)
Show Figures

Graphical abstract

17 pages, 2821 KB  
Article
Characteristics of the Chemical Components of PM2.5 in the Dangjin Region, South Korea, and Evaluation of Emission Source Contributions During High-Concentration Events
by Young-hyun Kim, Shin-Young Park, Hyeok Jang, Ji-Eun Moon and Cheol-Min Lee
Toxics 2025, 13(10), 869; https://doi.org/10.3390/toxics13100869 - 13 Oct 2025
Viewed by 758
Abstract
Fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 µm) remains a challenging policy for industrialized coastal regions throughout East Asia. In this study, we present a multi-year chemical characterization of PM2.5 and identify key factors contributing to extreme pollution events [...] Read more.
Fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 µm) remains a challenging policy for industrialized coastal regions throughout East Asia. In this study, we present a multi-year chemical characterization of PM2.5 and identify key factors contributing to extreme pollution events in Dangjin, a heavy-industry hub on Korea’s west coast. Between August 2020 and March 2024, 24-h gravimetric filters (up to n = 245; 127–280 valid analyses depending on constituent) were collected twice weekly in winter–spring and weekly in summer–autumn. Meteorological data and 48-h backward HYSPLIT trajectories guided source interpretation. The mean PM2.5 concentration was 26.22 ± 15.29 µg/m3 (4.74–95.31 µg/m3). The mass was highest in winter (30.83 µg/m3). Secondary inorganic ions constituted 60.3% of the aerosol, with nitrate comprising 29.7%. A nitrate-to-sulfate ratio of 1.94 indicated a stronger influence from mobile NOx emissions compared to that from coal combustion. The trajectory analysis showed north-easterly transport from Eastern China, followed by local stagnation, which promoted rapid ammonium-nitrate formation. Regional transport contributes to severe PM2.5 episodes, with their magnitude increased by local NOx and NH3 emissions. Our findings suggest that effective mitigation strategies in coastal industrial corridors require coordinated control of long-range transport and domestic measures focused on vehicles and ammonia-rich industries. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

Back to TopTop