Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = substrate physicochemical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1160 KB  
Review
Green-Synthesized Nanoparticles for Efficient Dye Degradation: Mechanisms, Applications, and Future Perspectives
by Xi Zheng, Xiang Li, Jiahui Deng, Yanhui Yuan, Xiaodong Jiang and Kun Xu
Catalysts 2026, 16(2), 125; https://doi.org/10.3390/catal16020125 - 29 Jan 2026
Viewed by 291
Abstract
The acceleration of industrialization in many countries, driven by increasing societal demands, has led to a substantial rise in dye consumption and associated environmental concerns. Dye wastewater constitutes a significant pollution source, with certain dyes exhibiting high toxicity and carcinogenicity, posing serious threats [...] Read more.
The acceleration of industrialization in many countries, driven by increasing societal demands, has led to a substantial rise in dye consumption and associated environmental concerns. Dye wastewater constitutes a significant pollution source, with certain dyes exhibiting high toxicity and carcinogenicity, posing serious threats to human health and ecosystem integrity. Current dye removal techniques face notable limitations: adsorption methods often entail high costs and restricted applicability, whereas biological treatments impose specific requirements on the physicochemical properties of wastewater. Nanoparticles, characterized by their distinct physical, chemical, and biological properties, offer promising alternatives due to their high surface-to-volume ratios, which render them effective as both catalysts and adsorbents. This review systematically categorizes the mechanisms of nanoparticle-mediated dye degradation into three primary pathways, with a specific focus on the application of green-synthesized metal nanoparticles within each category. It elucidates the fundamental reaction mechanisms of green synthesis and provides an in-depth analysis of how bioactive components regulate the final morphology, crystal structure, and surface properties of the resulting nanoparticles. Furthermore, strategies to enhance degradation efficiency are discussed, including nanoparticle modification, bimetallic doping, and immobilization on suitable substrates. The incorporation of magnetic properties, either through intrinsic design or by supporting nanoparticles on magnetic carriers, also improves recyclability and practical utility. These advances underscore the considerable potential of nanoparticles to address the challenges of dye pollution. Full article
(This article belongs to the Topic Green and Sustainable Catalytic Process)
Show Figures

Graphical abstract

39 pages, 4423 KB  
Review
Interpreting the Theranostic Applications of Alumina and Silica Substrates in Cancer
by Dimitris-Foivos Thanos, Pavlos Pantelis, Giorgos Theocharous, Sylvia Vagena, Cleo Kyriakopoulou, Giannis Pantelidis, Mary Markatou, Myrto Pliakostamou, Nikolaos Papanikolaou, Ekaterina-Michaela Tomou, Maria-Anna Gatou, Evangelia A. Pavlatou, Natassa Pippa, Vassilis G. Gorgoulis and Nefeli Lagopati
Molecules 2026, 31(3), 428; https://doi.org/10.3390/molecules31030428 - 26 Jan 2026
Viewed by 251
Abstract
In recent years, remarkable progress in nanomedicine has been achieved, leading to the development of several nanocarriers which aim to enhance the therapeutic efficacy in cancer treatment. Owing to their high versatility and highly tunable physicochemical properties, alumina (Al2O3) [...] Read more.
In recent years, remarkable progress in nanomedicine has been achieved, leading to the development of several nanocarriers which aim to enhance the therapeutic efficacy in cancer treatment. Owing to their high versatility and highly tunable physicochemical properties, alumina (Al2O3) and silica (SiO2) substrates represent promising and innovative nanoplatforms that are widely used in biomedical applications, such as drug-delivery, diagnosis, and biosensing in cancer. In particular, such platforms possess multiple advantageous properties, including mechanical stability, high loading capacity, tunable porosity, excellent biocompatibility, and in vitro and in vivo low toxicity. In this review article, we discuss their emerging role as biosensing platforms and drug delivery systems in oncology. As such, we describe how these substrates enable the incorporation of antibodies against various cancer biomarkers [e.g., cancer antigen 15-3 (CA15-3), serum amyloid A1 (SAA1), epithelial cell adhesion molecule (EpCAM), or human epidermal growth factor receptor 2 (HER2)] for the detection of multiple malignancies. Furthermore, we highlight the development of highly promising alumina- and silica-based platforms for drug delivery (e.g., chemotherapeutics, photosensitizers, or gene delivery agents) in cancer. Ultimately, by providing a comprehensive overview alongside a critical analysis, we demonstrate that such nanostructures represent promising platforms for potential clinical translation in cancer medicine, helping to mitigate the limitations of conventional cancer therapies. Full article
Show Figures

Figure 1

16 pages, 1092 KB  
Article
Therapeutic Potential, Predictive Pharmaceutical Modeling, and Metabolic Interactions of the Oxindole Kratom Alkaloids
by Md Harunur Rashid, Matthew J. Williams, Andres Garcia Guerra, Arunporn Itharat, Raimar Loebenberg and Neal M. Davies
J. Phytomed. 2026, 1(1), 2; https://doi.org/10.3390/jphytomed1010002 - 23 Jan 2026
Viewed by 205
Abstract
Kratom (Mitragyna speciosa (Korth.) Havil.) oxindole alkaloids remain underexplored compared to the well-studied indole constituents mitragynine and 7-hydroxymitragynine. Previous research has primarily focused on phytochemical identification and preliminary pharmacology, with limited pharmacokinetic insight. This study pioneers an in silico ADMET modeling analysis of [...] Read more.
Kratom (Mitragyna speciosa (Korth.) Havil.) oxindole alkaloids remain underexplored compared to the well-studied indole constituents mitragynine and 7-hydroxymitragynine. Previous research has primarily focused on phytochemical identification and preliminary pharmacology, with limited pharmacokinetic insight. This study pioneers an in silico ADMET modeling analysis of 27 kratom-derived oxindole alkaloids using ADMET Predictor™ v3.0, delivering the first comprehensive predictions of their physicochemical properties, CYP450/UGT enzyme interactions, transporter affinities, permeability, and pharmacokinetic parameters. Representative compounds such as speciophylline, isomitraphylline, and isospeciophylline displayed notably favorable predicted jejunal permeability and moderate metabolic stability, suggesting promising oral drug-like characteristics. Across the dataset, high CYP3A4 substrate affinity (98% confidence), variable CYP3A4, CYP2D6, CYP2C19 inhibition, strong P-gp substrate potential, and differential BBB penetration probabilities (46–99%) were observed. These findings provide a foundational computational framework to guide future experimental validation and rational drug development of kratom oxindole alkaloids. Full article
Show Figures

Graphical abstract

17 pages, 3020 KB  
Article
Low-Temperature Biochar Replacing Peat Enables Halving Nutrient Solution in Dwarf Tomato Soilless Culture
by Yuanyuan Li, Yu Meng, Peihua Zhang, Xiangyu Huang, Yuchen Che, Nannan Wu, Yifan Zhang, Yi Liu, Haibo Meng, Lin Ouyang and Dongdong Zhang
Horticulturae 2026, 12(1), 125; https://doi.org/10.3390/horticulturae12010125 - 22 Jan 2026
Viewed by 112
Abstract
Horticultural reliance on non-renewable peat faces critical sustainability challenges. Low-temperature biochar (LTB) presents a promising alternative, offering higher biochar yields and lower energy inputs compared to conventional high-temperature biochar. However, LTB’s distinct physicochemical properties necessitate empirical validation of its efficacy as a peat [...] Read more.
Horticultural reliance on non-renewable peat faces critical sustainability challenges. Low-temperature biochar (LTB) presents a promising alternative, offering higher biochar yields and lower energy inputs compared to conventional high-temperature biochar. However, LTB’s distinct physicochemical properties necessitate empirical validation of its efficacy as a peat substitute. This study investigated rice straw-derived LTB (pyrolyzed at 350 °C for 10 or 30 min) as a peat substitute at different ratios (10%, 20%, 40%), combined with three Hoagland nutrient solution concentrations (25%, 50%, 100%), on the growth, substrate properties, and fruit quality of dwarf tomato. The results show that a 10–20% LTB substitution improved substrate physical properties (reduced bulk density, increased porosity) and promoted plant growth (biomass, height). Conversely, a 40% LTB substitution inhibited growth, primarily attributed to osmotic stress caused by excessively high substrate electrical conductivity (EC). At the optimal 10–20% rates, tomato yield and fruit quality (soluble solids, lycopene, vitamin C) were significantly enhanced. Most importantly, a comprehensive evaluation revealed that 10–20% LTB substitution allowed for a 50% reduction in nutrient solution concentration while achieving a comprehensive performance comparable to the full-strength nutrient control. This study indicates that LTB could effectively replace a portion of peat, potentially enhancing dwarf tomato yield and quality while reducing chemical fertilizer dependency by up to 50%. These findings point toward a possible pathway for more resource-efficient horticultural practices. Full article
Show Figures

Figure 1

16 pages, 2390 KB  
Article
Vermicompost and Leachate from Sewage Sludge and Vineyard Pruning Residues: An Exploratory Assessment of Cucumber Germination and Early Seedling Growth
by Elisabete Nascimento-Gonçalves, Tiago Azevedo, Henda Lopes, Catarina Medeiros, Virgílio Falco, Ana Cláudia Coelho, João R. Sousa, Ana M. Coimbra, Marta Roboredo, Paula A. Oliveira and Maria C. Morais
Environments 2026, 13(1), 59; https://doi.org/10.3390/environments13010059 - 21 Jan 2026
Viewed by 231
Abstract
The sustainable management of organic residues remains a major challenge in agriculture. Vermicomposting offers an environmentally friendly strategy to convert organic waste into nutrient-rich, biologically stable biofertilizers. This exploratory study evaluated the effects of vermicompost and its leachate, produced from sewage sludge and [...] Read more.
The sustainable management of organic residues remains a major challenge in agriculture. Vermicomposting offers an environmentally friendly strategy to convert organic waste into nutrient-rich, biologically stable biofertilizers. This exploratory study evaluated the effects of vermicompost and its leachate, produced from sewage sludge and vineyard pruning residues, on cucumber (Cucumis sativus L.) germination and 25-day early seedling growth. Treatments included a control (peat and perlite, CNT), two vermicompost doses, 20 g kg−1 and 40 g kg−1 (VC_D1 and VC_D2, respectively) and a 5% (v/v) vermicompost leachate (VC_L) applied as the sole irrigation source. Foliar nutrient contents and physicochemical properties of the substrate and leachate were determined. Germination was not significantly affected (p > 0.05), but VC_D1 promoted slightly faster and more uniform seed emergence. Growth responses were dose dependent, with VC_D1 significantly enhancing shoot biomass (approximately 15% than the CNT and VC_D2) and providing a balanced foliar nutrient profile, whereas VC_D2 significantly reduced growth, promoted excessive foliar K and P, and lower Ca, Fe, and Mn contents. VC_L enhanced foliar N accumulation but did not significantly (p > 0.05) increase biomass. Both vermicompost and its leachate were pathogen-free, with metal concentrations below regulatory limits. Overall, these findings suggest that, under the tested conditions, vermicomposting these residues can generate potentially safe amendments for cucumber seedling growth, though dose optimization is essential. This exploratory approach supports residue valorization and contributes to circular economy principles and sustainable agriculture goals. Full article
Show Figures

Figure 1

17 pages, 1037 KB  
Article
Sustainable Production of Bioactive Chitosan from Fermented Rice Bran and Husk via Solid-State Fermentation
by Helena L. Gouvea, Meritaine da Rocha, Eliezer Q. Oreste, Sergiane C. Barbosa, Larine Kupski and Ednei G. Primel
Fermentation 2026, 12(1), 44; https://doi.org/10.3390/fermentation12010044 - 12 Jan 2026
Viewed by 436
Abstract
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the [...] Read more.
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the resulting biopolymer. A full factorial design (23) was applied to assess key fermentation parameters, including moisture content, substrate composition, and nitrogen supplementation. Among the tested conditions, the highest chitosan yield was at 55% moisture, 50% rice husk, and 1.8 g/L urea. The obtained chitosan was characterized for degree of deacetylation (DD) using FTIR and NMR, and molecular weight (MW) by viscometry. Antimicrobial activity was tested against Gram-positive and Gram-negative bacteria, and antioxidant capacity was measured via DPPH and ABTS assays. The chitosan exhibited a high DD (86.4 ± 0.6%) and a MW of 59.65 kDa, values comparable to commercial standards. It showed strong antimicrobial activity, particularly against Gram-negative strains. Antioxidant assays confirmed concentration-dependent activity, reaching 94% DPPH inhibition at 5.00 mg mL−1. Overall, the results demonstrate that agro-industrial residues can be effectively transformed into high-quality, bioactive chitosan, offering a sustainable and circular alternative to conventional production routes. Full article
Show Figures

Figure 1

12 pages, 2366 KB  
Communication
Spent Mushroom Substrate After Sieving Can Improve Its Conditioning Effect in Cow Manure Composting
by Yingrong Zhao, Yueni Song, Yun Yun and Yuan Luo
Agronomy 2026, 16(2), 164; https://doi.org/10.3390/agronomy16020164 - 8 Jan 2026
Viewed by 285
Abstract
Spent mushroom substrate (SMS) is an excellent conditioner for livestock manure composting. However, existing studies have confirmed that it is difficult to achieve the desired effect by directly mixing SMS with manure. Coarse (≥2 mm) and fine (<2 mm) of SMS particles from [...] Read more.
Spent mushroom substrate (SMS) is an excellent conditioner for livestock manure composting. However, existing studies have confirmed that it is difficult to achieve the desired effect by directly mixing SMS with manure. Coarse (≥2 mm) and fine (<2 mm) of SMS particles from an edible fungus (Auricularia auricula) were obtained after sieving and used for cow manure composting. In our study, the appropriate ratio of coarse SMS to fine SMS particles added to the manure was explored. Four treatments were designed, adding 20% coarse SMS (T1), 15% coarse SMS + 5% fine SMS (T2), 5% coarse SMS + 15% fine SMS (T3), and 20% fine SMS (T4) to cow manure for composting, respectively. The physicochemical properties, maturity, and nutrient content of the composts were analyzed in a 35-day composting trial. The optimal treatment was determined through a comprehensive evaluation using the entropy-weighted TOPSIS method. The results showed that the highest composting temperature reached 65.13 °C in T3, and the duration of the thermophilic phase of T2 was the longest. The relative germination rate was not affected, and the relative radicle growth (RRG) reflected the variation in phytotoxicity during composting. After composting, the pH of the finished composts was between 8.78 and 9.05. The electric conductivity was between 2207 and 2513 μS cm−1. The ammonium nitrogen content was less than 150 mg kg−1, which was at the level found in mature compost. The RRG was no less than 80%, indicating the compost was mature and had no phytotoxicity. The available phosphorus and potassium contents increased by 4.8% to 59.1% compared with that before composting. The comprehensive evaluation showed that the treatment supplemented with 15% coarse SMS and 5% fine SMS was optimal. Full article
Show Figures

Figure 1

24 pages, 1753 KB  
Article
Valorization of Produced Water from Oilfields for Microbial Exopolysaccharide Synthesis in Stirred Tank Bioreactors
by Igor Carvalho Fontes Sampaio, Pamela Dias Rodrigues, Isabela Viana Lopes de Moura, Maíra dos Santos Silva, Luiz Fernando Widmer, Cristina M. Quintella, Elias Ramos-de-Souza and Paulo Fernando de Almeida
Fermentation 2026, 12(1), 39; https://doi.org/10.3390/fermentation12010039 - 8 Jan 2026
Viewed by 550
Abstract
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming [...] Read more.
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming PW from an industrial waste into a useful resource. In this context, bacterial exopolysaccharides (EPS) have gained attention due to their diverse functional properties and applicability in bioremediation, bioprocessing and petroleum-related operations. This study evaluated the potential of Lelliottia amnigena to synthesize EPS using oilfield PW as a component of the culture medium in stirred-tank bioreactors. Three conditions were assessed: a control using distilled water (dW), PW diluted to 25% (PW25%) and dialyzed PW (DPW). Batch experiments were conducted for 24 h, during which biomass growth, EPS accumulation and dissolved oxygen dynamics were monitored. Post-cultivation analyses included elemental and monosaccharide composition, scanning electron microscopy and rheological characterization of purified EPS solutions. EPS production varied among treatments, with dW and DPW yielding approximately 9.6 g L−1, while PW25% achieved the highest productivity (17.55 g L−1). The EPS samples contained fucose, glucose and mannose, with compositional differences reflecting the influence of PW-derived minerals. Despite reduced apparent viscosity under PW25% and DPW conditions, the EPS exhibited physicochemical properties suitable for biotechnological applications, including potential use in fucose recovery, drilling fluids and lubrication systems in the petroleum sector. The EPS also demonstrated substantial adsorption capacity, incorporating salts from PW and contributing to contaminant removal. This study demonstrates that PW can serve both as a substrate and as a source of functional inorganic constituents for microbial EPS synthesis, supporting an integrated approach to PW valorization. These findings reinforce the potential of EPS-based bioprocesses as sustainable green technologies that simultaneously promote waste mitigation and the production of high-value industrial bioproducts. Full article
Show Figures

Graphical abstract

22 pages, 15645 KB  
Article
Genome-Wide Analysis of Nelumbo nucifera UXS Family Genes: Mediating Dwarfing and Aquatic Salinity Tolerance
by Li Wang, Xingyan Zheng, Yajun Liu, Qian Mao, Yiwen Chen, Lin Zhao, Xiaomao Cheng, Longqing Chen and Huizhen Hu
Plants 2026, 15(1), 116; https://doi.org/10.3390/plants15010116 - 1 Jan 2026
Viewed by 448
Abstract
Nelumbo nucifera (Lotus) is an economically important aquatic crop frequently challenged by abiotic stresses. The plant cell wall, a primary interface with the environment, undergoes dynamic remodeling to balance structural integrity with adaptation. UDP-glucuronic acid decarboxylase (UXS), a key enzyme synthesizing the nucleotide [...] Read more.
Nelumbo nucifera (Lotus) is an economically important aquatic crop frequently challenged by abiotic stresses. The plant cell wall, a primary interface with the environment, undergoes dynamic remodeling to balance structural integrity with adaptation. UDP-glucuronic acid decarboxylase (UXS), a key enzyme synthesizing the nucleotide sugar precursor UDP-xylose, exists in distinct membrane-bound (e.g., Golgi) and cytosolic forms, channeling substrates into compartmentalized polysaccharide biosynthesis pathways and positioning the UXS family as a crucial regulator linking cell wall metabolism to plant adaptation. Here, we systematically characterized the NnUXS gene family in lotus through genome-wide identification, evolutionary synteny analysis, and functional validation. Integrated bioinformatic analysis revealed their physicochemical properties, motif patterns, and regulatory cis-elements, suggesting potential roles in growth and salt stress responses. Among the family, NnUXS3 was prioritized due to its preferentially upregulated in small plant architecture (SPA) varieties, its early induction under salt stress (0.5 days, 200 mM NaCl), and its highest predicted binding affinity for UDP-GlcA (−8.9 kcal/mol). Subsequent functional validation confirmed its dual role: heterologous overexpression in tobacco reduced plant height (47.22%) and leaf area (67.61%), while transient overexpression in lotus enhanced salt tolerance and shortened the petioles. This enhanced tolerance was achieved by upregulating key genes involved in polysaccharide biosynthesis (NnCSLC4, NnXTH22, NnCESA1) and antioxidant defense (NnSOD, NnPOD). Our findings establish NnUXS3 as a key mediator in balancing plant architecture and abiotic stress resilience. This work not only identifies a valuable genetic target for lotus breeding but also provides insights into the growth-stress trade-off, highlighting the importance of UXS subcellular localization in tailoring cell wall remodeling for environmental adaptation. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 6499 KB  
Article
Dinuclear Copper(II) Complex with Hemiaminal N,O-Donor Ligand
by Anna Kwiecień, Tomasz Janek, Tomasz Misiaszek, Anna Pyra and Żaneta Czyżnikowska
Appl. Sci. 2026, 16(1), 136; https://doi.org/10.3390/app16010136 - 22 Dec 2025
Viewed by 390
Abstract
Novel copper(II) coordination compounds with hemiaminal N,O-donor ligands were obtained and synthesized in a one-pot reaction from three appropriate substrates (aldehyde, amine, and copper(II) chloride) in methanol. A dinuclear complex with a [Cu2Cl2(hemiaminal)2(amine)2 [...] Read more.
Novel copper(II) coordination compounds with hemiaminal N,O-donor ligands were obtained and synthesized in a one-pot reaction from three appropriate substrates (aldehyde, amine, and copper(II) chloride) in methanol. A dinuclear complex with a [Cu2Cl2(hemiaminal)2(amine)2] coordination mode was obtained. The complex consists of two five-coordinated central Cu(II) cations with square pyramidal geometry and Ci molecular symmetry. The hemiaminal oxygen atom forms a bridge between the two metallic centers, and that coordination bond is a factor stabilizing these hemiaminal moieties, generally regarded as unstable intermediates. We analyzed the energetic and physicochemical properties of the [Cu2Cl2(hemiaminal)2(amine)2] complex using density functional theory (DFT). First of all, we predicted the geometrical parameters, molecular electrostatic potential, HOMO and LUMO energies, and reactivity indices to indicate the free radical scavenging capacity. Based on the topological analysis of charge densities, we also characterized the properties of hydrogen bonds. Moreover, the antimicrobial properties of the complex were investigated, and it exhibited the highest activity against Gram-positive bacteria and Candida albicans. Full article
Show Figures

Figure 1

19 pages, 6654 KB  
Article
Corrosion Failure Analysis of a Pressure-Resistant Cylinder for Measurement While Drilling Tools in Directional Drilling
by Yufei Wang, Xin Chen, Wei Chen, Wenxue Pu, Jiaxin Zeng, Jiancheng Luo, Hanwen Zhang and Dezhi Zeng
Processes 2026, 14(1), 45; https://doi.org/10.3390/pr14010045 - 22 Dec 2025
Viewed by 440
Abstract
During the drilling operations of a shale gas well in Central China, a severe failure occurred in the pressure-resistant cylinder of the measurement while drilling (MWD) tool, with numerous microcracks observed on the outer surface of the cylinder. This significantly compromised the safety [...] Read more.
During the drilling operations of a shale gas well in Central China, a severe failure occurred in the pressure-resistant cylinder of the measurement while drilling (MWD) tool, with numerous microcracks observed on the outer surface of the cylinder. This significantly compromised the safety of the MWD tool and the reliability of the logging data. To determine the cause of the failure, macroscopic morphology analysis and physicochemical performance tests were conducted on the failed pressure-resistant cylinder, which is made of Cr20Ni11 (UNS 308) austenitic stainless steel. Additionally, scanning electron microscopy, X-ray energy dispersive spectroscopy, white light interferometry, and X-ray photoelectron spectroscopy were employed to analyze the morphology and chemical composition of the corrosion products and cracks, thereby identifying the cause of the corrosion failure. It is demonstrated that the physicochemical properties of the pressure-resistant cylinder comply with the specifications of relevant standards. Nevertheless, the size of non-metallic inclusions in the material reaches 100 μm, which significantly enhances the material’s susceptibility to stress corrosion cracking (SCC). Meanwhile, solid particles and high-concentration Cl present in the drilling fluid deteriorate the passive film formed on the substrate surface. EDS analysis reveals that the Cl content is measured to be 4.09 wt%, which induces pitting on the substrate with a maximum pitting depth of 13.5556 μm. Under the synergistic effect of stress and corrosion, the pressure-resistant cylinder experiences SCC failure initiated by Cl; specifically, cracks nucleate at the bottom of the pitting pits and propagate along the radial direction. Full article
Show Figures

Graphical abstract

18 pages, 4303 KB  
Article
Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix
by Malgorzata Sypniewska, Beata Jędrzejewska, Marek Pietrzak, Marek Trzcinski, Robert Szczęsny, Mateusz Chorobinski and Lukasz Skowronski
Appl. Sci. 2026, 16(1), 91; https://doi.org/10.3390/app16010091 - 21 Dec 2025
Viewed by 381
Abstract
Flavonoids, natural organic compounds from the polyphenolic group with broad bioactive and pharmaceutical properties, are strong ligands for many metal ions. This work describes the formation of the complex between Zn(II) and morin. The synthesized compound is characterized using three analytical techniques, i.e., [...] Read more.
Flavonoids, natural organic compounds from the polyphenolic group with broad bioactive and pharmaceutical properties, are strong ligands for many metal ions. This work describes the formation of the complex between Zn(II) and morin. The synthesized compound is characterized using three analytical techniques, i.e., 1H NMR, IR, and thermal gravimetric analysis. Importantly, the complex was successfully obtained in the form of a solid, which enables its further physicochemical and structural characterization. Physicochemical characterization of the Morin-Zn complex was performed by steady-state and time-resolved spectroscopy. The absorption spectrum of the complex contains two main bands at ca. 407–415 nm and ca. 265 nm, and the complex emits yellow-green light with higher intensity than the free ligand. In the next step, morin and zinc complex were dispersed in a PMMA (poly (methyl methacrylate)) polymer matrix, and respective thin layers were produced. The studied thin films were deposited on silicon substrates by using the spin-coating method and characterized by X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM), Spectroscopic Ellipsometry (SE), UV-VIS spectroscopy, and photoluminescence (PL). The absorption of thin layers showed, similarly to solutions, the presence of two transitions: π→π* and n→π*, and a bathochromic shift for the morin-zinc complex compared to morin. The photoluminescence of the complex thin film showed two bands, the first in the range of 380–440 nm corresponding to PMMA, and the second with a maximum at 490 nm, derived from the synthesized compound. Full article
Show Figures

Figure 1

14 pages, 4845 KB  
Article
Elaboration of Natural Hydroxyapatite Coating by Plasma Spraying
by Maya Kebaili, Amina Ghedjemis, Lilia Benchikh, Yazid Aitferhat, Ilyes Abacha, Kamel Hebbache, Cherif Belebchouche and El Hadj Kadri
Physchem 2025, 5(4), 57; https://doi.org/10.3390/physchem5040057 - 17 Dec 2025
Viewed by 475
Abstract
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development [...] Read more.
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development and characterization of a low-cost, biocompatible coating using hydroxyapatite derived from an unconventional natural source dromedary bone applied onto a titanium substrate via plasma spraying. Hydroxyapatite powder was synthesized from dromedary femurs through a thermal treatment process at 1000 °C. The resulting powder was then deposited onto a sandblasted titanium dioxide substrate using an atmospheric plasma spray technique. The physicochemical, structural, and morphological properties of both the source powder and the final coating were comprehensively analyzed using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, and Fourier-Transform Infrared Spectroscopy. Characterization of the powder confirmed the successful synthesis of pure, crystalline hydroxyapatite, with Fourier-Transform Infrared Spectroscopy analysis verifying the complete removal of organic matter. The plasma-sprayed coating exhibited good adhesion and a homogenous, lamellar microstructure typical of thermal spray processes, with an average thickness of approximately 95 μm. X-ray Diffraction analysis of the coating revealed that while hydroxyapatite remained the primary phase, partial decomposition occurred during spraying, leading to the formation of secondary phases, including tricalcium phosphate and calcium oxide. Scanning Electron Microscopy imaging showed a porous surface composed of fully and partially melted particles, a feature potentially beneficial for bone integration. The findings demonstrate that dromedary bone is a viable and low-cost precursor for producing bioactive hydroxyapatite coatings for orthopedic implants. The plasma spray method successfully creates a well-adhered, porous coating, though process-induced phase changes must be considered for biomedical applications. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

27 pages, 4795 KB  
Review
Graphene and Its Derivatives as Modulators of Macrophage Polarization in Cutaneous Wound Healing
by Iwona Lasocka, Michał Skibniewski, Iwona Pasternak, Anna Wróblewska, Zuzanna Biernacka, Ewa Skibniewska, Lidia Szulc-Dąbrowska and Marie Hubalek Kalbacova
Cells 2025, 14(24), 2001; https://doi.org/10.3390/cells14242001 - 16 Dec 2025
Viewed by 546
Abstract
Graphene-based materials (GBMs), owing to their excellent biomedical properties, can significantly advance the development of nano-biodressings. Their unique physicochemical features, such as high surface area, tunable functionalization, antimicrobial activity, and ability to interact with immune cells, suggest that GBMs may influence key biological [...] Read more.
Graphene-based materials (GBMs), owing to their excellent biomedical properties, can significantly advance the development of nano-biodressings. Their unique physicochemical features, such as high surface area, tunable functionalization, antimicrobial activity, and ability to interact with immune cells, suggest that GBMs may influence key biological processes involved in tissue repair, particularly the immune response. Building on this growing evidence, the aim of this review is to demonstrate that GBMs can serve as tools for modulating macrophage polarization as a strategy for promoting wound healing. We present the mechanisms by which GBMs penetrate macrophages and discuss the effects of GBMs, either in suspension or as scaffolds/grounds/substrates, on macrophage polarization. Moreover, we propose mechanisms underlying the actions of different forms of GBMs on macrophage polarization. Nevertheless, a multitude of uncertainties and significant challenges remain. Chief among these are the pronounced heterogeneity of GBM subtypes, the necessity for exhaustive characterization and in-depth analysis, the formulation of robust experimental designs, and the careful selection of models capable of accurately delineating macrophage populations and guiding their polarization toward achieving targeted wound healing outcomes. This review attempts to systematize and clarify these issues. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

17 pages, 502 KB  
Article
Turning Mushy Lipids into Fruity Notes: Unlocking Lactone Biosynthesis Potential in Fat Industry Lipid Waste
by Jolanta Małajowicz, Katarzyna Wierzchowska, Karina Jasińska and Agata Fabiszewska
Foods 2025, 14(24), 4326; https://doi.org/10.3390/foods14244326 - 15 Dec 2025
Viewed by 301
Abstract
Waste from the fat-processing industry represents a challenging stream due to its physicochemical properties and environmental impact. Valorization through recovery and reuse offers ecological, economic, and social benefits. This study focused on mushy lipid residues generated during cold pressing of oilseeds (sunflower, flax, [...] Read more.
Waste from the fat-processing industry represents a challenging stream due to its physicochemical properties and environmental impact. Valorization through recovery and reuse offers ecological, economic, and social benefits. This study focused on mushy lipid residues generated during cold pressing of oilseeds (sunflower, flax, blue poppy, hemp, black cumin, and walnut) and evaluated their potential for lactone biosynthesis. The waste was analyzed for protein and fat content, while fatty acid profile, acid and peroxide values, oxidation stability, and health-related indices characterized the extracted oils. Polyphenol content and antioxidant activity of the residues were also determined. Subsequently, the waste was used as a substrate in biotransformation processes with Lactiplantibacillus plantarum and Yarrowia lipolytica. The results showed high protein (13.1–19.4%) and fat levels (65.0–77.3%) across all residues. The lipid fractions were rich in monounsaturated and polyunsaturated fatty acids, comprising nearly 90% of the total fatty acids, with oleic and linoleic acids being the dominant components. These features highlight their strong valorization potential, particularly for the microbial synthesis of aroma-active lactones. Under the applied conditions, the production of γ-dodecalactone and δ-decalactone reached 0.76 g/L and 1.62 g/L, respectively, confirming the suitability of cold-press residues as substrates for sustainable biotechnological applications. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

Back to TopTop