Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = submicron particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 17296 KB  
Article
Submicron Particles and Micrometeorology in Highly Densified Urban Environments: Heavy-Tailed Probability Study
by Patricio Pacheco Hernández, Eduardo Mera Garrido, Gustavo Navarro Ahumada, Javier Wachter Chamblas and Steicy Polo Pizan
Atmosphere 2025, 16(9), 1044; https://doi.org/10.3390/atmos16091044 - 2 Sep 2025
Viewed by 294
Abstract
Submicron particles (SPs), with diameters less than 1.0 μm, are a serious health risk, and urban meteorology variables (MVs), impacted by human activity, can support their sustainability. This study, in a city immersed in a basin geomorphology, is carried out during the summer [...] Read more.
Submicron particles (SPs), with diameters less than 1.0 μm, are a serious health risk, and urban meteorology variables (MVs), impacted by human activity, can support their sustainability. This study, in a city immersed in a basin geomorphology, is carried out during the summer period of high temperatures and variable relative humidity. An area of high urban density was selected, with the presence of high-rise buildings, urban canyons that favor heat islands, low forestation, intense vehicular traffic, and extreme conditions for MVs. Hourly measurements, in the form of time series, record the number of SPs (for diameters of 0.3, 0.5, and 1.0 μm) along with MVs (temperature (T), relative humidity (RH), and wind speed magnitude (WS)). The objective is to verify whether MVs (RH, T) promote the sustainability of SPs. For this purpose, Spearman’s analysis and a heavy-tailed probability function were used. The central tendency probability, a Gaussian distribution, was discarded since its probability does not discriminate extreme events. Spearman’s analysis yielded significant p-values and correlations between PM10, PM5.0, PM2.5, and SPs. However, this was not the case between MVs and SPs. By applying a heavy-tailed probability analysis to extreme events, the results show that MVs such as T and RH act in ways that can favor the accumulation and persistence of SP concentrations. This tendency could have been exacerbated during the measurement period by heat waves and a geographical environment under the influence of a prolonged drought resulting from climate change and global warming. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

19 pages, 8974 KB  
Article
Fabrication, Microstructure, and High-Temperature Mechanical Properties of a Novel Al-Si-Mg Based Composite Reinforced with Cu-Mn Binary Phase and Submicron Dispersoid
by Kyu-Sik Kim, Abdul Wahid Shah, Jin-Pyung Kim, Si-Young Sung, Kee-Ahn Lee and Min-Su Jeon
Metals 2025, 15(9), 958; https://doi.org/10.3390/met15090958 - 28 Aug 2025
Viewed by 355
Abstract
This study reported the development of a novel Al-Si-Mg-based composite reinforced by micron-sized Cu-Mn binary solid solution phases and submicron-sized α-Al(Mn,Fe)Si dispersoids. The Cu-Mn binary solid solution phases were added to the melt in the form of an Al-3%CuMn master alloy, whereas α-Al(Mn,Fe)Si [...] Read more.
This study reported the development of a novel Al-Si-Mg-based composite reinforced by micron-sized Cu-Mn binary solid solution phases and submicron-sized α-Al(Mn,Fe)Si dispersoids. The Cu-Mn binary solid solution phases were added to the melt in the form of an Al-3%CuMn master alloy, whereas α-Al(Mn,Fe)Si dispersoids were obtained via heat treatment. The microstructure analysis confirmed the presence of micron-sized Cu-Mn binary, eutectic Mg2Si, and Al15(FeMn)3Si2 intermetallic phases, submicron-sized α-Al(Mn,Fe)Si dispersoids, and nano-sized precipitates in the Al-based composite. At room temperature, tensile results represented a yield strength of 287 MPa and a tensile strength of 306 MPa, with an elongation of 17%. Moreover, the Al-based composite maintained a yield strength of 277 MPa up to 250 °C, with a slight increase in elongation. The composite also exhibited excellent high-temperature high-cycle fatigue properties and showed a high-cycle fatigue limit of 140 MPa at 130 °C, which is ~2.3 times higher than that of the commercial A319 alloy. A fractography study revealed that the secondary particles hindered the movement of dislocations, thus delaying crack initiation under cyclic loading at high temperatures. Additionally, Cu-Mn binary solid solutions and Al15(FeMn)3Si2 phases were found to be effective in reducing the crack propagation rate by hindering the movement of the propagated crack. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Graphical abstract

14 pages, 1232 KB  
Article
Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release
by Ana Paula Valente Pinho Mafetano, Fernanda Alves Feitosa, Gabriela da Silva Chagas, Nathália Moreira Gomes, Marcella Batista Rocha, Mariane Cintra Mailart, Karen Cristina Kazue Yui and Cesar Rogério Pucci
Polymers 2025, 17(17), 2282; https://doi.org/10.3390/polym17172282 - 23 Aug 2025
Viewed by 530
Abstract
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond [...] Read more.
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond XT Adhesive (3M ESPE), resulting in five groups: TXT (0% wt of bioactive glass-incorporated—negative control); TXT20 (20% wt of bioactive glass-incorporated); TXT30 (30% wt of bioactive glass-incorporated), TXT50 (50% wt of bioactive glass-incorporated), and FLB (positive control—FL BOND II adhesive system with S-PRG particles, SHOFU Inc.). Data were analyzed with one-way ANOVA followed by Tukey’s test (α = 0.05). Quantitative SEM analysis confirmed submicron particle agglomerates (median equivalent circular diameter 0.020–0.108 µm). The TXT20 exhibited the highest values of degree of conversion (p < 0.05) (73.02 ± 3.33A). For SBS (in MPa): Control Group TXT—19.50 ± 1.40A, Group TXT20 18.22 ± 1.04AB, Group FLB 17.62 ± 1.45B, Group TXT30 14.48 ± 1.46C and Group TXT50 14.13 ± 1.02C (p < 0.05). For calcium release the group TXT50 2.23 ± 0.11D showed higher values (p < 0.05). The incorporation of distinct bioactive glass particle concentrations influenced the shear bond strength, degree of conversion, and calcium release. While the 50 wt% bioactive glass group exhibited the highest calcium release, both 20 wt% of bioactive glass group and the positive control group exhibited the highest degree of conversion without compromising the bonding strength. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

29 pages, 6923 KB  
Article
Canadian Wildfire Smoke Episode over Europe in October 2023: Lidar, Sun-Photometer, and Model Characterization of Smoke Layers Observed Above Sofia, Bulgaria
by Tsvetina Evgenieva, Stefan Dosev, Ljuan Gurdev, Liliya Vulkova, Zahari Peshev, Eleonora Toncheva, Lyubomir Popov, Orlin Vankov and Tanja Dreischuh
Remote Sens. 2025, 17(16), 2899; https://doi.org/10.3390/rs17162899 - 20 Aug 2025
Viewed by 606
Abstract
Massive wildfires release enormous amounts of biomass-burning (BB) aerosols into the atmosphere, which might have a major impact on its thermal and radiative budget, as well as the environment and human health. This work presents the results of a study and characterization of [...] Read more.
Massive wildfires release enormous amounts of biomass-burning (BB) aerosols into the atmosphere, which might have a major impact on its thermal and radiative budget, as well as the environment and human health. This work presents the results of a study and characterization of a long-range transport episode of smoke aerosols from Canadian forest fires towards the entirety of Europe, as observed over Sofia, Bulgaria, in early October 2023. This study makes use of data from combined lidar, ceilometer, and sun-photometer measurements, supported by model and forecast data, meteorological radiosonde profiling, and (re)analyses, together with tracking and mapping of the aerosol air transport. A distinctive feature of the considered episode over Europe is the downward movement of the air masses, entraining smoke aerosols from the continental mid-troposphere down to the near-surface layers. The driving mechanism of the long-range transport of BB aerosols and their spread over Europe is revealed. Optical parameters of the registered aerosols are determined and vertically profiled with a high range resolution by lidar data analysis. A wide set of columnar optical and microphysical aerosol characteristics is also provided by sun-photometer measurements. The results show a dominance of relatively fine modes of dry smoke particles in the submicron size range, with a predominantly low degree of non-sphericity, indicating minimal up-size aging during the BB aerosol transport from Canada to the Sofia region. The average daily aerosol radiative forcing is determined by sun-photometer measurements and briefly discussed. Full article
Show Figures

Figure 1

16 pages, 1417 KB  
Article
A Novel Effective Arsenic Removal Technique for High-Arsenic Copper Minerals: Two-Stage Filtration Technology Based on Fe-25Al Porous Material
by Xiaowei Tang and Yuehui He
Appl. Sci. 2025, 15(16), 8899; https://doi.org/10.3390/app15168899 - 12 Aug 2025
Viewed by 424
Abstract
Effective arsenic removal is a challenge when smelting high-arsenic copper minerals (HACMs, As > 3.0 wt%). Current arsenic-removal methods for HACM smelting cannot effectively remove arsenic and do not satisfy environmental requirements. This study argues that two-stage filtration based on Fe-25Al porous material [...] Read more.
Effective arsenic removal is a challenge when smelting high-arsenic copper minerals (HACMs, As > 3.0 wt%). Current arsenic-removal methods for HACM smelting cannot effectively remove arsenic and do not satisfy environmental requirements. This study argues that two-stage filtration based on Fe-25Al porous material and oxygen-controlled roasting is an effective technique for HACM arsenic removal (As = 11.8 wt%). The use of two-stage filtration facilitated double interception: particles larger than 10 μm were mechanically intercepted by the pore channels, and submicron particles (0.1–10 μm) were intercepted by the filter cake. Specifically, in the second stage, the flue gas underwent gradient rapid cooling, and the arsenic in the flue gas rapidly condensed, resulting in efficient arsenic removal. The purity of the condensed product, As2O3, was greater than 99%. Moreover, adding sand to the roasted mineral increased the specific surface area from 0.484 m2/g to 0.590 m2/g, reducing the “bottleneck effect” of pores; the addition of carbon further increased the surface area to 2.457 m2/g, inhibiting the formation of arsenate. When the mineral feed rate increased from 50 kg/h to 80 kg/h, the oxygen partial pressure decreased; this effectively inhibited the formation of iron arsenate, and the arsenic removal efficiency increased from 70.20% to 95.61%. The optimized process achieved ≥94% arsenic removal efficiency and ≥76% sulfur-fixation efficiency, with low energy cost. Material balance analysis showed that after arsenic removal, the Cu/Si to Fe/Si ratio of the copper mineral reached 1.5, which is appropriate for immediate subsequent smelting. This study provides a new technological strategy for HACM arsenic removal. Full article
Show Figures

Figure 1

18 pages, 6820 KB  
Article
Carbon Restrains the Precipitation of Cu-Rich Nanoparticles in CuFeMnNi HEAs
by Mingze Wang, Mengyuan He, Yongfeng Shen, Wenying Xue and Zhijian Fan
Nanomaterials 2025, 15(16), 1223; https://doi.org/10.3390/nano15161223 - 11 Aug 2025
Viewed by 396
Abstract
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction [...] Read more.
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction of the submicron Cu-rich particles markedly decreased. Of note, the CuFeMnNi 1.5 at. %C alloy containing nanosized Cu-rich particles (13 nm) displayed excellent strength–ductility synergy, with yield strength of 695 ± 10 MPa, ultimate tensile strength of 925 ± 20 MPa, and ductility of 21.5%. This is because the addition of carbon significantly increases the diffusion speed of Cu atoms, thereby restraining the growth of Cu-rich nanoparticles. As a result, the comprehensive mechanical properties of the prepared HEAs were significantly enhanced. Additionally, the active diffusion channels induced by high-temperature short-time annealing significantly inhibited the grain growth, which improved the ductility. This work creates a new strategy for solving the dilemma caused by the large Cu-rich particles in the Cu-containing HEAs. Full article
Show Figures

Figure 1

19 pages, 5480 KB  
Article
Numerical Study of the Filtration Performance for Electrospun Nanofiber Membranes
by Wenyuan Hu, Fuping Qian, Simin Cheng, Lumin Chen, Xiao Ma and Huaiyu Zhong
Appl. Sci. 2025, 15(15), 8667; https://doi.org/10.3390/app15158667 - 5 Aug 2025
Viewed by 340
Abstract
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual [...] Read more.
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual polydisperse electrospun nanofiber filter, the three-dimensional structure (fiber diameter 280 nm–1300 nm, thickness 0.0150 mm–0.0240 mm, and solid volume fraction 11.3–17.7%) was reconstructed by GeoDict software. The filtration resistance was simulated with the FlowDict module (surface velocity 6.89 cm/s, 20 °C), and the filtration efficiency was calculated with the FilterDict module (2.5 μm particles, tracking 20,000). The results are compared with the experimental values, Davids empirical formula, Happel model, and Kuwabara model. The results show that the simulated values of filtration resistance are generally higher than the experimental values (deviation ≤ 20%), among which the simulation and experiment have the highest consistency, followed by the Davids formula (such as the relative error of 41.62% at 9% spinning solution concentration), and the Kuwabara model has the largest error (59.86%). The simulated value of filtration efficiency is higher than the experimental value (deviation ≤ 7%), because the model assumes that the particles adhere directly after contacting the fiber, and the actual sliding off is not considered. This study confirms that numerical simulation can efficiently predict the filtration performance of electrospun nanofiber membranes. Therefore, it provides a basis for optimizing material structure by adjusting spinning parameters and promoting the engineering application of submicron filter materials. Full article
Show Figures

Figure 1

18 pages, 8702 KB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Viewed by 509
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

16 pages, 4141 KB  
Article
Redox Potential of Hemoglobin Sub-Micron Particles and Impact of Layer-by-Layer Coating
by Miroslav Karabaliev, Boyana Paarvanova, Bilyana Tacheva, Gergana Savova, Yu Xiong, Saranya Chaiwaree, Yingmanee Tragoolpua, Hans Bäumler and Radostina Georgieva
Int. J. Mol. Sci. 2025, 26(15), 7341; https://doi.org/10.3390/ijms26157341 - 29 Jul 2025
Viewed by 366
Abstract
The search for artificial blood substitutes that are suitable for safe transfusion in clinical conditions and in extreme situations has gained increasing interest during recent years. Most of the problems related to donor blood could be overcome with hemoglobin sub-micron particles (HbMPs) that [...] Read more.
The search for artificial blood substitutes that are suitable for safe transfusion in clinical conditions and in extreme situations has gained increasing interest during recent years. Most of the problems related to donor blood could be overcome with hemoglobin sub-micron particles (HbMPs) that are able to bind and deliver oxygen. On the other hand, the length of the circulation time of HbMPs in the bloodstream strongly depends on their surface properties and can be improved with biopolymer coatings. The redox potential of HbMPs and HbMPs coated with biopolymers using the layer-by-layer technique (LbL-HbMPs) is related to the energy required for electron transfer upon transition from an oxidized to a reduced state. It can be used as a measure of the stability of Hb against oxidation, which is directly connected with its function as an oxygen carrier. The redox potential of Hb, HbMPs, and LbL-HbMPs was determined by a spectroelectrochemical method utilizing the shift of the Soret peak of Hb upon oxidation/reduction of the iron in the heme. The obtained results showed a slight shift in the redox potential of both particle types of about 17 mV towards more negative values compared to the free Hb in the solution. It was demonstrated that the free Hb and the cross-linked Hb in HbMPs and LbL-HbMPs undergo transitions from an oxidized to a reduced state and vice versa several times without Hb destruction. The LbL coating does not affect the redox properties of HbMPs. This ability, as well as the proximity of the obtained redox potentials of Hb, HbMPs, and LbL-HbMPs, indicates that the eventual oxidation of HbMPs in the bloodstream is reversible; thus, HbMPs can be active as artificial oxygen carriers for a longer period of time. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

17 pages, 5683 KB  
Article
Synergistic Effect of Calcination Temperature and Silver Doping on Photocatalytic Performance of ZnO Material
by K. Kusdianto, Nurdiana Ratna Puri, Manabu Shimada, Suci Madhania and Sugeng Winardi
Materials 2025, 18(14), 3362; https://doi.org/10.3390/ma18143362 - 17 Jul 2025
Viewed by 329
Abstract
Ag-doped ZnO is a promising photocatalyst. However, the combined influence of the Ag doping concentration and furnace temperature has not been adequately explored, hindering the optimization of ZnO/Ag materials for practical applications. In this study, ZnO/Ag materials were synthesized via ultrasonic spray pyrolysis [...] Read more.
Ag-doped ZnO is a promising photocatalyst. However, the combined influence of the Ag doping concentration and furnace temperature has not been adequately explored, hindering the optimization of ZnO/Ag materials for practical applications. In this study, ZnO/Ag materials were synthesized via ultrasonic spray pyrolysis by systematically varying both the furnace calcination temperature and the Ag doping concentration. The synthesized materials were analyzed through a range of spectroscopic methods to investigate their structural, morphological, and surface characteristics. Their photocatalytic activity was assessed by monitoring the degradation of methylene blue (MB) under ultraviolet light exposure. The findings indicate that the ZnO sample that was calcined at 400 °C exhibited the highest degradation efficiency among the undoped samples, which can be attributed to its submicron particle size, moderate crystallinity, and high surface hydroxylation. The sample with 5-wt% Ag doping achieved enhanced performance, demonstrating the best photocatalytic activity (65% MB degradation). This improvement was attributed to the synergistic effects of surface plasmon resonance and optimized interaction between the Ag nanoparticles and surface hydroxyl groups. Excessive Ag loading (10 wt%) led to reduced activity owing to potential agglomeration and recombination centers. These results highlight the critical role of both the thermal and chemical parameters in tailoring ZnO-based photocatalysts for wastewater treatment applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

20 pages, 5319 KB  
Article
Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips
by Julia K. Hoskins, Patrick M. Pysz, Julie A. Stenken and Min Zou
Nanomanufacturing 2025, 5(3), 11; https://doi.org/10.3390/nanomanufacturing5030011 - 12 Jul 2025
Viewed by 514
Abstract
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of [...] Read more.
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of larger components, this approach addresses key challenges in membrane integration, including sealing reliability and the use of transparent materials. Compared to fully 2PP-based fabrication, the multiscale method achieved a 56-fold reduction in production time, reducing total fabrication time to approximately 7.2 h per chip and offering a highly efficient solution for integrating complex structures into fluidic chips. The fabricated chips demonstrated excellent mechanical integrity. Burst pressure testing showed that all samples withstood internal pressures averaging 1.27 ± 0.099 MPa, with some reaching up to 1.4 MPa. Flow testing from ~35 μL/min to ~345 μL/min confirmed stable operation in 75 μm square channels, with no leakage and minimal flow resistance up to ~175 μL/min without deviation from the predicted behavior in the 75 μm. Membrane-integrated chips exhibited outlet flow asymmetries greater than 10%, indicating active fluid transfer across the membrane and highlighting flow-dependent permeability. Overall, this multiscale 3D printing approach offers a scalable and versatile solution for microfluidic device manufacturing. The method’s ability to integrate precise membrane structures enable advanced functionalities such as diffusion-driven particle sorting and molecular filtration, supporting a wide range of biomedical, environmental, and industrial lab-on-a-chip applications. Full article
Show Figures

Figure 1

28 pages, 5228 KB  
Article
Selective Separation of SiO2 and SnO2 Particles in the Submicron Range: Investigating Salt and Surfactant Adsorption Parameter
by Claudia Heilmann, Lisa Ditscherlein, Martin Rudolph and Urs Alexander Peuker
Powders 2025, 4(3), 19; https://doi.org/10.3390/powders4030019 - 3 Jul 2025
Viewed by 450
Abstract
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants [...] Read more.
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants were investigated. The adsorption of various salts, e.g., AlCl3, ZnCl2, MnCl2 and MgCl2 were therefore analyzed, and the necessary concentration for the charge reversal of the material was determined. It was noticed that the investigated materials differ in their isoelectric point (IEP) and therefore in their adsorption behavior because only ZnCl2 and MgCl2 are suitable for a charge reversal of both metal oxides. The phase transfer of the pure material at different pH values with ZnCl2 or MgCl2 and sodium dodecyl sulfate (SDS) revealed that the adsorption behavior of the particle has an influence on the phase transfer. As a result, the phase transfer of SiO2 is pH dependent, whereas the phase transfer of SnO2 operates over a wider pH range. This allowed the separation of SiO2 and SnO2 to be controlled by the salt and surfactant concentration as well as pH. The separation of SiO2 and SnO2 was investigated for various parameters such as salt and surfactant concentration, particle concentration and composition of the mixture. Also, pH 8, where a selective phase transfer for SiO2 occurs, and pH 6, where the greatest difference between the materials exists, were also investigated. By comparing the parameters, it was found that the combination of ZnCl2/SDS and MgCl2/SDS enables a selective separation of the materials. Furthermore, it was also found that the concentration of SDS has a significant effect on the separation, as the formation of a bilayer structure is important for the separation, and therefore, higher SDS concentrations are required at higher particle concentrations to increase the separation efficiency. Full article
Show Figures

Figure 1

14 pages, 2418 KB  
Article
Durable and High-Efficiency Air Filtration by Superamphiphobic Silica Composite Aerogel
by Qiang Yu, Yuxin Mu, Pengfei Li, Wenjun Zhou, Jianwen Zhang, Jinchao Li, Yong Wei and Shanlin Wang
Colloids Interfaces 2025, 9(3), 38; https://doi.org/10.3390/colloids9030038 - 14 Jun 2025
Viewed by 703
Abstract
The escalating industrial emissions have dramatically increased airborne particulate matter (PM), particularly submicron particles (PM0.3), creating substantial health risks through respiratory system penetration. Current fiber-based filtration systems predominantly relying on electrostatic adsorption mechanisms suffer from critical limitations, including insufficient efficiency, potential secondary contamination, [...] Read more.
The escalating industrial emissions have dramatically increased airborne particulate matter (PM), particularly submicron particles (PM0.3), creating substantial health risks through respiratory system penetration. Current fiber-based filtration systems predominantly relying on electrostatic adsorption mechanisms suffer from critical limitations, including insufficient efficiency, potential secondary contamination, and performance degradation in humid environments. We develop a flexible silica composite aerogel to overcome these challenges with customizable and exceptional superamphiphobicity. This composite aerogel exhibits high porosity of ~95% and robust compression Young’s modulus that reaches ~220 kPa at 50% strain even after 1000 cycles. These features enable it to maintain a high filtration efficiency of ~98.52% for PM0.3, even after 50 cycles under traditional artificial simulation conditions. Significantly, a competitive filtration efficiency of ~97.9% is still performed in our composite aerogel at high humidity (water mist), high temperatures (50–250 °C), and corrosive solutions or atmospheres environments, revealing potential industrial applications. This work is expected to replace conventional air filtration materials and pave the way for various human protection and industrial production applications. Full article
Show Figures

Graphical abstract

11 pages, 1351 KB  
Article
Improving the Enrichment of Submicron-Sized Particles by Size Decreasing of Cruciform Cross-Sectional Microchannel in Viscoelastic Microfluidics
by Jaekyeong Jang, Eunjin Kim, Sungdong Kim, Ok-Chan Jeong, Sangwook Lee and Younghak Cho
Biosensors 2025, 15(6), 370; https://doi.org/10.3390/bios15060370 - 9 Jun 2025
Viewed by 811
Abstract
The manipulation of cells and bioparticles has garnered significant interest in the field of viscoelastic microfluidics, particularly regarding its capacity for single-stream focusing within a three-dimensional and simple microchannel structure. The inherent simplicity of this method enables the effective manipulation of particles, facilitating [...] Read more.
The manipulation of cells and bioparticles has garnered significant interest in the field of viscoelastic microfluidics, particularly regarding its capacity for single-stream focusing within a three-dimensional and simple microchannel structure. The inherent simplicity of this method enables the effective manipulation of particles, facilitating the separation and focusing of various cell types, including blood cells, circulating tumor cells (CTCs), and microalgae. However, the viscoelastic nature of the particles imposes limitations in the handling of submicron-sized particles, due to a significant decrease in the viscoelastic force acting on the particle. In this study, we propose a microfluidic device featuring a cruciform cross-sectional microchannel with 45 µm and 45 µm of its vertical and horizontal size, respectively. The cruciform microchannel, which has a 270° reflex angle on four corners, can increase the viscoelastic force on the particles, allowing the device to focus submicron-sized particles down to 180 nm in a single-stream manner. It is important to note that the single-stream formation was maintained, while the channel width at the outlet region was drastically increased, allowing for the enrichment of submicron-sized particles. For biological feasibility, the proposed device also demonstrates the single-stream focusing on biological particles such as bacteria. The presented microfluidic device would have great potential for the focusing and enrichment of nanoparticles including bacteria in a highly robust manner, expecting its use in the various fields such as diverse biological analysis and biomedical research. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

31 pages, 14774 KB  
Article
Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)
by Veronika I. Rozhdestvina and Galina A. Palyanova
Minerals 2025, 15(6), 571; https://doi.org/10.3390/min15060571 - 27 May 2025
Viewed by 574
Abstract
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing [...] Read more.
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing native gold were analyzed by scanning electron microscopy in combination with X-ray microanalysis using different modes of visualization and X-ray diffraction methods. Gold particles, clearly visible after etching the surface of some polished sections with acids and partial or complete dissolution of some host minerals, were also examined. Native gold from the studied deposit is of high fineness (above 970‰) and contains (in wt.%) <1.59 Ag and less commonly <0.37 Cu and <0.15 Zn. Native gold is found intergrown with tremolite, diopside, and other magnesian silicates, as well as calcite, fluorite, magnetite, and sphalerite. Rare microinclusions of pyrrhotite, galena, and clinohumite are present in gold grains. It was found that native gold inherits the morphology of tremolite crystals and aggregates, which is determined by the size and shape of the voids bounded by its crystals. Gold localized in the intercrystalline spaces and in the zones of conjugation with remobilized calcite has irregular, lumpy shapes and partially or completely faceted grains with a dense structure. The nature of the localization and distribution of native gold in ores is due to the crystallization of the tremolite component of skarns. Apparently, the processes of gold accumulation are caused by the thermal activation of solid-phase differentiation of the substance of carbonate rocks, in which the processes of destruction of the original minerals and collective recrystallization play a significant role. It is likely that at some gold skarn deposits, carbonate rocks could be the source of gold. Data on the morphology and sizes of native gold segregations, as well as on the intergrown minerals, can be used to improve gold extraction technologies. A specific group of minerals intergrown with native gold in gold skarn deposits can be used as a diagnostic feature in the primary search for placer gold. The obtained results will help to better understand the formation of native gold in apocarbonate tremolite–diopside skarns. Full article
Show Figures

Graphical abstract

Back to TopTop