Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)
Abstract
:1. Introduction
- Gold mineralization is localized directly in the skarns of pyroxene–garnet or garnet–pyroxene–wollastonite composition, formed near the contact of intrusions with carbonate rocks. Maximum gold concentrations are localized in the zones of recrystallized skarns and the zones of fracture, crush, and schistosity;
- The total amount of sulfides in the ores is up to 5%;
- Native gold mostly occurs in diopside (±wollastonite)—tremolite and wollastonite skarns, serpentine–phlogopite retrogress, and quartz–calcite lenses; its largest segregations are observed in the areas of ore bodies with low sulfide content. It often forms films and selvages on garnet, pyroxene, and magnetite, occurs as phenocrysts in pyrrhotite, and, together with chalcopyrite, fills small druze cavities in garnet skarns;
- Native gold is typically of high fineness with minor amounts of silver and copper;
- Native gold from skarn deposits was formed under higher temperature conditions than native gold from hydrothermal deposits.
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Minerals of Gold-Bearing Apocarbonate Tremolite–Diopside Skarns
4.1.1. Minerals of Apocarbonate Skarns
4.1.2. Chemical Composition of Native Gold
4.2. Morphological and Microstructural Features of Native Gold of Apocarbonate Tremolite–Diopside Skarns
4.2.1. Contact Interactions of Native Gold and Skarn Minerals
4.2.2. The Contact Interactions of Native Gold and Magnetite
4.2.3. Microstructural Features of Native Gold
4.3. Structural Organization and Degree of Ordering of Gold Particles of Apocarbonate Tremolite–Diopside Skarns
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinert, L.D. Gold Skarn Deposits—Geology and Exploration Criteria. Econ. Geol. 1989, 6, 537–552. [Google Scholar]
- Ray, G.E.; Webster, I.C.L.; Ettlinger, A.D. The Distribution of Skarns in British Columbia and the Chemistry and Ages of their related Plutonic Rocks. Econ. Geol. 1995, 90, 920–937. [Google Scholar] [CrossRef]
- Wilson, G.C.; Rucklidge, J.C.; Kilius, L.R. Sulphide gold content of skarn mineralization at Rossland, British Columbia. Econ. Geol. 1990, 85, 1252–1259. [Google Scholar] [CrossRef]
- Myers, G.L. Alteration zonation of the Fortitude gold skarn deposit, Lander County, NV. Mining Eng. 1990, 42, 360–368. [Google Scholar]
- Ettlinger, A.D.; Meinert, L.D.; Ray, G.E. Gold skarn mineralization and fluid evolution in the Nickel Plate deposit, British Columbia. Econ. Geol. 1992, 87, 1541–1565. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Molchanov, V.P.; Moiseenko, V.G.; Zimin, S.S.; Ignatiev, A.V. Features of the origin of the Kumbay gold deposit (DPRK). Dokl. Earth Sci. 1999, 364, 668–670. (In Russian) [Google Scholar]
- Idrus, A.; Kolb, J.; Meyer, F.M.; Arif, J.; Setyandhaka, D.; Keply, S. A preliminary study on skarn-related calcsilicate rocks associated with the Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. Res. Geol. 2009, 59, 295–306. [Google Scholar] [CrossRef]
- Kim, E.-J.; Park, M.-E.; White, N.C. Skarn gold mineralization at the Geodo Mine, South Korea. Econ. Geol. 2012, 107, 537–551. [Google Scholar] [CrossRef]
- Chang, Z.S.; Shu, Q.H.; Meinert, L.D. Skarn deposits of China. Soc. Econ. Geol. Spec. 2019, 22, 189–234. [Google Scholar]
- Rafailovich, M.S.; Shevchuk, S.I. Zolotonosnye skarny Central’noj Azii. Geol. I Ohr. Nedr 2010, 1, 23–34. (In Russian) [Google Scholar]
- Brooks, J.W.; Meinert, L.D.; Kuyper, B.A.; Lane, M.L. Petrology and geochemistry of the McCoy gold skarn, Lander County, NV: Geology and ore deposits of the Great Basin. Geol. Soc. Nev. Symp. Reno. Proc. 1990, 1, 419–442. [Google Scholar]
- Fontboté, L.; Vallance, J.; Markowski, A.; Chiaradia, M. Oxidized Gold Skarns in the Nambija District, Ecuador. Econ. Geol. Spec. Publ. 2004, 11, 341–357. [Google Scholar]
- Gusev, A.I. Geology and gold-copper-skarn mineralization of the Sinyukhinsky ore field in the Altai Mountains. Ores Met. 1998, 2, 79–90. (In Russian) [Google Scholar]
- Yurgenson, G.A. Mineral raw materials of Transbaikalia Chita: Poisk, 2006. 255p. SBN: 5-93119-157-7. (In Russian)
- Voroshilov, V.G. Geochemical zoning of skarn-gold ore deposits of Western Siberia. Bull. Tomsk Polytech. Univ. 2007, 310, 12–16. [Google Scholar]
- Gusev, A.I. Typization of gold-bearing skarns objects of mountain Altai. Advances in current natural sciences. Geogr. Sci. 2013, 11, 108–112. [Google Scholar]
- Kovalev, K.R.; Kalinin, Y.A.; Turkina, O.M.; Gimon, V.O.; Abramov, B.N. Kultuminskoe gold–copper–iron–skarn deposit (Eastern Transbaikalia, Russia): Petrogeochemical features of magmatism and ore-forming processes. Russ. Geol. Geophysics. 2019, 60, 583–601. [Google Scholar] [CrossRef]
- Gas’kov, I.V. New data on the correlation of skarn and gold mineralization at the Tardan deposit (northeastern Tuva). Russ. Geol. Geophys. 2008, 49, 923–931. [Google Scholar] [CrossRef]
- Soloviev, S.G.; Kryazhev, S.G.; Dvurechenskaya, S.S.; Uyutov, V.I. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia. Ore Geol. Rev. 2019, 112, 103039. [Google Scholar] [CrossRef]
- Buryak, V.A.; Bakulin, Y.I. Metallogeny of Gold; Dalnauka: Vladivostok, Russia, 1998; 403p. (In Russian) [Google Scholar]
- Palazhchenko, V.I.; Stepanov, V.A.; Danilov, A.A. Mineral assemblage in gold-bearing skarns of the Ryabinovoe deposit, Khabarovsk district. Dokl. Earth Sci. 2005, 401, 478–483. [Google Scholar]
- Goroshko, M.V.; Guryanov, V.A.; Berdnikov, N.V.; Kirillov, V.E. Gold potential of the volcanoplutonic zones in the southeastern Siberian platform and physicochemical conditions of the deposit formation. Russ. J. Pac. Geol. 2009, 3, 511–529. [Google Scholar] [CrossRef]
- Soloviev, S.G.; Krivoshchekov, N.N. Vostok-2 gold-base-metal-tungsten skarn deposit, Central Sikhote-Alin, Russia. Geol. Ore Depos. 2011, 53, 478–500. [Google Scholar] [CrossRef]
- Sobolev, A.A. Current state of development of small-scale gold ore deposits in Khabarovsk Krai. Min. Inf. Anal. Bull. 2013, 11, 176–183. [Google Scholar]
- Volkov, A.V.; Sidorov, V.A.; Sidorov, A.A. Gold–Skarn Deposits in Northeast Russia. Dokl. Earth Sci. 2008, 419, 210–213. [Google Scholar] [CrossRef]
- Meinert, L.D. Skarn and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Zharikov, V.A. Skarn deposits. In Genesis of Endogenous ore Deposits; Nedra: Moskow, Russia, 1968; pp. 220–302. (In Russian) [Google Scholar]
- Sinyakov, V.I. Genetic Types of Skarn Ore-Forming Systems; Science Siberian Branch: Novosibirsk, Russia, 1990; 71p. (In Russian) [Google Scholar]
- Gaskov, I.V.; Borisenko, A.S.; Babich, V.V.; Naumov, E.A. The stages and duration of formation of gold mineralization at copper-skarn deposits (Altai-Sayan folded area). Russ. Geol. Geophys. 2010, 51, 1091–1101. [Google Scholar] [CrossRef]
- Rozhkov, I.S. Genetic types of gold deposits and their position in geotectonic structures. Geol. Geophys. 1968, 7, 3–16. (In Russian) [Google Scholar]
- Vakhrushev, V.A. Mineralogy, Geochemistry and Formation of Deposits of Skarn-Gold Ore Formation; Nauka: Novosibirsk, Russia, 1972; 238p. (In Russian) [Google Scholar]
- Korzhinsky, D.S. Skarnovye Deposits; Nauka: Moscow, Russia, 1985; 247p. (In Russian) [Google Scholar]
- Ivasin, Y.P.; Levin, V.I. Genetic types of gold mineralization and gold ore formations. In Gold Ore Formations and Gold Geochemistry of the Verkhoyansk-Chukotka Folded Region; Nauka: Moscow, Russia, 1975; pp. 5–120. (In Russian) [Google Scholar]
- Strona, P.A. Main Types of Gold Ore Formations; Notes of the Leningrad Mining Institute: Russia, 1978; Volume XXV; pp. 10–22. (In Russian)
- Safonov, Y.G. Hydrothermal gold ore deposits: Distribution—Geological and genetic types—Productivity of ore-forming systems. Geol. Ore Depos. 1997, 39, 25–40. (In Russian) [Google Scholar]
- Percival, T.J.; Radtke, A.S.; Bagby, W. Relationship among carbonate-replacement gold deposits, gold skarns, and intrusive rocks, Bau Mining District, Sarawak, Malaysia. Mineral. Geol. 1990, 40, 1–16. [Google Scholar]
- Chen, Y.-J.; Chen, H.-Y.; Zaw, K.; Pirajno, F.; Zhang, Z.J. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geol. Rev. 2007, 31, 139–169. [Google Scholar] [CrossRef]
- Meinert, L.D. Gold in skarns related to epizonal intrusions. SEG Rev. 2000, 13, 347–375. [Google Scholar]
- Meinert, L.D.; Hedenquist, J.W.; Saton, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarns in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Newberry, R.J. Gold deposits related to reduced granitic intrusions. Rev. Econ. Geol. 2000, 13, 377–400. [Google Scholar]
- Bilibina, T.V.; Dashkova, A.D.; Donakov, V.I.; Titov, V.K.; Shchukin, S.I. Petrology of the Alkaline Volcanogenic-Intrusive Complex of the Aldan Shield (Mesozoic); Nedra: Leningrad, Russia, 1967; 264p. (In Russian) [Google Scholar]
- Aleksandrov, S.M. Gold Behavior during Endogenic and Supergene Alterations of Sulfides in Magnesian Skarns. Geochem. Int. 2007, 45, 152–169. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, F.; Sun, J.; Wang, J.; Han, J.; Chu, X.; Bai, C.; Yu, D.; Xu, Z.; Yi, L. Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes. Minerals 2024, 14, 214. [Google Scholar] [CrossRef]
- Stolyarov, V.V.; Parada, S.G.; Popov, Y.V.; Nazarenko, A.V. Typomorphism of native gold from the skarns of the Tyrny-Auz ore node (Kabardino-Balkarian republic). Sci. South Russ. 2016, 12, 32–42. [Google Scholar]
- Biró, M.; Raith, J.G.; Feichter, M.; Hencz, M.; Kiss, G.B.; Virág, A.; Molnár, F. Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary. Minerals 2024, 14, 956. [Google Scholar] [CrossRef]
- Bonev, I.K.; Kerestedjian, T.; Atanassova, R.; Andrew, C.J. Morphogenesis and composition of native gold in the Chelopech volcanic-hosted Au–Cu epithermal deposit, Srednogorie zone, Bulgaria. Miner. Depos. 2002, 37, 614–629. [Google Scholar] [CrossRef]
- Petrovskaya, N.V. Native Gold; Nauka: Moscow, Russia, 1973; 348p. (In Russian) [Google Scholar]
- Boyle, R.W. The geochemistry of gold and its deposits. Geol. Surv. Can. Bull. 1979, 280, 584. [Google Scholar]
- Nikolaeva, L.A.; Yablokova, S.V. Typomorphic features of native gold and their use in geological exploration. Ores Met. 2007, 6, 41–57. [Google Scholar]
- Chapman, R.J.; Banks, D.A.; Styles, M.T.; Walshaw, R.D.; Piazolo, S.; Morgan, D.J.; Grimshaw, M.R.; Spence-Jones, C.P.; Matthews, T.J.; Borovinskaya, O. Chemical and Physical Heterogeneity Within Native Gold: Implications for The Design of Gold Particle Studies. Miner. Depos. 2021, 56, 1563–1588. [Google Scholar] [CrossRef]
- Chapman, R.J.; Moles, N.R.; Bluemel, B.; Walshaw, R.D. Detrital Gold as an Indicator Mineral. Geol. Soc. Lond. Spec. Publ. Lond. UK 2022, 516, 313–336. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K.; Murphy, R. Compositional Signatures of Gold from Different Deposit Types in British Columbia, Canada. Minerals 2023, 13, 1072. [Google Scholar] [CrossRef]
- Palyanova, G.A.; Zhegunov, P.S.; Beliaeva, T.V.; Murzin, V.V.; Borovikov, A.A.; Goryachev, N.A. Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits. Minerals 2023, 13, 1019. [Google Scholar] [CrossRef]
- Savva, N.E.; Kravtsova, R.G.; Anisimova, G.S.; Palyanova, G.A. Typomorphism of Native Gold (Geological-Industrial Types of Gold Deposits in the North-East of Russia). Minerals 2022, 12, 561. [Google Scholar] [CrossRef]
- Theodore, T.G.; Orris, G.J.; Hammarstrom, J.M.; Bliss, J.D. Gold-Bearing Skarns, 1930th ed.; U.S. Government Printing Office: Washington, DC, USA, 1991; pp. 1–35. [Google Scholar]
- Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: Genetic implications in Cu–Au and Au skarns. Mineral. Petrol. 2006, 87, 277–304. [Google Scholar] [CrossRef]
- Dobrovolskaya, M.G.; Razin, M.V.; Prokofiev, V.Y. The Lebedinoe gold deposit (Central Aldan): Mineral paragenesis, stages and conditions of formation. Geol. Ore Depos. 2016, 58, 308–326. [Google Scholar] [CrossRef]
- Edraki, M.; Somarin, A.K.; Ashley, P.M. A Genetic Model for the Biggenden Gold-Bearing Fe Skarn Deposit, Queensland, Australia: Geology, Mineralogy, Isotope Geochemistry, and Fluid Inclusion Studies. Minerals 2025, 15, 95. [Google Scholar] [CrossRef]
- Dymovich, V.A.; Vas’kin, A.F.; Opalikhina, E.S.; Kislyakov, S.G. State Geological Map of the Russian Federation. In Scale 1: 1,000,000 (Third Generation); Far Eastern Series. Sheet O-53. Nelkan. Explanatory note; VSEGEI Cartographic Factory: St. Petersburg, Russia, 2012; 364p. (In Russian) [Google Scholar]
- Gribanov, A.P. Report on the exploration and prospecting and evaluation work within the Ryabinovoye gold deposit in 1999–2001. Khabarovsk, 2003. (In Russian).
- Butvin, V.N.; Alekseev, M.I.; Smirnova, T.I. Report on the comparison of exploration and production data for the Ryabinovoye, Jupiter, Klin gold deposits. Khabarovsk, 2006. (In Russian).
- Warr, L.N. IMA-CNMNC Approved Mineral Symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Sunagawa, I. Growth and morphology of diamond crystals under stable and metastable conditions. J. Cryst. Growth 1990, 99, 1156–1161. [Google Scholar] [CrossRef]
- Rozhdestvina, V.I. Solid Phase Evolution of Nanodispersed Palladium Powders. In Synthesis Methods and Crystallization; Open Access Peer-Reviewed; IntechOpen: London, UK, 2020; 21p. [Google Scholar] [CrossRef]
- Rozhdestvina, V.I. Solid-Phase Gold Transformation in Contact Interactions. In XIII General Meeting of the Russian Mineralogical Society and the Fedorov Session; Marin, Y., Ed.; GMRMS 2021, Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2023; pp. 79–87. [Google Scholar] [CrossRef]
- De Wolff, P.M. A simplified criterion for the reliability of a powder diffraction pattern indexing. J. Appl. Cryst. 1986, 1, 108–113. [Google Scholar] [CrossRef]
- Umansky, Y.S. X-Ray Analysis of Metals and Semiconductors; Metallurgy: Moscow, Russia, 1969; 496p. [Google Scholar]
- Okrusch, M.; Frimmel, H.E. Mineralogy. In An Introduction to Minerals, Rocks, and Mineral Deposits; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-forming minerals. In Single-Shain Silicates; The Geological Society: London, UK, 1977; 664p. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-forming minerals. In Non-Silicates. Oxides, Hydroxides and Sulphides; Geology Society: London, UK, 2011; 920p. [Google Scholar]
- Rozhdestvina, V.I. Solid-phase interactions in the Bi–Au system. Solid State Phys. 2020, 62, 401–413. [Google Scholar] [CrossRef]
- Rozhdestvina, V.I. Solid-Phase Low-Temperature Evolution of the Binary Pb-Au System: Via Contact Interactions to Intermetallic Compounds, through the Destructurization to a New Multielemental State. Phys. Solid State 2020, 62, 1973–1986. [Google Scholar] [CrossRef]
- Rakovan, J.; Gasbarro, N.; Nakotte, H.; Kothapalli, K.; Vogel, S.C. Characterization of Gold Crystallinity by Diffraction Methods. Rocks Miner. 2009, 84, 54–62. [Google Scholar] [CrossRef]
Diopside | Tremolite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
SiO2 | 55.23 | 54.90 | 54.56 | 54.28 | 53.15 | 53.11 | 59.96 | 58.38 | 58.80 | 58.60 | 58.69 | 56.27 | 58.45 |
Al2O3 | - | - | - | 0.39 | 0.30 | - | - | - | 0.26 | - | 0.49 | 0.19 | - |
FeO + Fe2O3 | 1.2 | 1.57 | 2.50 | 3.26 | 6.95 | 8.24 | 1.44 | 2.49 | 1.46 | 2.14 | 1.44 | 1.46 | 1.32 |
MnO | - | - | - | - | 0.36 | 0.36 | - | - | - | - | - | - | - |
MgO | 17.38 | 17.34 | 17.07 | 16.88 | 14.12 | 12.87 | 23.64 | 23.63 | 23.66 | 23.25 | 24.83 | 24.79 | 23.67 |
CaO | 26.17 | 26.30 | 25.91 | 25.28 | 25.15 | 25.39 | 14.00 | 13.65 | 13.90 | 13.87 | 11.13 | 14.32 | 13.5 |
Na2O | - | - | - | - | - | - | - | - | - | - | 0.15 | - | - |
K2O | - | - | - | - | - | - | - | - | - | 0.27 | 0.13 | - | - |
F | - | - | - | - | - | - | - | - | - | - | 1.31 | 1.23 | 1.15 |
Sum | 99.98 | 100.11 | 100.04 | 100.09 | 100.03 | 99.97 | 98.04 | 98.15 | 98.08 | 98.13 | 98.17 | 98.26 | 98.09 |
Ca0.95–1.1(Mg0.8–0.97,Fe0.02–0.18)[Si2O6] from 88 electron-microprobe analyses | (Ca2–1.94,Na0–0.06)[Mg4.9–4.64,(Fe2+,Fe3+)0.1–0.33][(Si8–7.95,Al0–0.05)O22](OH2–1.44,F0–0.54) from 84 electron-microprobe analyses |
N | Au | Ag | Cu | Zn | Σ | Fineness |
---|---|---|---|---|---|---|
1 | 99.75 | 0.11 | - | - | 99.86 | 999 |
2 | 99.49 | 0.05 | 0.07 | 0.05 | 99.66 | 998 |
3 | 99.89 | 0.14 | - | - | 99.99 | 999 |
4 | 98.71 | 0.63 | 0.37 | 0.10 | 99.81 | 989 |
5 | 97.88 | 0.65 | - | - | 98.53 | 993 |
6 | 99.06 | 0.33 | 0.21 | 0.15 | 99.75 | 993 |
7 | 97.99 | 1.59 | - | - | 99.58 | 984 |
8 | 98.41 | 1.08 | 0.35 | 0.06 | 99.90 | 985 |
9 | 98.77 | 0.48 | 0.31 | 0.16 | 99.72 | 990 |
10 | 99.45 | - | 0.18 | 0.08 | 99.71 | 997 |
11 | 99.91 | 0.22 | - | - | 100.01 | 998 |
Description of Samples and X-Ray Diffraction Patterns | Elementary Cell Parameter, a Å ± 0.0002 | Mean Deviation Calculated from Measured Interplanar Distances | Reliability Criteria by de Wolf [68] |
---|---|---|---|
Grains are anhedral, exhibiting no crystal faces at all and with openwork loose structure: lines on X-ray diffraction patterns are thin, symmetrical, well-separated doublet (511), (333) | 4.0775 | 0.0016 | 51 |
4.0761 | 0.0021 | 34 | |
4.0764 | 0.0023 | 25 | |
4.0778 | 0.0017 | 48 | |
4.0764 | 0.0003 | 74 | |
4.0765 | 0.0005 | 59 | |
Crystals are subhedral, not completely bounded by crystal faces: lines on X-ray diffraction patterns are thin, on top of some reflections at small angles (111), (200) brighter reflections are observed | 4.0781 | 0.0016 | 43 |
4.0783 | 0.0003 | 98 | |
4.0786 | 0.0006 | 70 | |
4.0770 | 0.0001 | 265 | |
4.0778 | 0.0005 | 271 | |
4.0777 | 0.0001 | 316 | |
4.0774 | 0.0017 | 100 | |
4.0775 | 0.0004 | 71 | |
Aggregates of needle-shaped and long prismatic crystals: thin lines, doublet split over reflection (111), short bright reflexes | 4.0786 | 0.0002 | 110 |
4.0787 | 0.0005 | 74 | |
4.0785 | 0.0003 | 78 | |
4.0789 | 0.0011 | 51 | |
4.0783 | 0.0010 | 54 | |
Crystals are euhedral, composed of flat faces on all sides: all reflections show reflexes over thin lines, at low angles—short (pointwise), at high angles—elongated and blurred, doublet (511), (333) is split | 4.0783 | 0.0055 | 26 |
4.0784 | 0.0054 | 28 | |
4.0791 | 0.0004 | 56 | |
4.0799 | 0.0003 | 68 | |
4.0801 | 0.0005 | 60 | |
4.0782 | 0.0041 | 48 | |
4.0781 | 0.0003 | 78 | |
4.0783 | 0.0055 | 26 |
N Sample | (hkl) | 2θ° | βS° | βS cos θ | D, nm |
---|---|---|---|---|---|
Openwork loose grain structures | |||||
1 | (111) | 38.20 | 0.275 | 0.00453 | 28.56 |
(222) | 81.75 | 0.218 | 0.00288 | 28.74 | |
2 | (111) | 38.21 | 0.269 | 0.00444 | 29.15 |
(222) | 81.785 | 0.213 | 0.00281 | 29.45 | |
3 | (111) | 38.21 | 0.267 | 0.00440 | 29.38 |
(222) | 81.78 | 0.212 | 0.00280 | 29.60 | |
4 | (111) | 38.18 | 0.261 | 0.00431 | 30.01 |
(222) | 81.69 | 0.208 | 0.00275 | 30.17 | |
5 | (111) | 38.23 | 0.255 | 0.00420 | 30.79 |
(222) | 81.76 | 0.202 | 0.00267 | 31.05 | |
Relatively dense aggregates | |||||
6 | (111) | 38.19 | 0.128 | 0.00212 | 61.10 |
(222) | 81.74 | 0.103 | 0.00136 | 60.96 | |
7 | (111) | 38.18 | 0.132 | 0.00218 | 59.40 |
(222) | 81.73 | 0.104 | 0.00138 | 60.12 | |
8 | (111) | 38.18 | 0.132 | 0.00217 | 59.66 |
(222) | 81.72 | 0.105 | 0.00138 | 59.91 | |
9 | (111) | 38.21 | 0.130 | 0.00215 | 60.14 |
(222) | 81.76 | 0.105 | 0.00138 | 60.07 | |
10 | (111) | 38.19 | 0.134 | 0.00220 | 58.73 |
(222) | 81.74 | 0.107 | 0.00141 | 58.86 | |
Needle-shaped cylindrical crystallites | |||||
11 | (111) | 38.18 | 0.079 | 0.00131 | 98.96 |
(222) | 81.72 | 0.063 | 0.00084 | 98.99 | |
12 | (111) | 38.21 | 0.079 | 0.00130 | 99.23 |
(222) | 81.73 | 0.063 | 0.00083 | 99.65 | |
13 | (111) | 38.19 | 0.079 | 0.00130 | 99.47 |
(222) | 81.71 | 0.063 | 0.00083 | 99.96 | |
14 | (111) | 38.18 | 0.079 | 0.00131 | 98.96 |
(222) | 81.72 | 0.063 | 0.00084 | 98.99 |
Characteristics | Order of Substructural Components | Particle Size, μm | |||
---|---|---|---|---|---|
<100 μm | 100–300 μm | ||||
Width of blocks, nm | I | 101 | 102 | 110 | 103 |
II | 300 | 298 | 309 | 299 | |
III | – | – | 996 | 986 | |
Angle between blocks δ, min | I | 1.5 ± 0.2 | 2 ± 0.5 | 3 ± 0.8 | 4 ± 0.8 |
II | 5 ± 2.0 | 6 ± 2.0 | 5 ± 2.0 | 6 ± 1.5 | |
III | – | – | 9 ± 2.0 | 12 ± 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozhdestvina, V.I.; Palyanova, G.A. Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia). Minerals 2025, 15, 571. https://doi.org/10.3390/min15060571
Rozhdestvina VI, Palyanova GA. Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia). Minerals. 2025; 15(6):571. https://doi.org/10.3390/min15060571
Chicago/Turabian StyleRozhdestvina, Veronika I., and Galina A. Palyanova. 2025. "Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)" Minerals 15, no. 6: 571. https://doi.org/10.3390/min15060571
APA StyleRozhdestvina, V. I., & Palyanova, G. A. (2025). Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia). Minerals, 15(6), 571. https://doi.org/10.3390/min15060571