Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = structural-thermal-optical-performance analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6226 KB  
Article
Design and Analysis of Optical–Mechanical–Thermal Systems for a High-Resolution Space Camera
by Xiaohan Liu, Jian Jiao, Kaihui Gu, Hong Li, Wenying Zhang, Siqi Zhang, Wei Zhao, Zhaohui Pei, Bo Zhang, Zhifeng Cheng and Feng Yang
Sensors 2025, 25(24), 7617; https://doi.org/10.3390/s25247617 - 16 Dec 2025
Viewed by 29
Abstract
To meet the requirements of high resolution, compact size, and ultra-lightweight for micro–nano satellite optoelectronic payloads while ensuring high structural stability during launch and in-orbit operation, mirrors were designed with high surface accuracy. The opto-thermo-mechanical system of the space camera was designed and [...] Read more.
To meet the requirements of high resolution, compact size, and ultra-lightweight for micro–nano satellite optoelectronic payloads while ensuring high structural stability during launch and in-orbit operation, mirrors were designed with high surface accuracy. The opto-thermo-mechanical system of the space camera was designed and analyzed accordingly. First, an optical system was designed to achieve high resolution and a compact form factor. A coaxial triple-reflector configuration with multiple refractive paths was adopted, which significantly shortened the optical path and laid the foundation for a lightweight, compact structure. This design also defined the accuracy and tolerance requirements for the primary and secondary mirrors. Subsequently, mathematical models for topology optimization and dimensional optimization were established to optimize the design of the main support structure, primary mirror, and secondary mirror. Two design schemes for the main support structure and primary mirror were compared. Steady-state thermal analysis and thermal control design were carried out for both mirrors. Simulations were then performed on the main system (including the primary/secondary mirror assemblies and the main support structure). Under the combined effects of gravity, a 4 °C temperature increase, and an assembly flatness deviation of 0.01 mm, the surface accuracy of both mirrors, the displacement of the secondary mirror relative to the primary mirror reference, and the tilt angle all met the overall specification requirements. The system’s first-order natural frequency was 156.731 Hz. After precision machining, fabrication, and assembly, wavefront aberration testing was conducted on the main system with the optical axis horizontal. Under gravity, the root mean square (RMS) wavefront error at the center of the field of view was 0.073λ, satisfying the specification of ≤1/14λ. The fundamental frequency measured during vibration testing was 153.09 Hz, which aligned closely with the simulated value and well exceeded the requirement of 100 Hz. Additionally, in-orbit imaging verification was conducted. All results satisfied the technical specifications of the satellite’s overall requirements. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 2023 KB  
Article
Development of Mono-Material Multilayer Light Barrier Films
by Rocío Ayelén Fuentes, Giacomo Foli, Roberta Di Carlo, Yanela Natalyn Alonso, Luciana Andrea Castillo and Matteo Minelli
Polymers 2025, 17(24), 3279; https://doi.org/10.3390/polym17243279 - 10 Dec 2025
Viewed by 278
Abstract
Mono-material multilayer polypropylene films were developed as light barrier structures through the incorporation of mineral-filled composite layers. Trilayer films with different layer arrangements were fabricated by thermocompression from polypropylene-based films containing 0, 1 and 5 wt.% of talc and kaolinite. A monolayer polypropylene [...] Read more.
Mono-material multilayer polypropylene films were developed as light barrier structures through the incorporation of mineral-filled composite layers. Trilayer films with different layer arrangements were fabricated by thermocompression from polypropylene-based films containing 0, 1 and 5 wt.% of talc and kaolinite. A monolayer polypropylene film of equivalent total thickness was used as a control. Structural, thermal, mechanical, optical, and gas barrier properties were evaluated for all films fabricated. A well-defined trilayer structure was confirmed by SEM. FTIR analysis demonstrated negligible thermo-oxidation, with no thermal-degradation during processing. Improved thermal stability and a slight modification in crystallinity were evidenced by TGA and DSC, respectively. XRD revealed the predominance of the α-form crystalline phase and a preferential polymer crystal orientation associated with the particle presence. Regarding mechanical behavior, enhanced stiffness and tensile strength without loss of sealability or puncture resistance were observed. Trilayer films exhibited significantly reduced UV and visible light transmittance, while maintaining adequate translucency, making them suitable for photosensitive packaging applications. Gas permeabilities remained nearly unchanged, confirming that the barrier performances were preserved. Overall, these mono-material multilayer composites films offer a promising and recyclable alternative to conventional multi-material light barrier packaging, combining improved UV protection, mechanical robustness, and environmental compatibility. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

28 pages, 3383 KB  
Review
Evaluation of Biomass Softwood Composites: Structural Features and Functional Properties of Advanced Engineered Wood
by Ria Aniza, Anelie Petrissans, Mathieu Petrissans, Erlan Rosyadi, Hana Nabila Anindita, Tyas Puspita Rini, Zulaicha Dwi Hastuti, Nurdiah Rahmawati, Bralin Dwiratna, Ena Marlina, Akhmad Faruq Alhikami and I Dewa Ayu Agung Warmadewanthi
Forests 2025, 16(12), 1823; https://doi.org/10.3390/f16121823 - 5 Dec 2025
Viewed by 318
Abstract
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, [...] Read more.
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, and environmental characteristics of engineered wood products derived from softwood species. The intrinsic lignocellulosic composition of softwood, comprising roughly 40%–45% cellulose, 25%–30% hemicelluloses (with mannose as the predominant sugar), and 27%–30% lignin, strongly influences hydrophilicity, stiffness, and thermal behavior. Mechanical properties vary across engineered wood product classes; for example, plywood exhibits a modulus of rupture of 33.72–42.61 MPa and a modulus of elasticity of 6.96–8.55 GPa. Microstructural and spectroscopic analyses highlight the importance of fiber–matrix interactions, chemical bonding, and surface modifications in determining composite performance. Emerging advanced materials, such as scrimber, with densities of 800–1390 kg/m3, and fluorescent transparent wood, achieving optical transmittance above 70%–85%, demonstrate the expanding functional potential of softwood-based composites. Sustainability assessments indicate that coatings, flame-retardants, and adhesives may contribute to volatile organic compound emissions, emphasizing the need for lower-emission, bio-based alternatives. Overall, the findings of this systematic review show that softwood-based composites deliver robust, quantifiable performance advantages and hold strong potential to meet the rising demand for sustainable, low-carbon engineered materials. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Graphical abstract

22 pages, 6416 KB  
Article
Beam Based and Triply Periodic Minimal Surface Lattice Structures in Inconel 718: An In-Depth Comparative Analysis of Manufacturability Through L-Pbf and Metallographic Characterization
by Alberto Santoni, Marcello Cabibbo, Gianni Virgili, Eleonora Santecchia, Kamal Sleem and Gabriele Grima
Compounds 2025, 5(4), 52; https://doi.org/10.3390/compounds5040052 - 19 Nov 2025
Viewed by 303
Abstract
This study explores the application of lattice structures as internal support architectures in the fabrication of Inconel 718 components via Laser Powder Bed Fusion (L-PBF), building upon previous research on beam-based FCCZ supports. Two representative lattice typologies were investigated: the node and beam-based [...] Read more.
This study explores the application of lattice structures as internal support architectures in the fabrication of Inconel 718 components via Laser Powder Bed Fusion (L-PBF), building upon previous research on beam-based FCCZ supports. Two representative lattice typologies were investigated: the node and beam-based FCCZ (face centered cubic with Z direction reinforcement struts) structure and the triply periodic minimal surface (TPMS) Schoen Gyroid cell. The aim was to assess how the transition from a discrete beam-node architecture to a continuous surface topology influences manufacturability, thermal stability, and mechanical performance. Finite Element Method (FEM) simulations in Ansys accurately predicted distortions and residual stresses during the L-PBF process, showing strong agreement with stereomicroscope measurements. Specifically, the maximum directional deformation reached 0.32 mm for the FCCZ sample versus 0.17 mm for the Gyroid, with corresponding peak residual stresses of 1328 MPa and 940 MPa, respectively. After fabrication, the samples underwent solution treatment and double aging according to AMS 2774 and AMS 5662 standards. Vickers microhardness increased from about 320 HV0.3 in the as-built condition to 500 HV0.3 after heat treatment (+55%), with overall porosity remaining below 1%. Microstructural analysis using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that heat treatment partially homogenized the microstructure but did not achieve complete recrystallization, leaving localized dendritic regions and undissolved Laves phases, particularly near the lattice. The precipitation of γ′ and δ phases enhanced hardness and mechanical uniformity, as confirmed by Vickers microhardness testing. Quantitatively, the Gyroid topology exhibited approximately 40% lower deformation and defect density than the FCCZ structure, confirming its superior manufacturability and thermal stability. These findings provide practical guidance for selecting lattice topologies for support architectures in L-PBF Inconel 718 components where thermal stability and shape preservation during build are critical. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

24 pages, 11668 KB  
Article
Multiphysics Optical–Thermal and Mechanical Modeling of a CMOS-SOI-MEMS Infrared Sensor with Metasurface Absorber
by Moshe Avraham and Yael Nemirovsky
Sensors 2025, 25(22), 6819; https://doi.org/10.3390/s25226819 - 7 Nov 2025
Viewed by 636
Abstract
Infrared (IR) thermal sensors on CMOS-SOI-MEMS platforms enable scalable, low-cost thermal imaging but require optimized optical, thermal, and mechanical performance. This paper presents a multiphysics modeling framework to study the integration of Metasurface absorbers into a Thermal CMOS-SOI-MEMS IR sensor. Using finite-difference time-domain [...] Read more.
Infrared (IR) thermal sensors on CMOS-SOI-MEMS platforms enable scalable, low-cost thermal imaging but require optimized optical, thermal, and mechanical performance. This paper presents a multiphysics modeling framework to study the integration of Metasurface absorbers into a Thermal CMOS-SOI-MEMS IR sensor. Using finite-difference time-domain (FDTD) simulations, we demonstrate near-unity absorption at targeted wavelengths (e.g., 4.26 µm for CO2 sensing, 10 µm for thermal imaging) compared to conventional absorbers. The absorbed power, calculated from blackbody irradiance, drives thermal finite element analysis (FEA), confirming high thermal isolation and maximized temperature rise (ΔT) while quantifying the thermal time constant’s sensitivity to Metasurface mass. An analytical RC circuit model, validated against 3D FEA, accurately captures thermal dynamics for rapid design iterations. Mechanical modal and harmonic analyses verify structural integrity, with natural frequencies above 20 kHz, ensuring resilience against mechanical resonances and environmental vibrations. This holistic framework quantifies trade-offs between optical efficiency, thermal responsivity, and mechanical stability, providing a predictive tool for designing high-performance, uncooled IR sensors compatible with CMOS processes. Full article
Show Figures

Figure 1

16 pages, 4671 KB  
Article
Mechanically Reinforced Silica Aerogels via Thermally Induced Phase Separation of Poly(ethylene-co-vinyl Alcohol)
by Hainan Ma, Baomin Wang, Yongjun Zhang and Liquan Zheng
Gels 2025, 11(11), 870; https://doi.org/10.3390/gels11110870 - 30 Oct 2025
Viewed by 490
Abstract
Silica aerogels are highly attractive due to their outstanding properties, including their low density, ultralow thermal conductivity, large porosity, high optical transparency, and strong sorption activity. However, their inherent brittleness has limited widespread applications. Constructing a robust, highly porous three-dimensional network is critical [...] Read more.
Silica aerogels are highly attractive due to their outstanding properties, including their low density, ultralow thermal conductivity, large porosity, high optical transparency, and strong sorption activity. However, their inherent brittleness has limited widespread applications. Constructing a robust, highly porous three-dimensional network is critical to achieving the desired mechanical properties in aerogels. In this study, we introduce a novel synthesis route for fabricating lightweight and mechanically strong aerogels by incorporating poly(ethylene-co-vinyl alcohol) (EVOH) through thermally induced phase separation (TIPS). EVOH exhibits upper critical solution temperature (UCST) behavior in a mixture of isopropanol (IPA) and water, which can be utilized to reinforce the silica skeletal structure. Robust aerogels were prepared via the sol–gel process and TIPS method, followed by supercritical CO2 drying, yielding samples with bulk densities ranging from 0.136 to 0.200 g/cm3. N2 physisorption analysis revealed a mesoporous structure, with the specific surface area decreasing from 874 to 401 m2/g as EVOH content increased from 0 to 80 mg/mL. The introduced EVOH significantly enhanced mechanical performance, raising the flexural strength and compressive strength to 0.545 MPa and 18.37 MPa, respectively—far exceeding those of pure silica aerogel (0.098 MPa and 0.74 MPa). This work demonstrates the effectiveness of the TIPS strategy for developing high-strength, low-density silica aerogels with well-preserved porosity. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

20 pages, 4050 KB  
Article
The Efficiency of Fibrous Mg Clays for the Removal of Ciprofloxacine and Lidocaine from Water—The Role of Associated Clay Minerals
by Telma Belén Musso, Maria Eugenia Roca-Jalil, Vanina Rodriguez-Ameijide, Micaela Sanchez, Andrea Maggio, Miria Teresita Baschini, Gisela Pettinari, Luis Villa, Alejandro Pérez-Abad and Manuel Pozo
Minerals 2025, 15(10), 1083; https://doi.org/10.3390/min15101083 - 17 Oct 2025
Viewed by 429
Abstract
Adsorption studies of ciprofloxacine (CPX) and lidocaine (LID) emerging contaminants were performed on two fibrous Mg clays from the Madrid basin and Senegal. The samples were characterized by X-ray diffraction, ICP major element analysis, infrared spectroscopy, thermal analysis, optical petrography, scanning and transmission [...] Read more.
Adsorption studies of ciprofloxacine (CPX) and lidocaine (LID) emerging contaminants were performed on two fibrous Mg clays from the Madrid basin and Senegal. The samples were characterized by X-ray diffraction, ICP major element analysis, infrared spectroscopy, thermal analysis, optical petrography, scanning and transmission electron microscopy, cation exchange capacity (CEC), and N2-BET analysis. Two mineral assemblages were established. Assemblage 1 mainly consists of sepiolite and minor trioctahedral smectite, while assemblage 2 is mostly composed of palygorskite, which is associated with dioctahedral smectite. The sorption was fast and reached equilibrium in 2 h. Fibrous Mg clays showed a higher adsorption capacity for CPX than for LID in the conditions studied. CPX adsorption on sepiolite and palygorskite can be the result of the combination of various mechanisms: ion exchange with permanently charged sites, electrostatic attractions with external surfaces, and an inner sphere complex with broken edges. LID adsorption mainly occurs by ion exchange and electrostatic interaction with the external surfaces of the clays. Dioctahedral smectite, as an associated phase, contributed to a higher removal percentage in palygorskite samples. By contrast, the trioctahedral smectite did not play a significant role in the adsorption of the samples with sepiolite. The mesoporous structure, high surface area, and moderate cation exchange of fibrous clays play a key role in the sorption process of CPX and LID. Full article
(This article belongs to the Collection Clays and Other Industrial Mineral Materials)
Show Figures

Graphical abstract

14 pages, 11056 KB  
Article
The Evaluation of Thermal Stability, Electric Conductivity and Carbide Morphology of Austenitic Ductile Iron Castings
by Magdalena Bork, Marcin Górny, Łukasz Gondek, Jerzy Morgiel and Krzysztof Morgiel
Materials 2025, 18(20), 4734; https://doi.org/10.3390/ma18204734 - 15 Oct 2025
Viewed by 450
Abstract
The Ni-Resist ductile iron, with a nickel content ranging from 18% to 36%, is a material designed for service under extreme conditions. One of the main objectives of this study was to determine the minimum nickel content required to stabilize the austenitic structure [...] Read more.
The Ni-Resist ductile iron, with a nickel content ranging from 18% to 36%, is a material designed for service under extreme conditions. One of the main objectives of this study was to determine the minimum nickel content required to stabilize the austenitic structure at cryogenic temperatures. Additional aims included investigating structural features related to the solidification of austenite dendrites, graphite nodules, and eutectic carbides. Moreover, the electrical conductivity, which is critical for certain applications of Ni-Resist ductile irons, was also examined. To this end, castings with varying nickel content (21%, 25%, 28%, and 35%) and with or without chromium additions were prepared. Microstructural characterization was performed using optical, scanning, and transmission electron microscopy, X-ray diffraction (XRD), and electrical conductivity measurements. The results showed that a highly branched dendritic microstructure predominates, with graphite nodules located in interdendritic regions and along austenite grain boundaries. In chromium-alloyed ductile irons, the austenitic matrix contains Cr = 1.7 ± 0.3 wt.% in the vicinity of M7C3-type eutectic carbides. Furthermore, thermal stability analysis indicated that a minimum nickel content of 25 wt.% is sufficient to ensure structural stability at cryogenic temperatures down to 25 K. Finally, complementing the above-mentioned investigations, the electrical conductivity characteristics of the studied high-nickel austenitic cast irons were determined. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

28 pages, 1955 KB  
Article
Comparative Analysis of High-Voltage High-Frequency Pulse Generation Techniques for Pockels Cells
by Edgard Aleinikov and Vaidotas Barzdenas
Appl. Sci. 2025, 15(19), 10830; https://doi.org/10.3390/app151910830 - 9 Oct 2025
Viewed by 1076
Abstract
This paper presents a comprehensive comparative analysis of high-voltage, high-frequency pulse generation techniques for Pockels cell drivers. These drivers are critical in electro-optic systems for laser modulation, where nanosecond-scale voltage pulses with amplitudes of several kilovolts are required. The study reviews key design [...] Read more.
This paper presents a comprehensive comparative analysis of high-voltage, high-frequency pulse generation techniques for Pockels cell drivers. These drivers are critical in electro-optic systems for laser modulation, where nanosecond-scale voltage pulses with amplitudes of several kilovolts are required. The study reviews key design challenges, with particular emphasis on thermal management strategies, including air, liquid, solid-state, and phase-change cooling methods. Different high-voltage, high-frequency pulse generation architectures including vacuum tubes, voltage multipliers, Marx generators, Blumlein structures, pulse-forming networks, Tesla transformers, switching-mode power supplies, solid-state switches, and high-voltage operational amplifiers are systematically evaluated with respect to cost, complexity, stability, and their suitability for driving capacitive loads. The analysis highlights hybrid approaches that integrate solid-state switching with modular multipliers or pulse-forming circuits as offering the best balance of efficiency, compactness, and reliability. The findings provide practical guidelines for developing next-generation high-performance Pockels cell drivers optimized for advanced optical and laser applications. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 3370 KB  
Article
Preparation and Characterization of Chemically Cross-Linked Xanthan/Poly(Vinylalcohol) Hydrogel Films Containing Cerium Oxide Nanoparticles for Potential Application in Removal of Methylene Blue and Crystal Violet Dyes
by Nicusor Fifere, Maria Marinela Lazar, Irina Elena Raschip, Anton Airinei, Cristian-Dragos Varganici and Maria Valentina Dinu
Gels 2025, 11(10), 809; https://doi.org/10.3390/gels11100809 - 9 Oct 2025
Viewed by 555
Abstract
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer [...] Read more.
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer network was confirmed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR), thermal analysis, and swelling behavior. Morphological features were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), while optical properties were investigated by UV–Vis spectroscopy. Undoped films displayed high transparency (~80% transmittance at 400 nm), with thermal cross-linking determined only slight yellowing and negligible changes in absorption edge (300 ± 2 nm). In contrast, CeO2NPs incorporation increased reflectance and introduced a new absorption threshold around 400 ± 2 nm, indicating nanoparticle–matrix interactions that modify optical behavior. Sorption studies with Methylene Blue (MB) and Crystal Violet (CV) dyes highlighted the influence of nanoparticle content and cross-linking on functional performance, with thermally treated samples showing the highest efficiency (~97–98% MB and 71–83% CV removal). Overall, the results demonstrate how structural tailoring and cross-linking control the characteristics of Xn/PVA/CeO2 nanocomposites, providing insight into their design as multifunctional hydrogel materials for environmental applications. Full article
Show Figures

Figure 1

28 pages, 7165 KB  
Article
Phosphate Low-Melting Glasses as Synergist in Flame-Retardant Cable Sheath Composition: Performance and Mode of Action
by Diana Amin Alsayed, Rodolphe Sonnier, Belkacem Otazaghine, Patrick Jean, Yves Brocheton and Laurent Ferry
Polymers 2025, 17(19), 2679; https://doi.org/10.3390/polym17192679 - 3 Oct 2025
Viewed by 932
Abstract
Nowadays, fiber optic cables are a strategic issue because of their importance in telecommunications. Due to the densification of optic cables and the reduction in polymeric layer thickness, the flammability of the external sheath has to be improved. Three novel flame-retardant compositions using [...] Read more.
Nowadays, fiber optic cables are a strategic issue because of their importance in telecommunications. Due to the densification of optic cables and the reduction in polymeric layer thickness, the flammability of the external sheath has to be improved. Three novel flame-retardant compositions using phosphate low-melting glasses (LMGs) as aluminum trihydrate (ATH) synergist were assessed in a polyethylene–ethylene vinyl acetate (PE-EVA) matrix. It was highlighted that LMG at a 10 wt% content reduced the peak and mean value of heat release rate (HRR), respectively, to 142 and 90 kW/m2 corresponding to 52% and 42% reduction compared to ATH only. Potassium phosphate LMG was shown to perform better than sodium or zinc phosphate LMG. The improvement was assigned to the formation of an expanded mineral layer at the surface of the material during combustion that acts as a thermal shield slowing down the pyrolysis rate. The structural analysis revealed that the presence of alkaline cations in glasses led to short phosphate chains that resulted in low softening point and low-viscosity liquid. It was evidenced that under heat exposure the melted glass is likely to flow between the dehydrating ATH particles, creating a cohesive layer that expands. Additionally, interactions between ATH and LMG were also evidenced. The new crystalline species may also play a role in the cohesion of the layer. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Graphical abstract

21 pages, 7458 KB  
Article
Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC)
by Diana Carmona-Cantillo, Rafael González-Cuello and Rodrigo Ortega-Toro
Gels 2025, 11(10), 790; https://doi.org/10.3390/gels11100790 - 1 Oct 2025
Viewed by 1195
Abstract
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby [...] Read more.
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby contributing to the extension of product shelf life. Therefore, the aim of this study is to compare the performance of citric acid and glutaraldehyde as crosslinking agents in gelatine-based hydrogels reinforced with cellulose nanocrystals (CNC), contributing to the development of safe and environmentally responsible materials. The hydrogels were prepared using the casting method and characterised in terms of their physical, mechanical, and structural properties. The results indicated that hydrogels crosslinked with glutaraldehyde exhibited higher opacity, lower transparency, and greater mechanical strength, whereas those crosslinked with citric acid demonstrated improved clarity, reduced water permeability, and enhanced swelling capacity. The incorporation of CNC further improved mechanical strength, reduced weight loss, and altered both surface homogeneity and optical properties. Microstructural results obtained by SEM were consistent with the mechanical properties evaluated (TS, %E, and EM). The Gel-ca hydrogel displayed the highest elongation value (98%), reflecting better cohesion within the polymeric matrix. In contrast, films incorporating CNC exhibited greater roughness and cracking, which correlated with increased rigidity and mechanical strength, as evidenced by the high Young’s modulus (420 MPa in Gel-ga-CNC2). These findings suggest that the heterogeneity and porosity induced by CNC limit the mobility of polymer chains, resulting in less flexible and more rigid structures. Additionally, the DSC analysis revealed that gelatine hydrogels did not exhibit a well-defined Tg, due to the predominance of crystalline domains. Systems crosslinked with citric acid showed greater thermal stability (higher Tm and ΔHm values), while those crosslinked with glutaraldehyde, although mechanically stronger, exhibited lower thermal stability. These results confirm the decisive effect of the crosslinking agent and CNC incorporation on the structural and thermal behaviour of hydrogels. In this context, the application of hydrogels in packaged products represents an eco-friendly alternative that enhances product presentation. This research supports the reduction in plastic consumption whilst promoting the principles of a circular economy and facilitating the development of materials with lower environmental impact. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

18 pages, 8195 KB  
Article
Phase Engineering of Cu2S via Ce2S3 Incorporation: Achieving Enhanced Thermal Stability and Mechanical Properties
by Boke Sun, Liang Li, Yitong Wang, Yuqi Chen, Zhaoshuai Song and Ming Han
Coatings 2025, 15(10), 1135; https://doi.org/10.3390/coatings15101135 - 1 Oct 2025
Viewed by 450
Abstract
Cu2S has wide-ranging applications in the energy field, particularly as electrode materials and components of energy storage devices. However, the migration of copper ions is prone to component segregation and copper precipitation, impairing long-term thermal stability and service performance. Ce2 [...] Read more.
Cu2S has wide-ranging applications in the energy field, particularly as electrode materials and components of energy storage devices. However, the migration of copper ions is prone to component segregation and copper precipitation, impairing long-term thermal stability and service performance. Ce2S3 not only possesses the unique 4f electron layer structure of Ce but also has high thermal stability and chemical inertness. Here, we report for the first time that the thermal stability and mechanical properties of Cu2S can be significantly enhanced by introducing the dispersed phase Ce2S3. Thermogravimetry—differential scanning calorimetry (TG-DSC) results show that the addition of 6 wt% Ce2S3 improves the thermal stability of Cu2S sintered at 400 °C. X-ray diffraction (XRD) results indicate that the crystal structure of Cu2S gradually transforms to tetragonal Cu1.96S and orthorhombic Cu1.8S phase at 400 °C with the increase of Ce2S3 addition. Scanning electron microscopy (SEM) results show that the particle size gradually decreased with the increase of Ce2S3 amount, indicating that the Ce2S3 addition increased the reactivity. The Ce content in Cu2S increased gradually with the increase of Ce2S3 amount at 400–600 °C. The 7 wt% Ce2S3-Cu2S exhibits paramagnetic behavior with a saturation magnetization of 1.2 µB/Ce. UV-Vis analysis indicates that the addition of Ce2S3 can reduce the optical energy gap and enrich the band structure of Cu2S. With increasing addition of Ce2S3 and rising sintering temperature, the density of Ce2S3-Cu2S gradually increases, and the hardness of Ce2S3-Cu2S increases by 52.5% at 400 °C and by 34.2% at 600 °C. The friction test results show that an appropriate addition amount of Ce2S3 can increase the friction coefficients of Cu2S. Ce2S3 modification offers a novel strategy to simultaneously enhance the structural and service stability of Cu2S by regulating Cu ion diffusion and suppressing compositional fluctuations. Full article
Show Figures

Figure 1

14 pages, 2468 KB  
Article
Optimizing Annealing Temperature for Enhanced Electrical Performance and Stability of Solution-Processed In2O3 Thin-Film Transistors
by Taehui Kim, Seullee Lee, Ye-Won Lee, Dongwook Kim, Youngjun Yun, Jin-Hyuk Bae, Hyeonju Lee and Jaehoon Park
Micromachines 2025, 16(10), 1091; https://doi.org/10.3390/mi16101091 - 26 Sep 2025
Viewed by 862
Abstract
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, [...] Read more.
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, 450, and 550 °C were adopted. The resulting In2O3 films were characterized using ultraviolet–visible (UV–Vis) spectroscopy, atomic force microscopy (AFM), Raman spectroscopy, and Hall-effect measurements to evaluate their optical, morphological, crystalline polymorphism, and electrical properties. The results revealed that the film annealed at 450 °C exhibited a field-effect mobility of 4.28 cm2/V·s and an on/off current ratio of 2.15 × 107. The measured hysteresis voltages were 3.11, 1.80, and 0.92 V for annealing temperatures of 350, 450, and 550 °C, respectively. Altogether, these findings indicate that an annealing temperature of 450 °C provides an optimal balance between the electrical performance and device stability for In2O3-based thin-film transistors (TFTs), making this condition favourable for high-performance oxide electronics. Full article
Show Figures

Figure 1

15 pages, 11493 KB  
Article
Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies
by Katarina Aleksić, Ivana Stojković Simatović, Maja Popović, Jelena N. Belošević-Čavor, Lidija Mančić and Smilja Marković
Processes 2025, 13(9), 2943; https://doi.org/10.3390/pr13092943 - 15 Sep 2025
Viewed by 634
Abstract
With the aim of reducing catalysts’ cost while maintaining high performance in water splitting, ZnO and RuO2 were combined into composites with ZnO to RuO2 mass ratios of 1:1, 2:1, and 10:1. The ZnO/RuO2 composites were prepared by microwave processing [...] Read more.
With the aim of reducing catalysts’ cost while maintaining high performance in water splitting, ZnO and RuO2 were combined into composites with ZnO to RuO2 mass ratios of 1:1, 2:1, and 10:1. The ZnO/RuO2 composites were prepared by microwave processing of a suspension containing Zn(OH)2 in situ precipitated onto RuO2 powder, and subsequently thermally modified at 600 °C to promote heterojunction formation and alter the defect chemistry. Phase composition, crystal structure, morphology, and optical properties were analyzed in detail employing XRD, TEM/HRTEM, HAADF-STEM with EDS, PL and XPS spectroscopy. The photoelectrocatalytic (PEC) activity of the composites toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) was evaluated by linear sweep voltammetry in alkaline electrolyte (0.1 M NaOH, pH 13), before and after one hour of electrochemical system illumination. The analysis focused on surface and bulk oxygen vacancies, which may have a crucial impact in PEC activity, by (1) promoting charge separation and increasing the number of active sites thus enhancing PEC activity, or (2) acting as electron–hole traps and recombination centers, reducing the lifetime of photo-induced charge carriers and thus deteriorating PEC activity. The presented results demonstrate that the combination of ZnO with RuO2 in a specific mass ratio, along with controlled defect structure, offers a worthwhile route for developing bifunctional, noble-metal-reduced catalysts for green hydrogen and oxygen production. Full article
Show Figures

Figure 1

Back to TopTop