Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Composite Catalysts
2.3. Characterization
2.4. Computational Procedure
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Adawy, M.; Dalha, I.B.; Ismael, M.A.; Al-Absi, Z.A.; Nemitallah, M.A. Review of Sustainable Hydrogen Energy Processes: Production, Storage, Transportation, and Color-Coded Classifications. Energy Fuels 2024, 38, 22686–22718. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global Low-Carbon Energy Transition in the Post-COVID-19 Era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Jilani, A.; Ibrahim, H. Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production. Energies 2025, 18, 1603. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Lai, T.-H.; Kuo, M.-Y.; Hsieh, P.-Y.; Hsu, Y.-J. Photoelectrochemical Cells for Solar Hydrogen Production: Challenges and Opportunities. APL Mater. 2019, 7, 080901. [Google Scholar] [CrossRef]
- Li, W.; Tian, H.; Ma, L.; Wang, Y.; Liu, X.; Gao, X. Low-Temperature Water Electrolysis: Fundamentals, Progress, and New Strategies. Mater. Adv. 2022, 3, 5598–5644. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, X.; Zhen, Y.; Liang, Y. Photogenerated Carrier-Assisted Electrocatalysts for Efficient Water Splitting. Catalysts 2023, 13, 712. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Feng, X. Support and Interface Effects in Water-Splitting Electrocatalysts. Adv. Mater. 2019, 31, 1808167. [Google Scholar] [CrossRef]
- Hanan, A.; Nazim Lakhan, M.; Shu, D.; Hussain, A.; Ahmed, M.; Soomro, I.A.; Kumar, V.; Cao, D. An efficient and durable bifunctional electrocatalyst based on PdO and Co2FeO4 for HER and OER. Int. J. Hydrog. Energy 2023, 48, 19494–19508. [Google Scholar] [CrossRef]
- Milikić, J.; Balčiūnaitė, A.; Sukackienė, Z.; Mladenović, D.; Santos, D.M.F.; Tamašauskaitė-Tamašiūnaitė, L.; Šljukić, B. Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting. Materials 2021, 14, 92. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Hong, M.; Zhang, L.; Feng, X.; Shi, M.; Hu, W.; Mu, S. Defective RuO2/TiO2 Nano-Heterostructure Advances Hydrogen Production by Electrochemical Water Splitting. Chem. Eng. J. 2022, 431, 134072. [Google Scholar] [CrossRef]
- Jin, D.; Yoo, H.; Lee, Y.; Lee, C.; Kim, M.H. IrO2–ZnO Composite Nanorod Array as an Acid-Stable Electrocatalyst with Superior Activity for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2022, 5, 3810–3820. [Google Scholar] [CrossRef]
- Mosallaei, H.; Hadadzadeh, H.; Ensafi, A.A.; Mousaabadi, K.Z.; Weil, M.; Foelske, A.; Sauer, M. Evaluation of HER and OER Electrocatalytic Activity over RuO2–Fe2O3 Nanocomposite Deposited on HrGO Nanosheets. Int. J. Hydrog. Energy 2023, 48, 1813–1830. [Google Scholar] [CrossRef]
- Shekhawat, A.; Samanta, R.; Barman, S. MOF-Derived Porous Fe3O4/RuO2-C Composite for Efficient Alkaline Overall Water Splitting. ACS Appl. Energy Mater. 2022, 5, 6059–6069. [Google Scholar] [CrossRef]
- Tariq, M.; Wu, Y.; Ma, C.; Ali, M.; Zaman, W.Q.; Abbas, Z.; Ayub, K.S.; Zhou, J.; Wang, G.; Cao, L.; et al. Boosted up Stability and Activity of Oxygen Vacancy Enriched RuO2/MoO3 Mixed Oxide Composite for Oxygen Evolution Reaction. Int. J. Hydrog. Energy 2020, 45, 17287–17298. [Google Scholar] [CrossRef]
- Ren, F.; Xu, J.; Feng, L. An Effective Bimetallic Oxide Catalyst of RuO2-Co3O4 for Alkaline Overall Water Splitting. Nano Res. 2024, 17, 3785–3793. [Google Scholar] [CrossRef]
- Uzgören, İ.N.; Hüner, B.; Yıldırım, S.; Eren, O.; Özdoğan, E.; Süzen, Y.O.; Demir, N.; Kaya, M.F. Development of IrO2–WO3 Composite Catalysts from Waste WC–Co Wire Drawing Die for PEM Water Electrolyzers’ Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2022, 10, 13100–13111. [Google Scholar] [CrossRef]
- Aralekallu, S.; Sannegowda, L.K.; Singh, V. Developments in electrocatalysts for electrocatalytic hydrogen evolution reaction with reference to bio-inspired phthalocyanines. Int. J. Hydrog. Energy 2023, 48, 16569–16592. [Google Scholar] [CrossRef]
- Kulmas, M.; Paterson, L.; Höflich, K.; Bashouti, M.Y.; Wu, Y.; Göbelt, M.; Ristein, J.; Bachmann, J.; Meyer, B.; Christiansen, S. Composite Nanostructures of TiO2 and ZnO for Water Splitting Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation. Adv. Funct. Mater. 2016, 26, 4882–4889. [Google Scholar] [CrossRef]
- Ghorbani, M.; Abdizadeh, H.; Taheri, M.; Golobostanfard, M.R. Enhanced Photoelectrochemical Water Splitting in Hierarchical Porous ZnO/Reduced Graphene Oxide Nanocomposite Synthesized by Sol-Gel Method. Int. J. Hydrog. Energy 2018, 43, 7754–7763. [Google Scholar] [CrossRef]
- Rajić, V.; Simatović, I.S.; Veselinović, L.; Čavor, J.B.; Novaković, M.; Popović, M.; Škapin, S.D.; Mojović, M.; Stojadinović, S.; Rac, V.; et al. Bifunctional Catalytic Activity of Zn1-xFexO toward the OER/ORR: Seeking an Optimal Stoichiometry. Phys. Chem. Chem. Phys. 2020, 22, 22078–22095. [Google Scholar] [CrossRef]
- Marković, S.; Simatović, I.S.; Ahmetović, S.; Veselinović, L.; Stojadinović, S.; Rac, V.; Škapin, S.D.; Bogdanović, D.B.; Častvan, I.J.; Uskoković, D. Surfactant-Assisted Microwave Processing of ZnO Particles: A Simple Way for Designing the Surface-to-Bulk Defect Ratio and Improving Photo(Electro)Catalytic Properties. RSC Adv. 2019, 9, 17165–17178. [Google Scholar] [CrossRef]
- Marković, S.; Stanković, A.; Dostanić, J.; Veselinović, L.; Mančić, L.; Škapin, S.D.; Dražič, G.; Janković-Častvan, I.; Uskoković, D. Simultaneous Enhancement of Natural Sunlight- and Artificial UV-Driven Photocatalytic Activity of a Mechanically Activated ZnO/SnO2 Composite. RSC Adv. 2017, 7, 42725–42737. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, D.; Lian, J.; Ma, Q.; Yu, J.; Huang, H.; Zhong, J.; Li, J. Preparation of Efficient Visible-Light-Driven BiOBr/Bi2O3 Heterojunction Composite with Enhanced Photocatalytic Activities. J. Alloys Compd. 2015, 649, 474–482. [Google Scholar] [CrossRef]
- Hamrouni, A.; Lachheb, H.; Houas, A. Synthesis, Characterization and Photocatalytic Activity of ZnO–SnO2 Nanocomposites. Mater. Sci. Eng. B 2013, 178, 1371–1379. [Google Scholar] [CrossRef]
- Aleksić, K.; Stojković Simatović, I.; Stanković, A.; Veselinović, L.; Marković, S. Influence of Thermal Treatment on the Photoelectrocatalytic Activity of 2ZnO/1RuO2 Composites as Photoanode for Water Splitting. Sci. Sinter. 2025, in press. [Google Scholar] [CrossRef]
- Aleksić, K.; Stojković Simatović, I.; Stanković, A.; Veselinović, L.; Stojadinović, S.; Rac, V.; Radmilović, N.; Rajić, V.; Škapin, S.D.; Mančić, L.; et al. Enhancement of ZnO@RuO2 Bifunctional Photo-Electro Catalytic Activity toward Water Splitting. Front. Chem. 2023, 11, 1173910. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Match!—Phase Analysis Using Powder Diffraction; Version 3.5; Crystal Impact: Bonn, Germany, 2023. [Google Scholar]
- Crystallography Open Database. Open-Access Collection of Crystal Structures of Organic, Inorganic, Metal-Organic Compounds and Minerals, Excluding Biopolymers. Available online: http://www.crystallography.net/cod/ (accessed on 1 February 2023).
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Liu, L.; Mei, Z.; Tang, A.; Azarov, A.; Kuznetsov, A.; Xue, Q.-K.; Du, X. Oxygen vacancies: The origin of n-type conductivity in ZnO. Phys. Rev. B 2016, 93, 235305. [Google Scholar] [CrossRef]
- Perdew, P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, V. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Kumar, V.; Swart, H.C.; Ntwaeaborwa, O.M.; Kroon, R.E.; Terblans, J.J.; Shaat, S.K.K.; Yousif, A.; Duvenhage, M.M. Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 2013, 101, 57–60. [Google Scholar] [CrossRef]
- Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Ubaidullah, M.; Al-Enizi, A.M.; Shaikh, S.; Ghanem, M.A.; Mane, R.S. Waste PET Plastic Derived ZnO@NMC Nanocomposite via MOF-5 Construction for Hydrogen and Oxygen Evolution Reactions. J. King Saud Univ.-Sci. 2020, 32, 2397–2405. [Google Scholar] [CrossRef]
- Biroju, R.K.; Pal, S.; Sharma, R.; Giri, P.K.; Narayanan, T.N. Stacking Sequence Dependent Photo-Electrocatalytic Performance of CVD Grown MoS2/Graphene van Der Waals Solids. Nanotechnology 2017, 28, 085101. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.M.; Kwak, I.H.; Kwon, E.L.; Jung, C.S.; Im, H.S.; Park, K.; Park, J. Transition Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. J. Phys. Chem. C 2015, 119, 1921–1927. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Gu, L.; Zhang, Y.; Li, G.-D.; Zou, X. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Popescu, V.; Zunger, A. Effective Band Structure of Random Alloys. Phys. Rev. Lett. 2010, 104, 236403. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
Catalyst | Recombination | Surface Defects | Surface-to-Deep Level | Deep Level (1) | Deep Level (2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Position (nm) | Integrated Area | Position (nm) | Integrated Area | Position (nm) | Integrated Area | Position (nm) | Integrated Area | Position (nm) | Integrated Area | |
1ZnO/1RuO2 | 377 | 188.08 | 401 | 80.90 | 574 | 1.06 × 105 | 658 | 2.33 × 105 | / | / |
1ZnO/1RuO2-600 | 378 | 103.08 | 436 | 811.56 | / | / | 649 | 10,845 | 749 | 11,627 |
2ZnO/1RuO2 | 377 | 70.15 | 406 | 35.44 | 571 | 66,345 | 665 | 1.175 × 105 | / | / |
2ZnO/1RuO2-600 | / | / | 430 | 783.05 | / | / | 652 | 5281 | 740 | 5406 |
10ZnO/1RuO2 | 377 | 68.46 | 412 | 38.78 | 574 | 79,583 | 660 | 2.12 × 105 | / | / |
10ZnO/1RuO2-600 | / | / | 414 | 597 | / | / | 643 | 8321 | 757 | 7341 |
Catalyst | HER | OER | ||||||
---|---|---|---|---|---|---|---|---|
Onset Potential (V vs. RHE) | Current Density (A g−1) | Onset Potential (V vs. RHE) | Current Density (A g−1) | |||||
Dark | Light | Dark | Light | Dark | Light | Dark | Light | |
1ZnO/1RuO2 | −0.322 | −0.263 | −43.47 | −55.40 | 2.047 | 1.879 | 5.26 | 9.56 |
1ZnO/1RuO2-600 | −0.226 | −0.157 | −71.04 | −112.93 | 1.958 | 1.906 | 5.56 | 6.62 |
2ZnO/1RuO2 | −0.238 | −0.164 | −78.01 | −115.41 | 1.737 | 1.566 | 15.68 | 38.22 |
2ZnO/1RuO2-600 | −0.217 | −0.138 | −104.11 | −185.41 | 1.809 | 1.650 | 16.09 | 29.59 |
10ZnO/1RuO2 | −0.291 | −0.251 | −65.61 | −71.56 | 1.824 | 1.686 | 15.96 | 23.56 |
10ZnO/1RuO2-600 | −0.250 | −0.198 | −101.96 | −175.26 | 2.023 | 1.893 | 5.09 | 8.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksić, K.; Stojković Simatović, I.; Popović, M.; Belošević-Čavor, J.N.; Mančić, L.; Marković, S. Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies. Processes 2025, 13, 2943. https://doi.org/10.3390/pr13092943
Aleksić K, Stojković Simatović I, Popović M, Belošević-Čavor JN, Mančić L, Marković S. Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies. Processes. 2025; 13(9):2943. https://doi.org/10.3390/pr13092943
Chicago/Turabian StyleAleksić, Katarina, Ivana Stojković Simatović, Maja Popović, Jelena N. Belošević-Čavor, Lidija Mančić, and Smilja Marković. 2025. "Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies" Processes 13, no. 9: 2943. https://doi.org/10.3390/pr13092943
APA StyleAleksić, K., Stojković Simatović, I., Popović, M., Belošević-Čavor, J. N., Mančić, L., & Marković, S. (2025). Photoelectrocatalytic Activity of ZnO/RuO2 Composites Toward HER and OER Reactions: The Importance of Surface and Bulk Oxygen Vacancies. Processes, 13(9), 2943. https://doi.org/10.3390/pr13092943