Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC)
Abstract
1. Introduction
2. Results and Discussion
2.1. Optical and Colour Characteristics
2.2. Transmittance and Opacity
2.3. Physical Properties and Water Absorption
2.4. Water and Oil Contact Angles
2.5. Cumulative Weight Loss
2.6. Mechanical Properties
2.7. Microstructure
2.8. Thermal Properties (DSC Thermograms)
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Hydrogel Preparation
4.3. Characterisation of the Films
4.3.1. Colour
4.3.2. Gloss
4.3.3. Transmittance and Opacity
4.3.4. Thickness
4.3.5. Moisture Content (Xw) and Swelling Degree (Hw) of the Hydrogels
4.3.6. Water Absorption Capacity (WCA)
4.3.7. Water Vapour Permeability (WVT)
4.3.8. Water and Oil Contact Angle
4.3.9. Cumulative Weight Loss
4.3.10. Mechanical Properties
4.3.11. Microstructure
4.3.12. Thermal Properties (DSC Thermograms)
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samuel, H.S.; Ekpan, F.-D.M.; Ori, M.O. Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-based Plastics. Asian J. Environ. Res. 2024, 1, 152–165. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. Food Rev. Int. 2023, 39, 2075–2106. [Google Scholar] [CrossRef]
- Barragán, V.; Triviño, E.C.; Tenorio-Alfonso, A.; Niemczyk-Soczynska, B.; Sajkiewicz, P.Ł. Hydrogel-Based Systems as Smart Food Packaging: A Review. Polymers 2025, 17, 1005. [Google Scholar] [CrossRef]
- Lunar, M.F.C.; Ortega-Toro, R.; Ordoñez, R.; Florido, H.F.; Hernández-Fernández, J. Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material. J. Renew. Mater. 2025, 13, 311–327. [Google Scholar] [CrossRef]
- Straksys, A.; Abouhagger, A.; Kirsnytė-Šniokė, M.; Kavleiskaja, T.; Stirke, A.; Melo, W.C.M.A. Development and Characterization of a Gelatin-Based Photoactive Hydrogel for Biomedical Application. J. Funct. Biomater. 2025, 16, 43. [Google Scholar] [CrossRef]
- Rampazzo, R.; Alkan, D.; Gazzotti, S.; Ortenzi, M.A.; Piva, G.; Piergiovanni, L. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packag. Technol. Sci. 2017, 30, 645–661. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Zhong, Y.; Zhao, Y.; Gao, P.; Tian, F.; Zhang, X.; Zhou, R.; Cullen, P.J. Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review. Polymers 2022, 14, 4025. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Dalimunthe, N.F.; Ginting, M.H.S.; Jaafar, M.; Tan, O.O.H.; Aruan, H.K.; Herfananda, A.L. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022, 8, 568. [Google Scholar] [CrossRef]
- Sapuła, P.; Bialik-Wąs, K.; Malarz, K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, 15, 253. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Taktak, N.E.M.; Awad, O.M.; Elfiki, S.A.; El-Ela, N.E.A. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B 2017, 56, 359–372. [Google Scholar] [CrossRef]
- Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S. Bioengineered Water-Responsive Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Hybrids for Wound Dressing and Skin Tissue Engineering Applications. Gels 2023, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Cazón, P.; Vázquez, M.; Velázquez, G. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydr. Polym. 2020, 236, 116031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, L.; Yang, J.; Zhang, J.; Hai, M.; Zhang, L.; Li, F.; Zhang, C.; Yang, Z.; Yang, H.; et al. Effects of crosslinking agent/diluents/thiol on morphology of the polymer matrix and electro-optical properties of polymer-dispersed liquid crystal. Liq. Cryst. 2018, 45, 728–735. [Google Scholar] [CrossRef]
- Ng, R.; Park, J. Inquiring into a spectral concept in the physics classroom. Phys. Educ. 2024, 59, 063003. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.; Nkede, F.; Fanze, M.; Wardak, M.; Kavindi, M.R.; Van, T.; Yan, X.; Tanaka, F.; Tanaka, F. Influence of cellulose nanocrystal formulations on the properties of pregelatinized cornstarch and cornmint essential oil films. Sci. Rep. 2025, 15, 18997. [Google Scholar] [CrossRef]
- Nazrin, A.; Norfarhana, A.S.; Ilyas, R.A.; Sapuan, S.M.; Khalina, A.; Syafiq, R.M.O.; Hamid, M.Y.S.; Hassan, C.S.; Idris, I.; Khoo, P.S.; et al. Sugar palm (Arenga p innata) thermoplastic starch nanocomposite films reinforced with nanocellulose. Phys. Sci. Rev. 2024, 9, 2253–2272. [Google Scholar] [CrossRef]
- Yildiz, E.; Ilhan, E.; Kahyaoglu, L.N.; Sumnu, G.; Oztop, M.H. The effects of crosslinking agents on faba bean flour–chitosan-curcumin films and their characterization. Legum. Sci. 2021, 4, e121. [Google Scholar] [CrossRef]
- Gerezgiher, A.G.; Szabó, T. Crosslinking of Starch Using Citric Acid. J. Phys. Conf. Ser. 2022, 2315, 012036. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 535734. [Google Scholar] [CrossRef]
- Jaipan, P.; Nguyen, A.; Narayan, R.J. Gelatin-based hydrogels for biomedical applications. MRS Commun. 2017, 7, 416–426. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zhang, Y.; Li, F.; Jiao, X.; Li, Q. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films. Int. J. Biol. Macromol. 2021, 192, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Khouri, J.; Penlidis, A.; Moresoli, C. Viscoelastic Properties of Crosslinked Chitosan Films. Processes 2019, 7, 157. [Google Scholar] [CrossRef]
- Kucińska-Lipka, J. Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine. Materials 2018, 11, 352. [Google Scholar] [CrossRef]
- David, O.; Arthur, E.; Kwadwo, S.O.; Badu, E.; Sakyi, P.; Nkrumah, K. Proximate Composition and Some Functional Properties of Soft Wheat Flour. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 753–758. [Google Scholar]
- Yang, J.; Han, C.-R.; Duan, J.-F.; Ma, M.-G.; Zhang, X.-M.; Xu, F.; Sun, R.-C.; Xie, X.-M. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J. Mater. Chem. 2012, 22, 22467–22480. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lou, J.; Xia, Y.; Chaudhuri, O. Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. Adv. Healthc. Mater. 2024, 13, e2402059. [Google Scholar] [CrossRef]
- Acevedo-Puello, V.; Figueroa-López, K.J.; Ortega-Toro, R.; Co, K.J. Gelatin-Based Hydrogels Containing Microcrystalline and Nanocrystalline Cellulose as Moisture Absorbers for Food Packaging Applications. J. Compos. Sci. 2023, 7, 337. [Google Scholar] [CrossRef]
- Yuvaraj, N.; Kumar, M.P. Surface integrity studies on abrasive water jet cutting of AISI D2 steel. Mater. Manuf. Process. 2017, 32, 162–170. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Z.; Zhao, M.; Wang, Z.; Zong, L. Biomimetic Cellulose Nanocrystals Composite Hydrogels: Recent Progress in Surface Modification and Smart Soft Actuator Applications. Nanomaterials 2025, 15, 996. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Ngwabebhoh, F.A.; Saha, N.; Saha, T.; Saha, P. Gellan gum/bacterial cellulose hydrogel crosslinked with citric acid as an eco-friendly green adsorbent for safranin and crystal violet dye removal. Int. J. Biol. Macromol. 2022, 222, 77–89. [Google Scholar] [CrossRef]
- Yin, F.; Lin, L.; Zhan, S. Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing. J. Biomater. Sci. Polym. Ed. 2019, 30, 190–201. [Google Scholar] [CrossRef]
- Hivechi, A.; Bahrami, S.H.; Siegel, R.A. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int. J. Biol. Macromol. 2019, 124, 411–417. [Google Scholar] [CrossRef]
- Shi, J.; Lian, H.; Huang, Y.; Zhao, D.; Wang, H.; Wang, C.; Li, J.; Ke, L. In vitro genotoxicity evaluation and metabolic study of residual glutaraldehyde in animal-derived biomaterials. Regen. Biomater. 2020, 7, 619. [Google Scholar] [CrossRef] [PubMed]
- Tseretely, G.I.; Smirnova, O.I. DSC study of melting and glass transition in gelatins. J. Therm. Anal. 1992, 38, 1189–1201. [Google Scholar] [CrossRef]
- Cui, Y.; Jin, R.; Zhang, Y.; Yu, M.; Zhou, Y.; Wang, L.Q. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting. Int. J. Bioprinting 2021, 7, 397. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Y.; Wang, J. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. Nanomaterials 2019, 9, 1397. [Google Scholar] [CrossRef]
- Leite, L.S.F.; Le Gars, M.; Azeredo, H.M.C.; Moreira, F.K.V.; Mattoso, L.H.C.; Bras, J. Insights into the effect of carboxylated cellulose nanocrystals on mechanical and barrier properties of gelatin films for flexible packaging applications. Int. J. Biol. Macromol. 2024, 280, 135726. [Google Scholar] [CrossRef]
- ASTM.D 523-89; Standard Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 1999.
- Murali, B.; Karthik, K.; Marotrao, S.S.; Laxmaiah, G.; Yadav, A.S.; Prasanth, I.S.N.V.R.; Abbas, M. Mechanical and dynamic mechanical properties of hybrid kevlar/natural fiber composites. Mater. Res. Express 2023, 10, 105305. [Google Scholar] [CrossRef]
- Carmona-Cantillo, D.; López-Padilla, A.; Ortega-Toro, R. Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals. J. Compos. Sci. 2025, 9, 249. [Google Scholar] [CrossRef]
- Rathinavel, S.; Saravanakumar, S.S. Development and Analysis of Poly Vinyl Alcohol/Orange peel powder biocomposite films. J. Nat. Fibers 2021, 18, 2045–2054. [Google Scholar] [CrossRef]
- Arrieta, C.N.; Acevedo-Puello, V.; Ordoñez, E.G.F.; Fonseca-Florido, H.; Ortega-Toro, R. Biodegradable monolayer film based on the collagen extracted from Oreochromis sp. processing byproducts blended with chitosan and assembled with PCL and PLA monolayers to form bilayers films. J. Food Process Eng. 2024, 47, e14696. [Google Scholar] [CrossRef]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Muñoz-Suarez, A.M.; Cortés-Rodríguez, M.; Ortega-Toro, R. Biodegradable films based on tilapia collagen (Oreochromis sp.): Improvement of properties with PLA and PCL bilayers with potential use in sustainable food packaging. Rev. Mex. De Ing. Quim. 2024, 23, Alim24326. [Google Scholar] [CrossRef]
- Kushibiki, T.; Mayumi, Y.; Nakayama, E.; Azuma, R.; Ojima, K.; Horiguchi, A.; Ishihara, M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci. Rep. 2021, 11, 23094. [Google Scholar] [CrossRef]
Formulation | Gloss at 60° | Colour Parameters | ΔE | CIE Lab Colour | ||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C | h | ||||
Gel-ga | 94.80 ± 3.89 a | 80.7 ± 0.7 c | 4.4 ± 0.1 e | 32.6 ± 0.2 b | 25.9 ± 0.2 b | 82.8 ± 0.1 a | - | |
Gel-ca | 45.29 ± 1.11 c | 87.4 ± 0.6 ab | 2.0 ± 0.2 d | 7.9 ± 0.4 e | 8.8 ± 1.2 c | 78.5 ± 2.8 c | - | |
Gel-ga-CNC1 | 78.60 ± 1.43 b | 77.3 ± 0.5 b | 7.8 ± 1.21 a | 47.4 ± 0.5 c | 48.8 ± 0.4 c | 80.0 ± 0.7 b | 8.14 ± 0.3 a | |
Gel-ga-CNC2 | 97.80 ± 2.89 d | 76.3 ± 2.9 b | 10.36 ± 2.5 b | 48.31 ± 0.9 a | 49.4 ± 2.7 a | 77.9 ± 1.17 b | 5.2 ± 0.5 b | |
Gel-ca-CNC1 | 31.29 ± 1.89 e | 89.9 ± 0.5 a | 2.40 ± 0.1 c | 3.30 ± 0.3 f | 4.00 ± 0.1 c | 55.8 ± 2.9 e | 5.3 ± 0.9 b | |
Gel-ca-CNC2 | 33.43 ± 1.40 d | 85.7 ± 0.7 a | 2.50 ± 0.1 c | 8.4 ± 0.2 d | 8.7 ± 0.2 ab | 72.6 ± 1.3 d | 1.8 ± 0.4 c |
Formulations | Thickness | WVT | WCA | Xw | Hw |
---|---|---|---|---|---|
Gel-ga | 228.14 ± 0.035 b | 1.34 ± 0.08 a | 0.46 ± 0.06 c | 0.125 ± 0.07 c | 3.96 ± 0.18 c |
Gel-ca | 207.71 ± 0.077 b | 1.11 ± 0.07 b | 0.45 ± 0.02 c | 0.109 ± 0.03 ab | 9.43 ± 0.21 a |
Gel-ga-CNC1 | 209.14 ± 0.042 a | 1.06 ± 0.09 c | 0.55 ± 0.05 b | 0.116 ± 0.07 a | 5.63 ± 0.08 b |
Gel-ga-CNC2 | 237.28 ± 0.015 b | 1.05 ± 0.08 c | 0.60 ± 0.05 a | 0.121 ± 0.08 c | 4.00 ± 0.03 c |
Gel-ca-CNC1 | 196.00 ± 0.085 b | 1.20 ± 0.03 a | 0.44 ± 0.02 c | 0.119 ± 0.04 a | 8.86 ± 0.39 a |
Gel-ca-CNC2 | 259.143 ± 0.062 b | 0.87 ± 0.02 d | 0.43 ± 0.03 c | 0.117 ± 0.03 ab | 6.57 ± 1.34 b |
Formulations | EM (MPa) | TS (MPa) | E (%) |
---|---|---|---|
Gel-ga | 350 ± 5 de | 22.2 ± 0.8 e | 93 ± 2 ab |
Gel-ca | 340 ± 5 e | 20.5 ± 0.5 f | 98 ± 3 a |
Gel-ga-CNC1 | 366 ± 2 c | 28.3 ± 1.0 c | 86 ± 2 bc |
Gel-ga-CNC2 | 420 ± 3 a | 42.2 ± 2.1 a | 83± 2 c |
Gel-ca-CNC1 | 355 ± 3 d | 25.0 ± 0.7 d | 89 ± 3 b |
Gel-ca-CNC2 | 405 ± 3 b | 35.5 ± 0.6 b | 85 ± 2 bc |
Formulations | Tm (°C) | △Hm (J/g) |
---|---|---|
Gel-ga | 152.9 ± 0.1 e | 271.9 ± 0.5 c |
Gel-ca | 154.05 ± 0.6 d | 304.8 ± 0.5 a |
Gel-ga-CNC1 | 149.7 ± 0.5 f | 235.85 ± 0.6 e |
Gel-ga-CNC2 | 169.5 ± 0.5 c | 238.1 ± 0.3 d |
Gel-ca-CNC1 | 171.83 ± 0.2 b | 212.65 ± 0.5 f |
Gel-ca-CNC2 | 174.6 ± 0.5 a | 277.85 ± 0.3 b |
Formulations | Gelatine | Glycerol | Glutaraldehyde | Citric Acid | CNC |
---|---|---|---|---|---|
Gel-ga | 0.868 | 0.130 | 0.025 | 0.000 | 0.00 |
Gel-ca | 0.834 | 0.125 | 0.00 | 0.042 | 0.00 |
Gel-ga-CNC1 | 0.849 | 0.127 | 0.025 | 0.000 | 0.021 |
Gel-ga-CNC2 | 0.832 | 0.124 | 0.025 | 0.000 | 0.041 |
Gel-ca-CNC1 | 0.816 | 0.122 | 0.00 | 0.041 | 0.021 |
Gel-ca-CNC2 | 0.801 | 0.120 | 0.00 | 0.040 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Cantillo, D.; González-Cuello, R.; Ortega-Toro, R. Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC). Gels 2025, 11, 790. https://doi.org/10.3390/gels11100790
Carmona-Cantillo D, González-Cuello R, Ortega-Toro R. Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC). Gels. 2025; 11(10):790. https://doi.org/10.3390/gels11100790
Chicago/Turabian StyleCarmona-Cantillo, Diana, Rafael González-Cuello, and Rodrigo Ortega-Toro. 2025. "Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC)" Gels 11, no. 10: 790. https://doi.org/10.3390/gels11100790
APA StyleCarmona-Cantillo, D., González-Cuello, R., & Ortega-Toro, R. (2025). Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC). Gels, 11(10), 790. https://doi.org/10.3390/gels11100790